

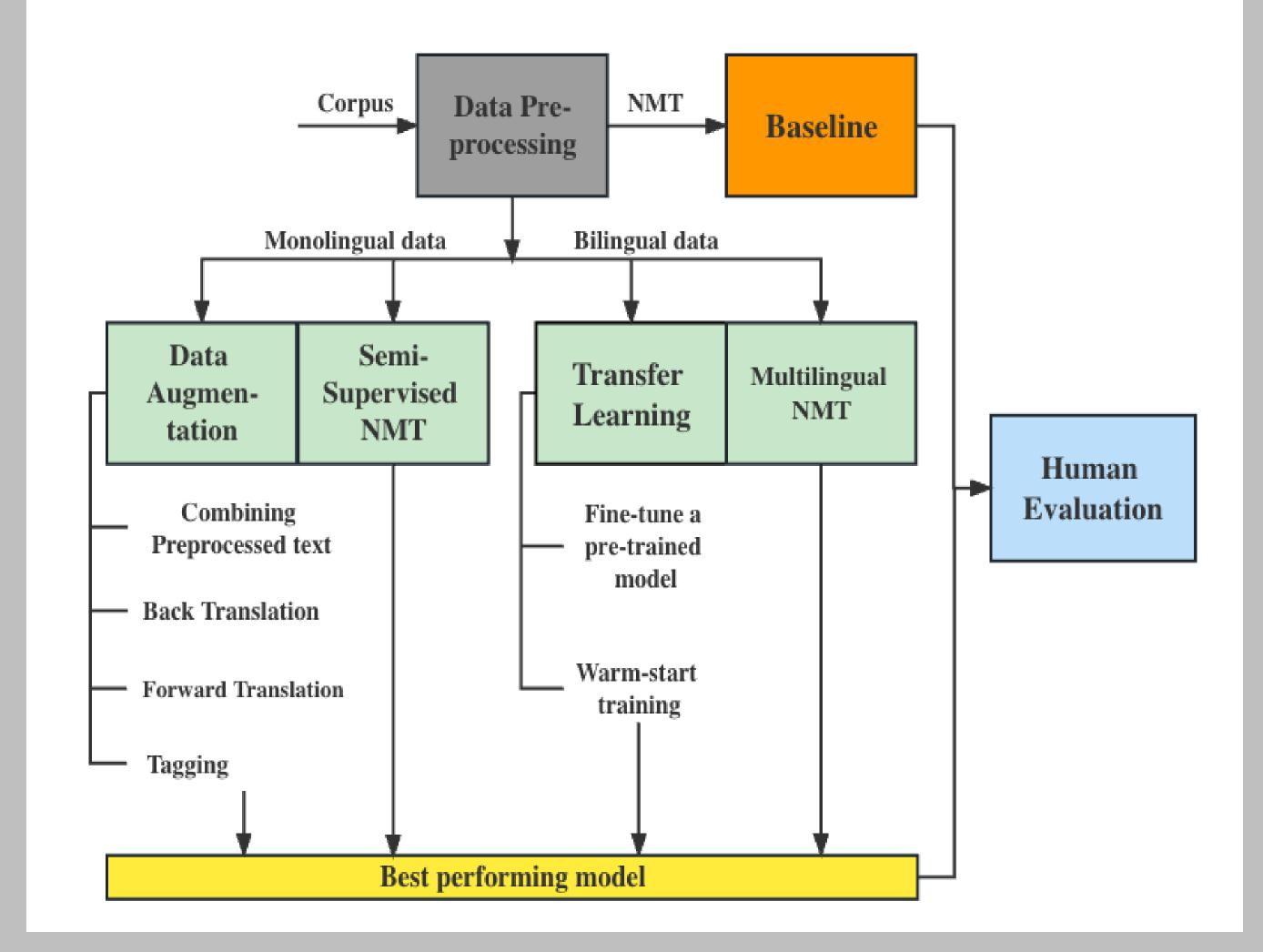
Neural Machine Translation Methods for Translating Text to Sign Language Glosses

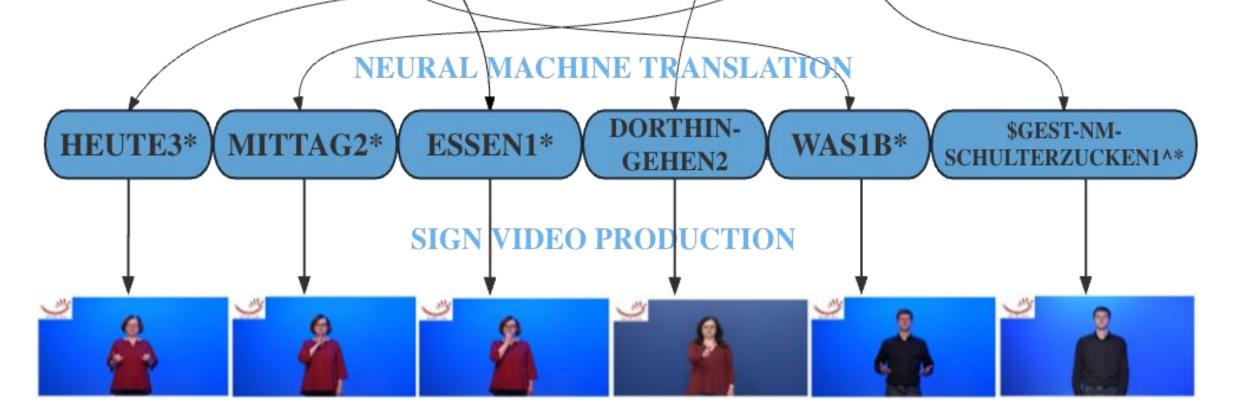
Dele Zhu¹, Vera Czehmann^{1,2} and Eleftherios Avramidis² 1. Technical University of Berlin

2. German Research Center for Artificial Intelligence (DFKI)

Introduction

Glosses


- Written representation of Sign Languages (SL)
- Limited representation ability, but useful for
 - Interpreters and educational uses
 - Intermediate step for spoken to SL translation
 - Investigating methods that may apply to more accurate representations in the future


Objective

• Use techniques successful in low-resource spoken languages MT to improve Sign Language Translation (SLT).

TEXT INPUT Was essen wir heute zu Mittag?

Approach overview

Methods

Data augmentation

 Combined preprocessed text, Back-translation, Forward-translation and Tagging

Semi-supervised NMT

• Copy a monoligual dataset to both source & target side (Currey et al., 2017) and combine with the SL parallel dataset

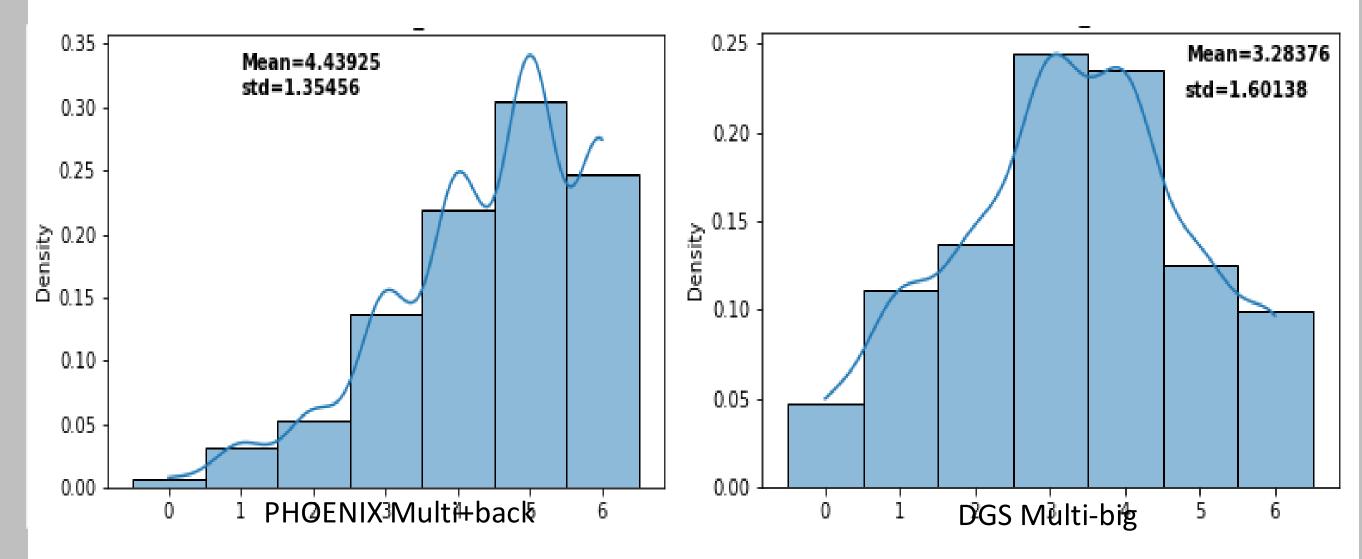
Transfer learning

- Fine-Tuning of a pre-trained model: Opus-MT de-en model
- Warm-start training (Nguyen and Chiang, 2007)

Multilingual NMT (Johnson et al., 2017)

- Train NMT system with both SL dataset and large-scale de-en dataset
- Add target-language-indicator before each source sentence

Results


Automatic MT metrics results for possible settings

System BPE Vocab BLEU ChrF TER BLEU ChrF TER	System	BPE Vocab	BLEU	Dev ChrF	TER	BLEU	Test ChrF	TER
--	--------	-----------	------	-------------	-----	------	--------------	-----

Human evaluation for best scoring systems

System	Size	automatic			human	
System		BLEU↑	ChrF↑	TER↑	Mean↑	Std↑
PHOENIX Egea Gómez et al. (2021)	642	13.13	46.86	73.33	2.74	1.64
PHOENIX baseline		20.14	52.04	56.12	3.85	1.58
PHOENIX Multi+back		26.32	56.70	51.15	4.44	1.35
DGS Baseline (sampled 10%)	511	3.44	29.56	78.55	2.49	1.81
DGS Multi-big (sampled 10%)		6.97	33.16	73.45	3.28	1.60

L.	Baseline	2k	22.78	51.87	55.84	20.14	52.04	56.12
hoenix-2014	Combine Combine+Tag Back Back+Tag Forward Forward+Tag All_combined	2k 2k 2k 2k 2k 2k 2k 2k	$ \begin{array}{r} \frac{24.01}{22.94} \\ 23.63 \\ 23.62 \\ 23.03 \\ 23.45 \\ 23.63 \end{array} $	$52.32 \\ 52.09 \\ 52.03 \\ \underline{52.85} \\ 52.56 \\ 52.49 \\ 52.32$	$\frac{53.20}{52.88}$ $\frac{53.98}{52.88}$ $\frac{53.71}{54.16}$ $\frac{54.19}{54.19}$	$\frac{21.88}{21.11} \\ 21.04 \\ \underline{21.57} \\ 20.40 \\ \underline{21.64} \\ 21.04$	51.51 51.65 51.59 52.41 51.54 52.27 51.97	$\frac{54.53}{54.81}\\ \frac{54.57}{53.94}\\ 55.63\\ \frac{54.57}{54.71}$
НЪ	Semi Semi+Tag	32k 32k	$\frac{26.76}{26.55}$	$\frac{55.41}{55.76}$	$\frac{51.10}{50.83}$	$\frac{22.67}{24.15}$	$\frac{53.87}{55.13}$	$\frac{53.07}{51.17}$
RWT	Fine-tune Warm	65k 32k	26.39 27.62	<u>56.84</u> 56.92	<u>50.88</u> 49.25	$\frac{24.67}{24.89}$	55.97 55.46	<u>52.86</u> 50.40
	Multi Multi-big Multi+combine Multi-big+combine Multi+back Multi-big+back	32k 32k 32k 32k 32k 32k 32k	28.34 27.45 26.61 28.02 28.41 28.53	57.29 56.52 55.59 57.07 57.54 57.64	<u>48.48</u> <u>48.77</u> <u>50.21</u> <u>49.31</u> <u>49.39</u> <u>48.93</u>	24.30 24.97 23.22 24.94 26.32 25.98	<u>55.71</u> <u>55.75</u> <u>54.55</u> <u>55.89</u> <u>56.70</u> <u>56.67</u>	$\frac{51.03}{49.89}$ $\frac{52.84}{51.01}$ $\frac{51.15}{50.94}$
S	Baseline	5k	4.04	31.20	79.34	3.13	30.38	78.64
c DGS Corpu	Combine Combine+Tag Back Back+Tag Forward Forward+Tag All_combine	5k 5k 5k 5k 5k 5k 5k	3.71 3.23 3.83 3.88 3.51 3.75 3.14	$29.97 \\ 28.69 \\ 30.08 \\ 29.66 \\ 29.14 \\ 29.69 \\ 28.37$	$\begin{array}{c} 80.21 \\ 81.31 \\ 82.75 \\ 79.55 \\ 83.03 \\ 86.20 \\ 81.61 \end{array}$	$2.75 \\ 2.27 \\ 3.06 \\ 2.75 \\ 2.81 \\ 2.93 \\ 2.43$	$29.31 \\ 28.17 \\ 29.30 \\ 28.91 \\ 28.24 \\ 29.06 \\ 27.87$	$\begin{array}{c} 80.01 \\ 81.03 \\ 80.94 \\ 79.05 \\ 81.13 \\ 83.21 \\ 81.83 \end{array}$
ildu	Semi Semi+Tag	32k 32k	$\frac{5.16}{5.00}$	$\frac{33.43}{32.69}$	$\frac{76.19}{79.47}$	$\frac{4.42}{4.10}$	$\frac{31.81}{31.30}$	$\frac{76.35}{78.67}$
Q	Fine-tune Warm	65k 32k	$\frac{5.82}{5.87}$	$\frac{35.05}{33.42}$	79.92 74.07	$\frac{4.53}{4.55}$	<u>34.14</u> 31.90	$\frac{78.98}{74.54}$
	Multi Multi-big Multi+combine Multi-big+combine Multi+back Multi-big+back	32k 32k 32k 32k 32k 32k	<u>6.06</u> <u>6.60</u> <u>4.64</u> <u>6.79</u> <u>5.35</u> <u>6.82</u>	35.18 35.26 32.33 35.50 33.43 35.57	74.51 73.25 80.39 73.98 78.30 76.37	<u>5.32</u> <u>5.46</u> <u>3.85</u> <u>5.61</u> <u>4.85</u> <u>5.78</u>	33.55 33.49 31.38 33.88 32.16 33.87	74.71 73.53 78.34 73.94 76.76 76.12

Comparison with	
previous work	

Approach	Dev BLEU↑	Test BLEU↑
Amin et al. (2021)	-	10.42
Egea Gómez et al. (2021)†	-	13.13
Stoll et al. (2020)	16.34	15.26
Zhang and Duh (2021)	-	16.43
Li et al. (2021)	-	18.89
Saunders et al. (2020b)	20.23	19.10

Egea Gómez et al. (2022) Walsh et al. (2022)	25.09	$\begin{array}{c} 20.57 \\ 23.19 \end{array}$
Our PHOENIX Multi+back	28.41	26.32

Conclusion

The first work on text-to-gloss machine translation

- to achieve significant improvements on the two known German SL datasets annotated with glosses
- to perform extensive experimentation with most known LRL-related MT methods and their combinations, in particular: semi-supervised NMT, transfer learning via warm-start and Multilingual NMT

This work was supported by the German Federal Ministry of Education and Research (BMBF) through the project SocialWear (grant no. 01IW20002)