)

Check for
updates

Recommending Mathematical Tasks Based
on Reinforcement Learning and Item
Response Theory

Matteo Orsoni!®) @, Alexander Pogelt?®, Nghia Duong-Trung®®,
Mariagrazia Benassi'®, Milos Kravcik®®, and Martin Griittmiiller?

! University of Bologna, Piazza Aldo Moro 90, 47521 Cesena, Italy
{matteo.orsoni2,mariagrazia.benassi}@unibo.it
2 Leipzig University of Applied Sciences, Karl-Liebknecht-Strake 132,
04277 Leipzig, Germany
{alexander.poegelt,martin.gruettmueller}@htwk-leipzig.de
3 Educational Technology Lab, German Research Center for Artificial Intelligence

(DFKI), Alt-Moabit 91C, 10559 Berlin, Germany
{nghia_trung.duong,milos.kravcik}@dfki.de

Abstract. Recommending challenging and suitable exercises to students
in an online learning environment is important, as it helps to stimulate
their engagement and motivation. This requires considering their individ-
ual goals to improve learning efficiency on one side and on the other to pro-
vide tasks with an appropriate difficulty for the particular person. Appar-
ently, this is not a trivial issue, and various approaches have been investi-
gated in the areas of adaptive assessment and dynamic difficulty adjust-
ment. Here, we present a solution for the domain of mathematics that rests
on two pillars: Reinforcement Learning (RL) and Item Response Theory
(IRT). Specifically, we investigated the effectiveness of two RL algorithms
in recommending mathematical tasks to a sample of 125 first-year Bach-
elor’s students of computer science. Our recommendation was based on
the Estimated Total Score (ETS) and item difficulty estimates derived
from IRT. The results suggest that this method allowed for personalized
and adaptive recommendations of items within the user-selected threshold
while avoiding those with an already achieved target score. Experiments
were performed on a real data set to demonstrate the potential of this app-
roach in domains where task performance can be rigorously measured.

Keywords: Recommender System - Reinforcement Learning + Item
Response Theory - Personalized Recommendation - Math Exercises

1 Introduction

Conventional university teaching methods usually provide uniform learning exer-
cises for the study groups. Depending on the level of knowledge, exercises can
differ in the perception of difficulty by students. For optimal support and chal-
lenge of students, an individual selection of tasks is needed, which can be made

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Frasson et al. (Eds.): ITS 2023, LNCS 13891, pp. 16-28, 2023.
https://doi.org/10.1007,/978-3-031-32883-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32883-1_2&domain=pdf
http://orcid.org/0000-0001-9675-9086
http://orcid.org/0009-0007-7365-6691
http://orcid.org/0000-0002-7402-4166
http://orcid.org/0000-0002-7443-566X
http://orcid.org/0000-0003-1224-1250
http://orcid.org/0000-0002-1561-6575
https://doi.org/10.1007/978-3-031-32883-1_2

Recommending Mathematical Tasks 17

based on various metrics, e.g. the level of knowledge or the desired final grade.
Individualized learning tries to stimulate the motivation and engagement of stu-
dents, taking into account theories like the zone of proximal development [16]
and flow [4]. The first provides students with tasks beyond their current ability
to scaffold the learning process. The second aims to avoid boredom and frustra-
tion if the chosen difficulty level does not correspond with the student’s ability.
Dynamic Difficulty Adjustment (DDA) mechanism, which originated from com-
puter games, is a technique used to automatically adjust the difficulty of online
tasks according to the abilities of the user [3,17], with the goal of keeping the
user’s attention and engagement. The DDA concept 1] emphasizes the impor-
tance of three aspects: the task difficulty (static or dynamic), the user’s status
(this can include performance or engagement, but also personality and emo-
tions), and the adaptation method, which can be based on rules or data-driven
approaches (e.g. probabilistic models, reinforcement learning). Physiologically,
user involvement is driven by discovering new knowledge, learning patterns,
ideas, and excitement while achieving a particular learning goal [9]. In educa-
tional contexts, DDA can ensure that students are presented with tasks suitable
for their current level of proficiency, leading to more engaging learning experi-
ences.

One approach to implementing a DDA mechanism is using the Item Response
Theory (IRT), a statistical model that estimates an individual’s proficiency at a
particular task by analyzing their responses to a set of items [5]. This enables to
a recommendation of appropriately challenging tasks for the student. However,
recommending tasks based on IRT estimates can be suboptimal, as it does not
consider the student’s learning progress. Therefore, we propose the IRT inte-
gration with Reinforcement Learning (RL), which allows for optimizing task
recommendations based on the student’s past performance.

This study presents a system that utilizes IRT and RL to recommend tasks to
first-semester bachelor’s degree computer science students taking a mathematics
module. Using our proposed method, which employs and compares the Proximal
Policy Optimization (PPO) [12], and the synchronous, deterministic variant of
the Asynchronous Advantage Actor-Critic [10] algorithm (called A2C), we aim
to demonstrate the benefits of personalized task recommendation in the edu-
cational settings. In more detail, we incorporated the learner’s goals into our
recommender system. Literature suggested that specific interventions to set per-
sonal academic goals and exam preparation are essential factors contributing to
the student’s success while in the university [13]. Moreover, goal setting can help
students develop a sense of agency, intrinsic motivation, and the ability to man-
age their learning [11]. We compared the performance of our proposed method
to a random baseline, using data from 125 students. The results of our study
will provide insight into the effectiveness of using IRT and RL for recommending
items in line with the learner’s past performance and goals.

In the following, we first reference some related work and background infor-
mation. Then we present our experiments thoroughly, including the results.
Finally, we discuss the outcomes and conclude the paper.

18 M. Orsoni et al.

2 Related Work

Computerized adaptive assessment methods in well-structured domains like
mathematics have a long tradition of selecting tasks according to the student’s
ability [15], where structured task description schemes allowed for a detailed
analysis of student’s errors and on-demand generation of task instances facili-
tated independent student work. During the recent Corona crisis, professional
rule-based adaptive learning systems like bettermarks! were very popular.

Recent machine learning approaches address the DDA issue also in other
domains if there is a significant question bank and users with different compe-
tencies [18], considering even individual difficulty levels. This method can be
applied when three conditions are met: a discrete action space exists, a feedback
signal is a quantitative measure of difficulty, and a target performance value is
selected.

DDA can be achieved using statistical models such as IRT [5]. IRT estimates
a learner’s proficiency based on their responses to a set of items and has been
applied in various educational contexts [7]. However, traditional recommenda-
tion approaches may not be suitable in educational settings where a student’s
learning potential changes over time. Reinforcement Learning (RL) addresses
this issue by optimizing task recommendations based on the student’s past per-
formance and progress [14]. In recent years, the combination of IRT and RL
has been proposed as a solution for recommendation in mathematics and cogni-
tive domains. For example, the authors in [8] suggested using an RL system to
recommend items based on the student’s ability estimates from an IRT model
to improve algebra abilities. Also, the study mentioned earlier [18] used IRT to
estimate the student’s knowledge and RL to adjust task difficulty.

This work is distinct from the previous approaches in recommender systems
that combine RL and IRT. It utilizes IRT to estimate the difficulty of items
based on the student’s past performance and uses this information to compute
the expected total score threshold distribution for mathematical modules. This
relevant information allowed to integrate into an RL system of the learner’s goal
to make recommendations that align with the student’s objectives.

3 Background

In Reinforcement Learning (RL), an agent learns to make decisions by interact-
ing with its environment and receiving feedback through rewards or penalties.
The agent’s goal is to learn a policy mapping from states to actions that max-
imize the expected cumulative reward over time [14]. In the present work, we
used and compared the performances of two popular RL algorithms: the Proxi-
mal Policy Optimization (PPO) [12], and the synchronous, deterministic variant
(A2C) of the Asynchronous Advantage Actor Critic (A3C) [10]. PPO is designed
to improve the stability and efficiency of policy gradient methods. It is an actor-
critic algorithm that uses a value function to estimate the expected cumulative

! https://bettermarks.com/.

https://bettermarks.com/

Recommending Mathematical Tasks 19

reward for a given policy, and it uses a trust region method to optimize the pol-
icy. The basic idea of PPO is to optimize the procedure so that the new policy
is close to the previous one but with improved expected cumulative reward [12].
The variant of A3C combines the actor-critic method with the advantage func-
tion. The actor-critic process separates the policy, which generates the actions,
from the value function, which estimates the expected cumulative reward for
a given policy. The advantage function estimates the improvement of taking
a given action compared to the average action. The term “synchronous” refers
to the method of updating the parameters of the actor and critic networks.
All agents update their parameters simultaneously using the same synchronous
data. In contrast, in the original asynchronous version, each agent updates its
parameters independently using its data [10].

4 Experiments

4.1 Experimental Dataset

This study analyzes a data set collected at Leipzig University of Applied Sciences
starting from the winter semester of 2021/22. The data set includes the results
of weekly exercises from a mathematics module taken by 125 Bachelor first-year
computer science students. To pass the module, students must solve at least
35% of the weekly exercises over the semester. Each weekly practice includes
several tasks specific to the topic covered in that week’s lecture. The data set
also includes solution attempts made after the semester. The tasks differ slightly
for each attempt and student but are assumed to have equivalent difficulty and
be based on the same concept. To practice the subject matter, students can work
on the exercises and subtasks multiple times. Only the most successful attempt
will be counted toward the final grade. The assignments are provided through the
OPAL learning management system and ONYX testing software, and some tasks
allow using the computer algebra system MAXIMA. The data set is separated
into tables for student results and task information. To encourage reproducibility
and further investigation, we publish the dataset with the implementation codes
on our GitHub repository?.

Result Features

participant An ascending number that anonymously references students
test id References the weekly exercise (test).

test attempt Attempt in which the student solves the weekly exercise
test score Points scored by the student

test pass score Points to pass the weekly exercise

test max score Maximum points of the weekly exercise

test pass Status whether the student has passed the weekly exercise
item id References the actual subtask in a weekly exercise

2 https://github.com/MatteoOrsoni/ITS2023 Recommending-Math-Tasks.

https://github.com/MatteoOrsoni/ITS2023_Recommending-Math-Tasks

20 M. Orsoni et al.

item attempt Attempt in which the student solves the subtask

item datestamp Timestamp in which the student completed the subtask.

item sessionStatus Represents the status of the subtask. (final - The student
has solved the task and submitted his/her answers; pendingSubmission - The
student has viewed the assignment but has not responded to it; pendingRe-
sponseProcessing - The student has entered answers but has not submitted
them; initial - The student has not viewed the assignment)

item duration Time spent on the subtask

item score Points on the subtask scored by the student

item max score Maximum points of the subtask

item candidate responses Answers from the student

item correct responses Correct answers of the subtask

item candidate responses score Scores of the student’s answers

item correct responses score (Maximum)-point scores of the subtask

item variables Variable assignments of the subtask execution

Task Features

item id (Equivalent to the result table) references the subtask

is test Status whether the item is a test (tests are groupings of subtaks and are
usually equivalent to weekly exercises).

test name Folder name in which the test file is located

item description Tasks description in HTML format

All in all, there are 18576 solutions from a total of 99 different items in a total
of 14 modules (including tests for exam preparation) in the data set. Due to
the low number of attempts inside some modules and excluding tests for exam
preparation, in this study, the analysis focused on 10 modules. On average, the
students needed 464 s and achieved an average of 2.18 points per item, with an
average maximum score of 3.37 points. Furthermore, students practiced a single
item on average 1.85 times, with a maximum of 72 times.

4.2 Framework and Baselines

The IRT models have been implemented by using the mirt: a Multidimensional
Item Response Theory Package in R [2], while the RL solutions in Python by
using the Stable Baseline 3 [6] library. We compared the two RL solutions (PPO,
A2C) with a random baseline procedure. According to this, we ran the environ-
ment for 1000 episodes, collecting each reward and averaging at the end. For
each episode, the actions were taken randomly into the set of those possible.
The averaged reward was then taken as baseline values to be compared to the
average reward after 1000 episodes estimated by implementing PPO and A2C
algorithms. In the following, we will delve deeper into constructing the item dif-
ficulty estimation model and the environment in which the RL algorithms were
implemented.

Recommending Mathematical Tasks 21

4.3 Difficulty Level

In the present study, an IRT approach is used to estimate the difficulty of items
presented to students in a course each week and to create different thresholds
based on the sigmoid distribution of the estimated total score (ETS) of the
winning IRT model. It allows us to consider the learners’ objectives for that
particular module. IRT is a statistical procedure that allows for the discovery
of a learner’s latent trait for a specific concept and the estimation of different
parameters (difficulty, discrimination, and guessing) embedded within the item
according to the chosen IRT model. Three other IRT models (1PL, 2PL, 3PL)
were compared, and the best one was selected using metrics such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), and log-
likelihood. The values of these metrics are summarized in Table 1.

Table 1. AIC (Akaike Information Criteria), BIC (Bayesian Information Criterion),
and LL (Log Likelihood). In bold, the models for each module that reached the signif-
icant level p < .05 among others. * It has not been possible to estimate the parameters
due to too few degrees of freedom.

Module | 1PL 2PL 3PL
AIC |BIC |LL AIC |BIC |LL AIC | BIC |LL
1 3452 | 3550 | —1692 | 3379 | 3569 | —1623 | 3432 | 3717 | —1617
2 995 11021 | —488 | 932 980 —450 941 |1012 | —447
3 533 | 545 | —262 | 533 | 552 | —261 |NA* | NA*|NA*
4 1157 | 1183 | —569 | 1167 |1213 | —568 | 1182|1251 | —567
5 515 | 529 | —253 | 521 | 543 | —252 |529 |562 | —252
6 711 | 728 | =350 704 | 733 |-342 | 713 | 756 | —342
7 844 | 868 | —413 | 842 | 884 |—-405 854 |917 | —403
8 717 | 746 | —348 711 | 763 | —-336 | 731 809 |—336
9 1059 1096 | —516 1066 |1133 |—=507 |1073|1174| —498
10 664 | 698 —-318 @ 673 | 735 |—-310 |682 |775 | —302

The winner over the three possible models was then selected based on the
p-value obtained. Only the significantly different model (p < .05) from the others
was used in further analysis. The estimated total score of the winner IRT model
has been then used to estimate the 6 value, the correspondent threshold difficulty
for that specific module. The thresholds have been chosen arbitrarily except for
the first, which was the one that allowed the student to pass the module. Two
to four thresholds have been set into the RL solution for each module, according
to the number of items (number of possible actions) and the steepness of the
sigmoid distribution underlying the estimated total score. Moreover, the IRT
solution gave us the values of items’ difficulty for each module. These values
have been used in the RL environment configuration.

22 M. Orsoni et al.

4.4 Reinforcement Learning Environment

The recommender system has been developed as a Markov Decision Process
(MDP), consisting of a tuple (S, A, R, P) of elements. The tuple defines the
MDP completely, where the agent interacts with the environment. The goal is
to find a policy (mapping from states to actions) that maximizes the expected
cumulative reward over time. A specific recommender system has a similar MDP
representation for each module created. It has been summarized as follows:

1. State Space S: It represents all possible states of the system. It is related to
the answering process of the student according to the item presented in the
module. Each state or item in the module has been described as a tuple of
five elements (d, s, m, dt,t), where:

(a) d: The difficulty of the module items according to the IRT difficulty esti-
mation.

(b) s: The score obtained by the student for each item.

(¢) m: The maximum possible score for that specific item.

(d) dt: The difficulty threshold. This parameter does not change until the end
of each episode.

(e) t: It is the threshold. This parameter does not change until the end of each
episode and is strictly related to the difficulty threshold. It is a numeric
value corresponding to the score the student has to obtain by summing
the score items.

2. Action Space A: It represents all possible actions that can be taken in each
state.

3. Reward Function R: It is a function that assigns a numerical reward to each
state-action pair (s,a) and is used to evaluate the quality of different policy
choices. We included three different numerical rewards in the environment. A
reward is related to the Dif ficulty, Actions, and Episode.

(a) Dif ficulty: For every action chosen by the agent, that is, for every next
item chosen, we wanted to create a function that gave a positive reward
to the agent if the selected action was in line with the difficulty threshold
of the item estimated by the IRT model and the threshold chosen by the
user. In this way, we wanted to favor items that had difficulties equal to
or lower than the user’s needs to reach a certain threshold, discouraging
items that were too difficult to achieve the goal.

(1)

{/ﬁ if s, < dt,Ya € A

Rp = .

Ko otherwise
In this function, if the action selected by the agent is in line with the IRT
estimate and is less than or equal to the user’s threshold, the agent will
receive a positive reward k1. If not, the agent will receive a reward of zero
KRo.

(b) Actions: For every action taken by the agent, this reward function was
constructed to track the actions taken and to avoid items for which the

Recommending Mathematical Tasks 23

student has received a score equal to the highest possible from being
presented again.

Ry = {K,g if a; € actions _used,Va € A (2)

where actions _used means the set of actions/items for which the student
has already achieved the highest possible score. If the agent recommended
an action in the actions _wused it received a negative reward.

(¢) Episode: The last reward function was related to the episode conclusion.
Each episode was set to have a maximum duration related between (54%—
150%) longer than the number of possible actions, to allow the agent to
present the items again for which the subject had not reached the highest
possible score and to reach the thresholds with the items with higher
difficulty. If the agent could reach the established threshold within the
maximum length of the episode, it received a positive reward; otherwise,
it did not receive any reward.

Ry — {54 if St+t.9t+1+...+8t+n >t 3)

ks otherwise

At the end of each episode, the overall reward function was created based
on the three functions. If the agent achieved a cumulative score on the
items equal to or higher than the set threshold, then the reward function
R included Rp + Ra + Rp. Otherwise, it only had Rp + Ra. Rp and
R4 are considered intermediate rewards that should guide the agent in
its choice of future actions.

4. Transition Probability Function P: It defines the probability of transitioning

from one state to another after taking a specific action.

4.5 Hyperparameters

In this section, we summarized the hyperparameters used in each module. In
Table 2, we have included the hyperparameters for configuring the reinforcement
learning environment. Specifically, the PPO and A2C algorithms were trained for
10° timesteps across all modules, each for 1h. The learning rate was set at 1077.
Finally, the training algorithms were based on a policy object that implements
an actor-critic approach, utilizing a 2-layer MLP with 64 units per layer [6]. It
is true for some modules, while others utilize a custom network architecture.

Table 3 summarizes the hyperparameters associated with the custom envi-
ronment, including the maximum length of each episode and its relationship
with the number of possible actions. It also shows the number of thresholds
considered in each module and the numeric values of the threshold (t) based on
the estimated total score and the corresponding 6 value (dt) obtained from the
winning IRT solution. In addition, it considers N as the number of complete
subjects’ recordings for each module. This value has been extracted using the
student’s first attempt for each task in each module.

24 M. Orsoni et al.

Table 2. Hyperparameters are implemented in both the PPO and A2C algorithms. Ir:
learning rate, ts: timesteps, Custom net: Custom_network, policy: the policy imple-
mented.

Module | RL configuration
policy | Custom _net |ts |Ir

1 mlp | Yes: [128, 64] | 10° | 1077
2 mlp | No 10° 1077
3 mlp | No 10° 1077
4 mlp | Yes: [128, 64] | 10° | 1077
5 mlp | No 105 (1077
6 mlp | Yes: [64, 32] |10° 1077
7 mlp | No 10° 11077
8 mlp | Yes: [64, 32] |10° 1077
9 mlp | No 10° 1077
10 mlp | Yes: [64, 32] | 10° 1077

4.6 Experiment Results

This study evaluated the performance of two reinforcement learning solutions,
PPO and A2C, and a random baseline solution in collecting average rewards after
1000 episodes. The results, as illustrated in Fig. 1, demonstrate that the PPO
solution outperformed both the A2C solution and the random baseline across all
modules presented to subjects. A comparison of the mean improvement in col-
lecting average cumulative rewards among the three solutions is summarized in
Table 4. Evidently, the PPO solution achieved, on average, a 22.83% increase in
rewards over the random action solution. Furthermore, this advantage in collect-
ing rewards was consistent across all modules, with an improved range of 4.50%
to 78.94% compared to the baseline. In contrast, the A2C algorithm demon-
strated only a moderate improvement in collecting rewards, with an average
increase of 1.29% over the baseline across all modules. This improvement was
inconsistent, with a range of —8.99% to 7.69%.

5 Remarks and Discussion

The presented research centers on developing a recommender system that utilizes
reinforcement learning and item response theory to enhance item recommenda-
tions for first-year bachelor’s students in computer science taking a mathematics
module. The integration of RL and IRT allows for personalized and adaptive
recommendations based on the estimated difficulty threshold, enabling the sys-
tem to suggest items within the user-selected threshold while avoiding items for
which the student has already achieved the maximum possible score. In other
words, the higher the threshold set by the student, the more complex the recom-
mended items were, according to the 8 value of the ETS distribution. This aspect

Recommending Mathematical Tasks 25

Table 3. Hyperparameters in the environment configuration. Length (%) is related to
the maximum episode length and the relative percentage compared to the number of
possible actions. n°t: is the number of thresholds included in the environment for that
module. dt: is the difficulty threshold. ¢: is the threshold value. N is the number of
complete subjects’ recordings for each module.

Module | Environment configuration
length (%) | n°t|dt t N
1 20 (+82%) |4 | [-2.80,—1.96,.03,.57] | [10.5, 15.5, 25.9, 28.3] | 131
2 20 (+150%) |3 | [—1.05,0,2] [10.5, 23, 25] 129
3 8 (+100%) 2 | [1.11, 2.56] [10.5, 15.1] 132
4 20 (+150%) |3 | [—0.15,0.63,2.20] [10.5, 16, 26] 87
5 10 (+150%) | 3 | [-0.15,1.05,1.60] [10.5, 15.4, 19.3] 99
6 10 (+100%) '3 | [0.63, 1.05, 2.02] [10.5, 13, 15] 100
7 20 (+150%) '3 | [<0.75,0.33,1.17] [10.5, 22.4, 32.2] 53
8 10 (+100%) |4 | [18.7, 27, 38, 48] [—1.24,0.03,0.75,3,22] | 44
9 20 (+54%) |4 | [-2.68,—1,0,1] [10.5, 24.3, 33, 40] 50
10 25 (+79%) |4 | [-0.27,0.33,1.12,2.62] | [14.525, 17.31, 23, 31.5] | 21
Module 1 Module 2 2o Module 3 Module 4 Module 5
E Bnu 500 200
g 600 400
g 150
%400 0 100
$ 200
<>(200 100 50
° Baseline PPO A2C ° Baseline PPO A2C OBaseIine PPO A2C oBaseIine PPO A2C ¢ Baseline PPO A2C
Module 6 Module 7 Module 8 Module 9 Module 10
° 300 500 700
g 250 600
g 200 40 500
[, 300 400
g 300
& 100 200 o
é 50 100 100
° Baseline PPO A2C ° Baseline PPO A2C oBaseline PPO A2C oBaselin(-_\ PPO A2C ’ Baseline PPO A2C

Fig. 1. Comparing the Performance of RL Algorithms and Baseline Across Modules.
Average reward after 1000 episodes comparing Baseline, PPO, and A2C recommenda-
tions.

is particularly relevant because of the significance of allowing learners to deter-
mine their own difficulty level. As previously mentioned, interventions aimed
at establishing personal academic goals are a crucial component in promoting
student success. Moreover, by facilitating goal setting, students can develop a
stronger sense of agency, intrinsic motivation, and self-directed learning skills.

26 M. Orsoni et al.

Table 4. Performances comparison in the average reward between PPO and Baseline
and A2C and Baseline actions. The values are expressed in percentual terms.

Module | PP0/Baseline | A2C/Baseline
1 +14.61 +3.44
2 +13.98 +2.08
3 +8.00 +1.47
4 +78.94 —1.87
5 +4.50 +0.9
6 +22.39 +1.1
7 +13.83 +2.53
8 +38.72 —8.99
9 +9.20 +7.69
10 +24.11 +1.27
Avg | +22.83 11.29

The results demonstrate that incorporating RL solutions leads to improved per-
formance, as measured by the average reward collected by the agents over 1000
episodes. Specifically, as highlighted in the results section, the PPO algorithm
outperforms the A2C algorithm in every module, achieving an average reward
that is 22.83% higher than the baseline.

Nevertheless, some considerations have to be mentioned. Firstly, while we
have seen an improvement in the average reward collected, we need to determine
if the recommendations benefit students. A future study should investigate this
aspect more thoroughly. Secondly, our study used offline students’ data for which
we had complete answers for a module. It allowed us to use each episode as a new
user and the answers as a transition over time for a specific user for that episode.
This approach led to a policy strictly dependent on the answers collected, the
students who answered all the items in each module, and the sample size and
the possible transitions it learned. We only had a few dozen subjects for some
modules who answered the entire set of items. In future studies, we plan to use
this policy as a starting point and enhance it by incorporating online interaction
between the user and the system. In addition, we used arbitrary thresholds
derived from the estimated total score of the IRT solution, but there may be
better options for achieving better results on test evaluations. In a future study,
we plan to integrate this aspect by finding the best possible thresholds for each
module that can provide the most informative guide for students to succeed on
test evaluations. Lastly, we focused on item difficulty rather than the student’s
ability to solve a specific task. A future study should include this aspect in the
RL environment to suggest items that also consider the student’s ability to solve
them.

Recommending Mathematical Tasks 27

6 Conclusion

This study presented a system for enhancing item recommendations for first-
year bachelor’s computer science students taking a mathematics module. The
integration of Reinforcement Learning (RL) and Item Response Theory (IRT)
allowed for personalized and adaptive recommendations based on the estimated
difficulty threshold, enabling the system to suggest items within the user-selected
scale while avoiding items for which the student has already achieved the max-
imum possible score. Results showed that incorporating RL solutions improved
performance as measured by the average reward collected by the agents over
1000 episodes. Specifically, the proximal policy optimization algorithm outper-
formed the A2C algorithm in every module, achieving an average reward that
is 22.83% higher than the baseline. Overall, this study provides valuable insight
into the effectiveness of using IRT and RL for dynamic difficulty adjustment and
the benefits of personalized task recommendation in educational settings. The
proposed method can potentially improve learning outcomes and engagement in
the domain of mathematics as well as other areas.

Acknowledgments. The authors would like to thank the German Federal Ministry
of Education and Research (BMBF) for their kind support within the project Person-
alisierte Kompetenzentwicklung und hybrides KI-Mentoring (techdcompKI) under the
project id 16DHB2208.

References

1. Arey, D., Wells, E.: Balancing act: «the art and science of dynamic difficulty adjust-
menty. In: Game Developers Conference (2001)

2. Chalmers, R.P.: Mirt: a multidimensional item response theory package for the R
environment. J. Stat. Softw. 48, 1-29 (2012)

3. Constant, T., Levieux, G.: Dynamic difficulty adjustment impact on players’ con-
fidence. In: Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, pp. 1-12 (2019)

4. Csikszentmihalyi, M.: Flow. The Psychology of Optimal Experience. New York
(Harperperennial) (1990)

5. Embretson, S.E., Reise, S.P.: Item Response Theory. Psychology Press (2013)

6. Hill, A., et al.: Stable baselines3 (2020). https://github.com/DLR-RM /stable-
baselines3

7. Hori, K., Fukuhara, H., Yamada, T.: Item response theory and its applications in
educational measurement part i: item response theory and its implementation in
R. WIREs Comput. Stat. 14(2), e1531 (2022)

8. Leite, W.L., et al.: A novel video recommendation system for algebra: an effective-
ness evaluation study. Association for Computing Machinery, New York (2022)

9. Lopes, J.C., Lopes, R.P.: A review of dynamic difficulty adjustment methods for
serious games. In: Pereira, A.I., KoSir, A., Fernandes, F.P., Pacheco, M.F., Teixeira,
J.P., Lopes, R.P. (eds.) OL2A 2022. CCIS, vol. 1754, pp. 144-159. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-23236-7 11

10. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928-1937 (2016)

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://doi.org/10.1007/978-3-031-23236-7_11

28

11.

12.

13.

14.

15.

16.

17.

18.

M. Orsoni et al.

AT for Research: Student goal setting: an evidence-based practice student goal
setting (2018)

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. In: International Conference on Learning Representations
(2017)

Stelnicki, A.M., Nordstokke, D.W., Saklofske, D.H.: who is the successful university
student? an analysis of personal resources. Can. J. High. Educ. 45(2), 214-228
(2015)

Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. J. Artif. Intell.
Res. 4, 1-53 (1998)

Tvarozek, J., Krav¢ik, M., Bielikova, M.: Towards computerized adaptive assess-
ment based on structured tasks. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.)
AH 2008. LNCS, vol. 5149, pp. 224-234. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-70987-9 25

Vygotsky, L.S., Cole, M.: Mind in Society: Development of Higher Psychological
Processes. Harvard University Press (1978)

Xue, S., Wu, M., Kolen, J., Aghdaie, N., Zaman, K.A.: Dynamic difficulty adjust-
ment for maximized engagement in digital games. In: Proceedings of the 26th
International Conference on World Wide Web Companion, pp. 465-471 (2017)
Zhang, Y., Goh, W.: Personalized task difficulty adaptation based on reinforcement
learning. User Model. User-Adap. Inter. 31, 753-784 (2021)

https://doi.org/10.1007/978-3-540-70987-9_25
https://doi.org/10.1007/978-3-540-70987-9_25

	Recommending Mathematical Tasks Based on Reinforcement Learning and Item Response Theory
	1 Introduction
	2 Related Work
	3 Background
	4 Experiments
	4.1 Experimental Dataset
	4.2 Framework and Baselines
	4.3 Difficulty Level
	4.4 Reinforcement Learning Environment
	4.5 Hyperparameters
	4.6 Experiment Results

	5 Remarks and Discussion
	6 Conclusion
	References

