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ABSTRACT

In this paper, we propose a method for the automatic align-
ment of sign language videos and their corresponding motion
capture data, useful for the preparation of multi-modal sign
language corpora. First, we extract an estimate of the motion
energy from both the video and the motion capture data. Sec-
ond, we align the two curves to minimize their distance. Our
tests show that it is possible to achieve a mean absolute er-
ror as low as 1.11 frames using optical flow for video energy
extraction and a set of 22 bones for skeletal energy extraction.

Index Terms— sign language, motion capture, align-
ment, optical flow, motion energy, synchronization.

1. INTRODUCTION

Alignment of different modalities plays a significant role in
many domains like autonomous driving [1l], speech recogni-
tion [2], curve matching [3], sign language processing [4],
and action recognition [5].

This paper addresses the problem of aligning two mo-
tion data sources that were captured simultaneously, on the
same subject, but without a dedicated hardware synchroniza-
tion mechanism: i) the frontal video of the subject performing
sign language utterances, and ii) his/her skeletal animation
recorded through an sensor-based (optical or inertial) full-
body motion capture (MoCap) suit. For some applications,
like extracting facial animation data from the video and merg-
ing them with the body motion to animate an avatar, an align-
ment between video and MoCap data is needed at frame-level
precision. However, the manual post-processing of the two
sources may be too time-consuming.

To overcome this challenge, we propose a novel align-
ment algorithm based on motion energy analysis. The main
idea is to “summarize” the quantity of motion present in each
data source into a single mono-dimensional signal, and then
estimate the offset between the two modalities by shifting the
two curves to find a good overlap. The motion energy of the
MoCap data is calculated by an analysis of the movement of
the bones, while the motion energy of the videos is computed
through frame differencing or optical flow filtering.
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2. RELATED WORK

Previous studies on sequence alignments typically estimate
the camera’s underlying geometry directly or indirectly [6].
Multi-camera setups can use 2D homography-based geometry
constraints to align multiple sequences, which have shown
effectiveness in [7, [8]. Additionally, [9] introduced a new
technique that aligns two sequences by exclusively utilizing
the motion signals of matching Epipolar lines. However, these
methods have limitations since they heavily rely on camera
geometry not suitable for motion capture or video alignment.

Several techniques have been proposed for alignment in
various applications. For example, a low-dimensional em-
bedding using a weighted PCA algorithm was identified in
[LO], but it has limitations in dealing with multi-modal and
noisy data. Neural networks have also been used for video
synchronization [[L1], for instance in [12]], which reformulates
the problem as classification, but it requires a large amount of
labeled training data.

Another strategy is to combine dynamic time warping
(DTW) with certain regression models [13]. Junejo et al. [3]
proposed a view-independent descriptor for video alignment
using DTW while Zhou et al. [14] suggested the use of the
Generalized Time Wrapping (GTW) approach, which can
handle different modalities. Additionally, Chen et al. [[15]
aligned skeleton sequences from a Kinect RGB-D and a mo-
tion capture system using feature extraction and sub-sequence
DTW, but they do not report an analysis between the ideal
frame offset and the one determined by their algorithm. De-
spite the benefits of these approaches, their effectiveness in
alignment is dependent on the choice of features.

To overcome the limitations of prior studies, we inves-
tigate motion energy-based alignment between video and
motion capture data. Motion Energy Analysis (MEA) is a
method commonly employed in the fields of social signal
analysis and psychology to gauge human activities [[16} [17]].
MEA is based on calculating the difference between con-
secutive video frames to estimate the degree of motion of a
human subject within a given frame [18]. This approach has
several advantages, including its simplicity, as it only requires
a fixed camera to prevent the motion of the subject from being
mistaken for background movement, and its effectiveness in
handling complex and varied motions in video data.



Fig. 1. Frame sequence extracted from sign NICHT, including the preparation and release phases. Top: the RGB video. Bottom:

skeletal animation as seen from the Blender 3D editor.

3. METHOD

Data: Video Clips. To test our approach, we use 27 video
clips showing insulated signs, for a total of 2415 frames, se-
lected via random selection from an in-construction corpus of
German sign language (DGS). Figure[T] top, shows an exam-
ple. As a prerequisite, it is important that video captures are
performed with a camera fixed in space, to avoid recogniz-
ing motion energy from the moving background. In general,
gesture execution can be segmented into three phases: prepa-
ration, stroke, and release. Each video clip has been manually
annotated for the beginning and end of the stroke phase. This
has been done by considering the motion of the hands and any
cues of activation of the body muscles.

Motion Energy from Video: Frame Differencing. Frame
differencing compares consecutive video frames and quanti-
fies the differences between them [18]]. This method does not
capture details about the direction or form of movement: it
only measures the degree of change over time [17]. This is
performed by computing the sum of the absolute differences
between consecutive frames [19]. Given a frame ¢ and the
previous frame j, the motion energy for 7 is computed with
the following Python code using 3D numpy arrays and the
OpenCV framework [20]:

1 # Computes the difference in RGB space

2 diff = cv2.absdiff (frame_j, frame_1i)

3 # Convert the difference in Grey space

4 1img_gray = cv2.cvtColor (diff, cv2.COLOR_BGR2GRAY)

5 # Gets the median in a 5x5 area around the pixel.

6 filt = scipy.ndimage.median_filter (img_gray, size=5)
7 # Convert into a binary image with pixels at 0 or 255.
8 _, thresh = cv2.threshold(src=filt, thresh=15,

9 maxval=255, type=cv2.THRESH_BINARY)
10 # Sum up the "white pixels"

11 energy = thresh.sum()

Motion Energy from Video: Optical Flow. The Gunnar
Farneback’s algorithm for dense optical flow estimation com-
putes the flow vectors for each pixel in the image by compar-
ing the intensities of corresponding pixels in two consecutive

frames [21]]. The algorithm has been shown to be effective
in a variety of computer vision applications, such as object
tracking and motion estimation [22]]. In our experiments, the
motion energy from the optical flow is computed by the fol-
lowing Python code:

1 # Compute dense optical flow between two frames

2 gray_i = cv2.cvtColor (frame_i, cv2.COLOR_BGR2GRAY)

3 gray_j = cv2.cvtColor (frame_j, cv2.COLOR_BGR2GRAY)

4 flow = cv2.calcOpticalFlowFarneback (gray_i, gray_j,

5 None, 0.5, 3, 15, 3, 5, 1.2, 0)
6 # Compute the flow vectors

7 magnitude, angle = \

8 cv2.cartToPolar (flow([..., 0], flow[..., 11)

9 # Sum up the magnitudes

10 energy = magnitude.sum()

Data: Skeletal Motion Capture. For each sign video clip,
a corresponding “skeletal motion” clip is saved as BVH file
(Biovision Hierarchy). Figure[I] bottom, shows an example.
In digital computer graphics, a human skeleton (or better, an
approximation of it) is a hierarchical tree structure describing
how bones are connected to each other. The skeleton used in
our corpus contains 98 bones, of which 51 control the upper
body, head, and hands (including fingers). Each bone is de-
fined by a head and a tail. Rotating the head of a bone affects
the position in space of its tail and of the children’s bones. For
the testing purposes of this work, all of the 27 motion clips
have been annotated with their correct frame offset (ground
truth) with respect to the corresponding video. Importantly,
for this setup, we know that the offset between the video and
the motion clip lies between +/- 10 frames.

Motion Energy from Skeletal Motion Capture. Extract-
ing the “motion energy” of a moving skeleton can be inter-
preted in different arbitrary ways. Our goal was to identify
a strategy that leads to a correspondence between the motion
extracted from the skeleton and the motion measurable from
the corresponding video stream. Measuring the rotation of
bones would result in a big discrepancy with the number of
pixels changed in the video frames. For example, a quick
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Fig. 2. Results for sign NICHT with FrameDiff (top) and OptFlow (bottom) filters. The images show frames highlighting
motion energy activation areas. Left plots show video and skeletal motion energy curves, highlighting the internal stroke range
and the extended video padding. Middle plots show the curves difference as a function of the offset applied to the video curve.
Right plots show the curves after applying the best offset, forcing the stroke range to 0, and re-normalizing.

movement of the fingers would correspond to a lot of mo-
tion energy that reflects in a small number of pixel changes.
Rather, we extracted motion energy by measuring at each
frame, speed of bone tails. The speed of all tails is then
summed together and used as body motion energy estimation.

Curves comparison. To estimate the correct offset between
the video and motion energy curves, the two curves are shifted
and the offset that minimizes their difference is selected. This
difference is calculated as the mean of the difference between
the two curves at each frame. However, since the techniques
used to compute the two motion energy curves are not com-
parable, it is crucial to normalize the curves to a common
amplitude range before computing the difference.

4. EXPERIMENTS

We conducted a series of experiments aimed at finding the
best combination of parameters able to minimize the error be-
tween the correct offset and its estimation. We combined the
following variables: Filter, motion estimation technique be-
tween FrameDiff and OptFlow; Video and Motion Padding,
number of frames before and after the stroke range, control-

ling how much to look in the preparation and release phases;
Video visibility, between FULL, if the full video was ana-
lyzed, and RIGHT_ARM_TORSO, when only the dominant
arm and part of the torso are visible; Bone set indicates the
list of bones that were used to compute the skeletal motion
energy; Motion Phase, between both, preparation, and re-
lease, indicating which phase(s) were used to compute the
difference between the two motion energy curves.

The experimental procedure is the following:
Step 1: compute the video motion energy curve using one
of the two filtering methods. It is computed on the sign stroke
range extended by the Video Padding.
Step 2: compute the skeletal motion energy curve using
a given set of bones. It is computed on the stroke range ex-
tended by the Motion Padding;
Step 3: find the optimal offset by shifting the video curve
inside the time range of the motion curve with steps of 1
frame (41 positions). For each tested offset: i) Flatten to O the
stroke time range; ii) Re-normalize the curves in amplitude
range [0, 1]; iii) Compute the difference between the curves.
Figure 2] visualizes an example of the experimental proce-
dure for one sign. It shows a common pattern in the profile
of the curves: a high peak of energy during the preparation



Table 1. Offset estimation error resulting from our experiments (the lower the better).

| Error (frames)

Video filter \ Padding (Video, Motion) Video visibility Bone set \ Min Max MAE MSE
20, 40 FULL HANDS_HEAD_5 0 11 2,59 12,96

30, 50 FULL HANDS_HEAD_5 0 7 1,74 6,26

30, 50 FULL RIGHT_ARM_3 0 7 1,93 7,04

30, 50 FULL HANDS_ELBOWS_HEAD_7 0 8 1,96 7,30

FrameDiff 30, 50 FULL UPPER_BODY 22 0 5 1,44 3,96
30, 50 RIGHT-ARM_TORSO HANDS_HEAD_5 0 9 1,89 7,30

30, 50 RIGHT_ARM_TORSO RIGHT_ARM_3 0 8 1,74 6,48

30, 50 RIGHT_ARM_TORSO RIGHT_ARM_TORSO.7 0 8 1,74 6,41

30, 50 FULL UPPER_BODY 22 0 5 1,11 2,67

30, 50 FULL HANDS_ELBOWS_HEAD._7 0 6 1,56 4,74

OptFlow 30, 50 RIGHT-ARM_TORSO RIGHT-ARM_3 0 7 1,48 5,11
30, 50 RIGHT-ARM_TORSO RIGHT-ARM_TORSO.7 0 7 1,52 5,07

phase (when the hands move from the rest position to the sign
start), a second peak with the energy of the sign stroke, and a
final peak when the hands release back to the rest position.

Two points deserve attention. First, after some initial
observation of the motion curve graphs, we realized that
the stroke range should be eliminated for our tests, mainly
because the motion of the face and lips was generating a
quantity of motion energy that can not be inferred from the
skeletal motion data. Hence, we choose to rely solely on the
preparation and release phases. Second, the re-normalization
of the curves after removing the central stroke range is needed
because we noticed that, in some cases, the stroke of a sign
gives spikes of energy that make the two curves operate on
two different scales.

Table [T lists the results for all the tested combinations of
parameters. For brevity, results are reported only for Motion
Phase both, but in general, we measured that: i) using only
one of the two phases (preparation or release worsens the re-
sults, and that ii) using only of the preparation phase gives
always better results with respect to using only the motion
energy of the release phase. A first test with FrameDiff filter,
5 bones, and video padding 20 was immediately improved by
extending the video padding to 30, thus capturing full prepa-
ration and release phases in 30 frames (0.5 seconds). Further
tests, removing or adding bones, lead to the best result. using
22 bones (arms, head, torso, and fingertips), with 1.44 MAE
(mean absolute error) and 3.96 MSE (mean squared error).
Other experiments, hiding part of the video to show only the
dominant arm and torso, did not give improvements. Results
were further improved by using the OptFlow filter, leading to
MAE 1.11 and MSE 2.67. This worsen to MAE 1.67 and
MSE 6.93 (not in the table) when using only the preparation
phase. Considering the desired MAE being 0, and that even
for human annotators an error of 1 frame is often possible, our
results can be considered satisfactory.

All the tests were conducted on a personal laptop with an
8-core 19 CPU and 32GB Ram. While the extraction of the
motion energy from the skeletal data takes less than a couple
of seconds, the computation of the motion energy from the

video is more demanding. We compared the time needed to
compute the motion energy for all of the 27 signs in our test
set. OptFlow takes 1108 seconds (2.18 FPS), while FrameD-
iff takes 703 seconds (3.44 FPS); 58% faster than OptFlow.

5. CONCLUSION

We presented a method to automatically align video and
motion capture data applied to the domain of sign language
corpus creation. The method is based on the application of
video/motion filters computing 1D curves “summarizing”
the energy motion of both data sources and minimizing the
distance between such curves. As such, the approach doesn’t
require any training data. To overcome the inconsistencies
between the video facial motion and the skeletal motion, we
realized that analyzing only the preparation phase of a sign
execution is enough to achieve remarkable results. From our
tests, optical flow is slower but more accurate than the frame
differencing approach.

The main limitation of this approach is the requirement
of a fixed camera, to avoid generating motion from the back-
ground. The method was tested by assuming the presence of
time markers for the preparation and release phases. How-
ever, such markers would not be needed if the video motion
energy of the face would be somehow measurable in the mo-
tion energy of the motion capture data.

Also, in our test procedure, we knew in advance the max-
imum difference between video and motion, allowing us to
use a “brute-force” approach and identify the minimum error
by testing on the whole range of possible offsets (41 tests in
total). When such an estimate is not known, and the range
of offset is potentially bigger, it might be more convenient to
employ a general-purpose minimization algorithm, of course,
at the cost of risking the identification of local minima.

To our knowledge, this is the first work employing a mo-
tion energy analysis in the context of sign language. This
achievement in the problem of frame alignment suggests that
this measure could help when performing other sign language
motion-related tasks, such as sign spotting or sentence seg-
mentation.
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