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Abstract— This paper presents the main ideas and initial 

findings of the PlasticObs+ project. The long-term goal of the 

project is to develop an airborne based method for monitoring 

plastic waste on the water surface. For this project, aircrafts 

usually applied for oil spill detection are used. Plastic waste 

detection and analysis is achieved using artificial intelligence (AI) 

within four different AI-systems. Furthermore, results from field 

tests were used to determine the limits of detectability of plastic 

waste from different altitudes. It was shown that both color and 

size of the items have an influence on the detectability. In addition, 

the underground plays an important role. A binary classifier, 

based on a Convolutional Neural Network (CNN) was trained to 

distinguish between images containing plastic and those not 

polluted. The accuracy of the CNN was 93.3 % while the accuracy 

of the labels generated by humans was 92.6 %.  
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I. INTRODUCTION 

Plastic pollution is a ‘hazardous environmental problem’ 
with annual estimates indicating global rivers discharging 
several million metric tons of plastic waste into the oceans [1], 
[2]. To improve waste and plastic management, it is crucial to 
implement cost-effective and innovative monitoring strategies. 
These strategies should be based on scientifically proven 
research that identifies the sources and amounts of litter in 
different towns, states, and countries. Additionally, it is 
important to obtain information about the types of plastic litter, 
such as polymer types, to develop targeted policies, legislation, 
and investments for the collection and recycling of priority 
plastic items. These actions are consistent with major political 
initiatives, such as the EU Marine Strategy Framework 
Directive's descriptor 10 [3], the Single-use Plastics Directive 
2019 [4], UN Sustainable Development Goal 14 target 14.1, and 
the UN Decade of Ocean Science for Sustainable Development 
(2021-2030), which all aim to reduce marine pollution and 
improve ocean health [5]. 

The detection of pollution on the ocean surface, such as oil 
spills or plastic debris, is of critical interest for the protection of 
marine ecosystems and the safety of human activities [6]. 
Although there have been some studies on the detection of 
plastic using remote sensing techniques in the past [7], [8], 
continuous monitoring of larger, contiguous marine areas as a 
first step of inventory and control has not been established yet. 
Knowledge to date is therefore essentially based on temporally 
and spatially punctual measurements. The highly 
inhomogeneous distribution of plastic allows only inadequate 
generalizations about the sources, distribution routes, and 
accumulation sites as well as their development over time. This 
circumstance is also frequently described in the literature [9], 
[10]. 

This is where the PlasticObs+ project comes in. The long-
term goal of the project is to develop an airborne method for 
monitoring plastic waste on the water surface. For this project, 
aircrafts commonly used for oil spill detection are used. Those 
aircrafts are already in operation in different countries all over 
the world. The main idea of the PlasticObs+ project is to use the 
infrastructure already in operation and apply plastic waste 
assessment as an additional service. This will reduce operational 
costs for plastic waste assessment and prevent additional 
emissions caused by plastic waste monitoring. 

System Overview 

The PlasticObs+ system is based on an overview sensor, a 
fast edge AI for anomaly detection, an AI based system for 
candidate selection, and a detail sensor to further investigate the 
candidates selected (Fig. 1). A line scanner provides overview 
images of large areas with a low resolution of approx. 0.15 m/px 
for an altitude of 1000 ft. These overview images are then 
analyzed during the flight using an edge AI system to identify 
anomalies that may indicating plastic waste accumulations. The 
output of this first AI-system is used to select candidates which 
should be further investigated using the high-resolution imagery 
system (EOIR). The anomaly detection must be undertaken 
using a fast approach because the hotspots identified will be 
further investigated using the detail sensor within the same 
flight. Therefore, the decision which areas should be captured 
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by the EOIR needs to be taken within a few seconds. The 
resolution of the EOIR is approx. 0.03 m/px for an altitude of 
1000 ft.  

 

Fig. 1. Overview of Plastic Obs + concept  

II. ARTIFICIAL INTELLIGENCE SYSTEMS 

The PlasticObs+ concept is relying on four different AI 
systems, further described within this section focusing on 
potential methods for the design of the systems.  

A. VIS-AI 

In a first step, the overview sensor takes a low-resolution 
image of the scene, which is evaluated with aid of the first AI 
system. The goal of this preliminary evaluation is to detect 
potential accumulations of litter, resulting in a heat map that is 
sent to the following candidate selection system. This heat map 
contains a value for each pixel of the input image that reflects 
the probability that the pixel contains litter. This pixel-wise 
classification can be solved using semantic segmentation 
methods. 

In this particular application, a major challenge is an ability 
to evaluate the input images in real time, during the flight. While 
the use of deep neural networks for segmentation tasks shows 
great performance in terms of accuracy, they usually consist of 
a great number of learned weights, which makes them 
computationally heavy and slow in inference. Several methods 
have been proposed to make deep neural networks more 
efficient by compressing the network size and accelerating 
inference time. Examples of those methods are network pruning 
[11] or developing a network with a bilateral structure [12].  
Another approach for finding a suitable network architecture, 
given the two conflicting goals of performance and low latency 
time, is the use of neural architecture search (NAS), as used for 
the development of FasterSeg [13]. 

Another challenge posed by the real-time VIS-AI system is 
the processing of low-resolution aerial imagery. The authors in 
[14] are targeting this problem by proposing a framework that 
extends the semantic segmentation with a super-resolution 
module to achieve better segmentation performance. As 
previously stated, the VIS-AI system must be capable of real-
time inference, therefore it is necessary to investigate how the 
combination of super-resolution module and semantic 
segmentation affects the inference time. 

B. Candidate Selection System  

The output of the VIS-AI is a heatmap containing the 
positions of potential plastic waste hotspots, which should be 
further investigated using the EOIR sensor. However, due to 
limited time and movement capabilities of the EOIR the number 
of hotspots, which can be investigated by the EOIR per second, 
is limited. Therefore, an algorithm for selecting the most 
promising regions for investigation is needed. However, the 
criterion for selecting the region needs to be specified. For 
instance, there could be one region with a very high score, but 
far away from all other potential waste hotspots and, at the same 
time, a certain number of hotspots with a lower score but close 
together, so that all hotspots could be investigated.  

The optimisation problem described can be understood as a 
cost-constrained traveling salesman problem (CCTSP) [15]. The 
CCTSP is an adaptation of the well-known traveling salesman 
problem (TSP) [16]. In CCTSP each city or node n is given a 
certain value v and a fixed cost-constrained B is defined [15]. 
The aim is to find a subtour including m nodes with m ≤ n that 
maximizes the total value, while the total costs does not exceed 
the given cost constraint B. 

 ∑ 𝐶𝜋(𝑖),𝜋(𝑖+1) + 𝐶𝜋(𝑚),𝜋(1)
𝑚−1
𝑖=1 ≤ 𝐵  () 

Where 𝐶𝜋(𝑖),𝜋(𝑖+1) denotes the cost to travel from node 𝜋(𝑖) 

to node 𝜋(𝑖 + 1) and 𝐶𝜋(𝑚),𝜋(1) denote the cost to return from 

the last node back to the start node. A side condition in CCTSP 
is to maximize the sum of the values of the chosen subset: 

 𝑚𝑎𝑥(∑ 𝑣𝜋(𝑖)
𝑚
𝑖=1 ) () 

Where 𝑣𝜋(𝑖) represents the value of the node 𝜋(𝑖).  

Dynamic programming or branch and bound methods can be 
used to generate an exact solution for the given CCTSP problem 
[17]. However, these approaches are time-consuming, and it 
cannot be guaranteed that a solution is available within the given 
time constraint. Instead, a heuristic approach is used in this 
research. Here a greedy algorithm, based on a nearest neighbor 
approach will be used to generate an initial solution. However, 
in cost constrained applications not only the distance between 
the nodes should be used to choose the next neighbor, rather the 
values of the different nodes should be considered. This can be 
achieved in different ways, for instance by using the linear 
combination of the distance between the nodes and the value of 
the new node [18] as follows: 

 𝑑𝑖 = 𝐶𝜋(𝑛),𝜋(𝑖) ∙ 𝑣𝜋(𝑖) () 

Where 𝐶𝜋(𝑛),𝜋(𝑖) denotes the cost from the last node in the 

subset to the current node and 𝑣𝜋(𝑖)  denotes the value of the 

current node. Another option is to take the ratio of the value of 
the next node and the distance between the last node and the next 
node [19] as follows: 



 

 

 𝑑𝑖 =
𝑣𝜋(𝑖)

𝐶𝜋(𝑛),𝜋(𝑖)
 () 

In both cases the weighted distance 𝑑𝑖 is calculated for all open 

nodes, i.e., nodes which are not included in the subset so far, 

and the best option is chosen as next node and inserted into the 

subset.  
Afterwards, an optimization algorithm, for example k-opt 

[20], [21], simulated annealing [22] or hill climbing [23] can be 
used to refine the initial solution generated by the greedy 
algorithm. 

C. EOIR-AI 

For the hotspots identified by the VIS-AI and chosen for 
investigation by the CSS high resolution images are captured 
using the EOIR. The images are stored and analyzed after the 
flight using the EOIR-AI system. Results of the analysis are then 
distributed via a Geographic Information System (GIS) (Fig. 2).  

In recent research different well-established AI-methods 
were used for the identification and qualification of plastic litter 
in the marine environment. For instance, Random Forest 
classifiers (RF) were used by Martin et al. [24] and Gonçalves 
et al. [25] to recognize dry plastic items in the Red Sea and 
Portugal. Acuña-Ruz et al. [26] used Support Vector Machines 
(SVM) to detect ashore plastic in Chiloé islands. In addition, 
CNNs were used for plastic waste assessment. Bak et al. [27] 
used Visual Geometry Group 16 architecture while Kylili et 
al. [28] used SegNet architecture to detect beached and floating 
plastic litter. Wolf et al. [29] used a two-step CNN-based 
approach for the identification and qualification of marine 
plastic litter.  

Within the PlasticObs+ project the approach described in 
[29] will be used as a starting point for the development of the 
EOIR-AI. The image taken by the EOIR only covers a small 
section of the area under investigation. Therefore, the data from 
the line scanner will be incorporated into the AI analysis, to 
support context extraction, for instance morphology extraction 
(Fig. 2).  

In addition, explainable AI-methods (XAI) [30] will be 
incorporated in the EOIR-AI to provide the user with valuable 
information about the decision process.  

 

Fig. 2. System design of the EOIR AI 

D. Feedback Loop 

The selected candidate proposition output for the potential 
waste hotspots given by the VIS-AI (Section II.A) directs the 
EOIR to provide high-resolution imagery for the given potential 
waste hotspot. Together with the EOIR-AI (Section II.C) waste 
assessment outputs, this creates two data pairs of imagery and 
their corresponding predictions for the same spatial location, 
where the resolution of the EOIR imagery is around five times 
higher. 

Initially, the imagery of the two data pairs will be used for 
enhanced annotation by human experts of the VIS-Line data for 
the VIS-AI. Because the imagery of the EOIR offers higher 
resolution, it will reduce the risk of making mistakes during the 
annotation process, because it can also be used for the decision-
making process.  

With increased capacities of both involved AI-systems (VIS-
AI and EOIR-AI), a scaling up of annotation will be enabled 
trough semi-automatic labelling with a human expert in the loop, 
as depicted in Fig. 3 and described by Budd et al. [31]. This is 
expected to facilitate annotation, as the waste assessments of the 
EOIR-AI should allow to provide a selection of imagery suitable 
for annotation, in particular imagery of waste hotspots, to the 
expert in the loop. With a better performing EOIR-AI, it is 
expected to provide better suggestions for annotations for VIS 
line scanner data. This annotated VIS-data should then facilitate 
the performance to the VIS-AI after iterative optimizing 
throughout the project, and hence provide ultimately better 
suggestions for waste hotspots. This relates to Li et al. [32], and 
instead of super resolution imagery, the PlasticObs+ feedback 
loop uses real world data. 

 
Fig. 3. System design of the feedback loop  

III. FIELD TESTS  

In previous research, images from a lower altitude were used 
for plastic waste assessment, allowing to distinguish between 
different litter categories and the identification of small litter 
items like cup lids or food wrappers [29]. However, due to the 
higher altitude, images with a lower resolution will be used in 
this project. Therefore, a set of field tests was undertaken using 
artificial plastic waste targets to determine the limits of 
detectability for the problem at hand. The use of artificial targets 
to determine the limits of detectability of remote sensing 
applications was also applied by Topouzelis et al. [7].  



 

 

The field tests were conducted between the 08th and the 10th 
of November 2022 on the island of Spiekeroog (southern North 
Sea). During the field tests different kinds of plastic, i.e. LDPE 
blue (low density Polyethylene), LDPE transparent, PS white 
(Polystyrene), PS cream and PP black (Polypropylene), were 
used to form artificial targets covering different percentages of 
one square meter, i.e. 100 % 50 %, 25 % 12.5 % and 6.25 %. In 
addition, the experiments were conducted at two different 
locations, covering two different kinds of soil, i.e grass and sand. 
The experimental setup at both locations is shown in Fig. 4.  

  
Fig. 4. Experimental set-up of the field tests on grass (a) and sand (b) soil 

A research aircraft was used to take images of the 
experimental setup in different altitudes from the range 150 m 
to 1200 m. However, due to bad weather conditions, the 
maximum altitude for sand soil was 750 m. During 
postprocessing snippets only containing a single target were 
stored in a database. In addition, snippets not containing plastic 
were also inserted into the database. In total 450 snippets were 
produced, 360 containing plastic waste and 90 snippets not 
containing plastic waste. Fig. 5 shows examples from the 
snippet database for six different altitudes.  

 
Fig. 5. Examples from snippet database showing PS white with 100 % 

coverage from altitude 150 m (a), 300 m (b), 450 m (c), 600 m (d), 800 m 

(e), 1000 m (f) 

In order to determine the limits of detectability, all snippets 
were labelled by humans. During the labelling process the 
humans had to answer the questions if plastic is visible on the 
snippets or not. Each snippet was independently labelled by five 
humans. The results of the labelling process are presented in the 
next section.  

In addition, a machine learning approach for classification 
was implemented. A convolutional neural network (CNN) was 
trained by adapting knowledge from an existing network and 
applying it to solve the given problem of classifying images 

containing plastic and not containing plastic. This approach is 
called transfer learning [33].  

The machine learning approach is based on ResNet-50, a 
CNN containing 50 layers designed for image processing 
applications [34]. Based on the pre-trained layers and weights of 
this network, the CNN was finely tuned by changing the output 
layers to two classes: Plastic and No Plastic. Afterwards, the 
weights of the other layers were fixed, and the weights and 
biases of the newly added layers were trained.  

The dataset was split into a training set and a test set. The 
training set contained 80 % of the images, while 20 % were used 
for testing. Training was limited to 10 epochs. Fig. 6 shows the 
accuracy and the loss over iterations for the training of the CNN.  

 
Fig. 6. Training results of ResNet 50 transfer learning  

IV. RESULTS 

In this section the results from the field tests are presented 
focusing on the labelling process. For analysis the given answers 
are compared with the true labels of the snippets. In this research 
the accuracy is used as metric to evaluate the detectability. The 
accuracy is calculated as follows: 

 𝑎𝑐𝑐 =
𝑇𝑃

𝑁
. (5) 

Where TP denotes the correct labelled images, while N 
represents the number of images. Fig. 7 shows the accuracy as 
function of the altitude. Each plastic sort is evaluated separately. 
In addition, the accuracy of the snippets without plastic is 
shown. It can be seen from the figure that, on grass soil, the 
accuracy of all plastic sorts, except PP black, is higher than 0.88 
regardless of the altitude. Furthermore, the accuracy of PP black 
shows a negative correlation with altitude. On sand soil LDPE 
transparent and PP black showed a constantly decreasing 
accuracy over altitude, while the accuracy of PS cream and PS 
white rapidly decreased for an altitude of 750 m. The accuracy 
of LDPE blue was not affected by higher altitudes. In addition, 
in both cases almost all snippets without plastic are labelled 
correctly. Unfortunately, no data is available for higher altitudes 
due to bad weather conditions.  
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Fig. 7. Accuracy of labelling process for different materials and grass (a) and 

sand soil (b) as function of altitude 

Due to the results shown in Fig. 7, PP black on grass soil and 
LDPE transparent and PP black on sand soil are further 
analyzed. Fig. 8 and Fig. 9 show the accuracy of the 
combinations with separated calculations for different 
percentages of coverage. It can be observed from Fig. 8 that for 
100 % coverage PP black was labelled with an accuracy of 1 for 
altitudes ≤ 800 m. For 50 % coverage the accuracy was 0.8 for 
altitudes ≤  1000 m. For 12.5 % and 6.25 % coverage the 
accuracy in almost all cases is ≤ 0.2, except for an altitude of 
150 m a coverage of 12.5 %. Furthermore, as intended, one can 
observe a negative correlation between the coverage and the 
accuracy.  

For LDPE transparent the accuracy is negatively correlated 
with the altitude, independent from the coverage percentage 
(Fig. 9 (a)). On the other hand, coverage percentage had an 
influence on the accuracy for PP black on sand soil (Fig. 9 (b)). 

 
Fig. 8. Accuracy of labelling process for PP black on grass seperated for 

different coverages 

 

 
Fig. 9. Accuracy of labelling process for LDPE transparent (a) and PP black 

(b) on sand seperated for different coverages 
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The results of the labelling process are summarized in the 
confusion matrix given in Fig. 10. The results are split into the 
two different categories No Plastic and Plastic, based on the true 
label. It can be seen from the figure that the human achieved an 
accuracy of 99 % for the No Plastic labelled and 91 % for the 
Plastic labelled data. The overall accuracy was 92.6 %. The 
confusion matrix contains the total number of classifications. It 
needs to be noted that four labels for the No Plastic and two 
labels for the Plastic category are missing, because some images 
were not labelled by all humans.  

 

Fig. 10. Confusion matrix of human labelling process  

In the second step the dataset was used to train a CNN for 
classifying the images. As mentioned, 20 % of the images were 
used as test set. These images are classified after the training of 
the model was completed. The total accuracy of the classifier 
was 93.3 %. However, the achieved accuracy differs for the two 
classes. The accuracy was 99 % for Plastic category, while it 
was 72 % for No Plastic category (Fig. 11).  

 
Fig. 11. Confusion matrix of CNN based binary classifier   

V. DISCUSSION 

The accuracy of PP black was worse than the accuracy of the 
other plastic types regardless of the underlying soil (Fig. 7). 
Hence it can be concluded that the color of the plastic items 
plays an important role on the limits of detectability. In addition, 
decreased accuracy was shown for LDPE transparent, PS cream 
and PS white for sand soil compared to grass (Fig. 7 b). Thus, it 
can be concluded that the underlying soil has an influence on the 
limits of detectability.  

It was shown that the accuracy depends on the coverage 
percentage (Fig. 8, Fig. 9 b). In contrast this dependency cannot 
be observed for LDPE transparent (Fig. 9 a). However, it needs 

to be noted that the PP black contains several smaller items, 
while one piece of foil was used for the LDPE transparent 
targets. Therefore, it can be concluded that also the item size has 
an influence on the detectability of plastic waste items.  

Furthermore, it can be observed that both methods, i.e. 
human labelling and CNN classifier, show similar accuracy 
during the classification of the images (Fig. 10, Fig. 11). 
However, it needs to be noted that Fig. 10 includes five labels 
per image from the human labelling process, while Fig. 11 only 
includes one label for 20 % of  the dataset, i.e. the test set. 
However, machine learning can be used as a tool for the 
classification of plastic waste from airborne remote sensing data. 

VI. CONCLUSION AND FUTURE WORK 

The main ideas and initial findings of the PlasticObs+ project 
are presented and discussed in this work. The four different AI-
systems, i.e., VIS-AI, candidate selection system, EOIR-AI and 
feedback loop are discussed. Different potential methods for the 
four subsystems are given.  

In the PlasticObs+ project airborne based remote sensing is 
used to detect plastic waste. However, compared to recent 
research, images with a lower resolution will be used in this 
project. Therefore, a set of field tests was undertaken, using 
artificial plastic waste targets, to determine the limits of 
detectability for plastic waste. The images were classified by 
humans, and it was shown that both color and size of the items 
have an influence on the detectability. In addition, the 
underground plays an important role for the detectability.  

A binary classifier, based on a CNN was trained to 
distinguish between images containing plastic and those who are 
not containing plastic. It was shown that this approach shows 
similar accuracy compared to the results from a labelling 
undertaken by humans.  The accuracy of the binary classifier 
was 93.3 % while the accuracy of the labels generated by 
humans was 92.6 %. Hence, it can be concluded that airborne 
based remote sensing in combination with AI-methods can be 
an important tool to tackle the global plastic waste problem.   

In the future, additional field test with artificial targets on 
different undergrounds, including water and mudflat needs to be 
undertaken to enhance the dataset. Furthermore, real world data 
of floating plastic litter will be taken using a research airplane. 
This data is used to train the different AI models described in 
section II. The trained models can be tested at the German coast 
using the research aircraft from Jade University of Applied 
Sciences. In the final step the system shall be incorporated into 
oil spill monitoring aircrafts and tested in different locations.  
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