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Abstract—Sea surface slicks naturally occur on the ocean.
They have important physical, biogeochemical and ecological
functionalities. The automatic detection of slicks on images is
useful in many scenarios, e.g., to evaluate long time series of
images. However, to the best of our knowledge, no methods for
the automatic recognition of sea surface slicks on images exist.
In this work, a binary classifier is developed that recognises
if a slick is present on an image with the help of Automated
Machine Learning (AutoML). AutoML automatically finds a
machine learning pipeline for a given problem. Two AutoML
approaches are compared: auto-sklearn and AutoKeras. Images
from seven sites were available from the North and Baltic Seas.
Initially, one site was used for training and testing. It was found
that the AutoKeras method demonstrated superior performance
compared to the auto-sklearn approach in both f1-score and
balanced accuracy. After further optimising the model found by
AutoKeras and training it on data from the additional sites, the
final model reaches an f1-score of 0.924 and a balanced accuracy
of 0.954 on the test dataset. Furthermore, the model achieved an
f1-score of 0.710 and a balanced accuracy of 0.925 on a holdout
dataset only containing images from a site which was excluded
from the training. This shows that the model is not only able to
reliably recognise sea surface slicks but it also generalises fairly
well to unseen data.

I. INTRODUCTION

Marine sea surface slicks appear when the sea surface
microlayer accumulates enough organic matter [1]. Automat-
ically recognising slicks fosters further research. An example
of this is estimating the frequency of slicks or relating it to
other data, such as wind speed. Furthermore, this is a first step
towards knowing when and where a slick will appear. A related
problem is the detection of oil spills. For years, machine
learning methods have been used to identify oil spills, such
as Support Vector Machines [2]. In most cases, the detection

of oil spills is conducted using satellite radar images, but in
some cases, optical satellite images have also been used [2].
Despite the large number of publications on oil spill detection,
little work has been done on automatically recognising sea
surface slicks. Recent work by Nichol et al. [3] investigated the
detection of various types of slicks, including natural slicks,
from sentinel images. However, recognising sea surface slicks
from optical images has not been done before.

More specifically, a sea surface slick is a form of sea surface
microlayer (SML) [1]. SML is found at the boundary between
the ocean and the atmosphere and it consists mainly of organic
matter which accumulates at the sea surface [1]. The majority
of the molecules forming these SML have - other than the
molecules found in oil spills - ambiphilic properties, i. e.
one end of the molecule is hydrophobic while the other end
is hydrophilic [4, p. 22]. When the concentration of these
molecules is high enough, the SML becomes visible which
is then called a sea surface slick [1]. Additionally, sea surface
slicks have a characteristic ability to dampen capillary waves
[4, p. 94]. Figure 1 shows an example of sea surface slicks in
the North Sea.

Slicks impact the exchange of gases between the ocean and
the atmosphere [5]. Mustaffa et al. [5] studied the dependence
of the gas transfer velocity k660 on the presence of slicks.
Traditionally, k660 is parameterised only by wind speed, but
other factors are known to affect it directly. They found that in
regions with slicks present k660 is reduced by 62% compared
to regions without slicks. Considering the reported frequency
of slicks this leads to a reduction of 7% in the CO2 fluxes in
the open ocean and even to a 19% reduction in Norwegian
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Fig. 1. Example image of sea surface slicks. The red boundary indicates the
region where the slicks are located.

Fjords [5]. Furthermore, Whitney et al. [6] and Gallardo et al.
[7] found that organisms such as zooplankton accumulate at
slicks and because of this, slicks are an important feeding
spot for fish in their larval stages. Since the survival rate of
organisms in their larval stage has a great impact on their
species’ overall abundance, the frequency of slicks is central
to the productivity of the investigated area [6]. At the same
time, plastics [7] and other organic pollutants [8] were found
to concentrate in slicks.

Due to the physical, biogeochemical and ecological impor-
tance of these sea surface slicks it would be interesting to
estimate their frequency over long periods of time. Especially
for a fixed site, the recording of images at a short interval for
a long period of time is feasible. The first step for this is an
automatic classifier to distinguish between the presence and
the absence of slicks on images of the sea surface.

In this work, two different approaches to building a slick
classifier using Automated Machine Learning (AutoML) are
presented: auto-sklearn and AutoKeras. AutoML solves the
tasks of model selection and hyperparameter tuning and
sometimes also feature extraction [9]. Whereas auto-sklearn
trains and ensembles classical machine learning models [10],
AutoKeras selects and optimises a deep neural network [11].
Auto-sklearn does not work on images directly, thus, features
need to be extracted from the images first. All models are
trained on a dataset containing images from a period of six
months from a fixed site in the North Sea at the offshore wind
park Nordergründe. The deep learning approach is also trained
and tested on a larger dataset from several sites and seasons.

II. RELATED WORK

A. Slicks and Slick Recognition
Romano and Marquet [12] found that in 36% of the images,

slicks could be identified at the coast of France over a span
of two years. It was found that slicks occur more frequently
at lower wind speeds and do not occur at wind speeds higher
than 6-7 ms�1. Especially at the lowest wind speeds slicks
often cover the whole visible area [12]. A later study on the
frequency of slicks in the open ocean concluded that slicks

only occurred when wind speeds were below 5 ms�1 [1].
When the wind speed was below 2 ms�1, slicks were always
observed. Slick frequency dropped to 11% of the images
whereas the recording time was also shorter which might
contribute to the lower value compared to the frequency in
the coastal area [1]. Romano and Garabetian [13] found a
daily cycle in a coastal area where slick frequency decreases
first and then increases again as the day progresses.

While Nichol et al. [3] did investigate the detection of
natural sea surface slicks amongst other phenomenons, they
did not use optical images which are the only type of images
available in our work. One of the few studies focusing on
optical images to identify oil slicks is the survey by Pan et al.
[14]. It focuses on how to calculate features from images
which are characteristic of the sea surface roughness. Pan et al.
[15] presents more features that can characterise sea surface
roughness. Pan et al. [14] and Pan et al. [15] are the basis
for the feature extraction in the study at hand. Additionally,
features calculated from the grey-level co-occurrence matrix
are considered [16, p. 271].

B. Automated Machine Learning
Automated Machine Learning (AutoML) aims to create a

complete pipeline to solve a machine learning task, such as
classification, with minimal human intervention [17]. This in-
cludes four steps: data preparation, feature engineering, model
selection and evaluation. The parameters that are optimised
can be parameters affecting the training process (i. e. hyper-
parameters), model parameters needed for model definition
such as the input size for a neural network layer, or data
preprocessing parameters like data augmentation [17].

The module auto-sklearn provides a framework for Au-
toML: given a labelled training and test dataset, a defined loss
metric and a computational budget, an ensemble model is built
[10, 18]. This model can be comprised of a certain number of
base classifiers where the number is controlled by the user. It
does not include deep neural networks, only classical machine
learning models which are based on statistical methods.

AutoKeras [11] implements AutoML using deep learning:
before training, it extracts meta-features from the training data
and decides which preprocessing steps need to be done, e.g.
encode the labels. Next, the search space is built based on
the meta information of the data. That includes the selection
of a state-of-the-art neural network and some common hyper-
parameters. The final step is optimising the chosen network,
and the training and preprocessing parameters, such as data
augmentation and learning rate. The search algorithm starts
from a set of well-performing hyperparameters and always
mutates the current best-performing set. AutoKeras selects the
best-performing model at the end [11].



III. DATASETS

The following image datasets are used in this work:
1) Nordergründe: The dataset which is mainly used in the

following contains images taken at the offshore wind
park Nordergründe in the North Sea. Coordinates for
this site are taken from [19]. From the 23rd of December
2021 until the 2nd of March 2022 images were taken
in ten-minute intervals and five-minute intervals after
that date until the 30th of June 2022. In total, 23004
images were available in this time frame. The camera
used at this site is a LevelOne FCS-4041 dome camera.
The images from Nordergründe always show the same
perspective except for slight changes in the angle and
position.

2) Beachcamera Spiekeroog: this
dataset contains hourly images taken
throughout the year 2021 facing the beach of
Spiekeroog. In total, 3186 images are available in
this dataset. Coordinates for this site are from [20].

3) Camera at Lighthouse Alte Weser: the camera shows
parts of the lighthouse platform. Images are available
starting from the 12th of May 2022 in five-minute
intervals. Images until 30th of June 2022 were consid-
ered. In total, 2396 images are available in this dataset.
Coordinates for this site are from [21].

4) Fino1 (Deck and AlphaVentus): research platform in the
western North Sea [22]. From this source images from
two different perspectives are available: both perspec-
tives show parts of the wind park Alpha Ventus and one
shows parts of the platform [22]. For both perspectives,
images are taken at ten-minute intervals. The dataset
starts on the 8th of March 2022. For both cameras,
which in the following will be referred to as Deck and
AlphaVentus, images until the 30th of June 2022 were
considered which leads to a total of 7884 (Deck) and
7595 (AlphaVentus) images. Coordinates from this site
are from [22].

5) Fino2 (cam02 and cam08): research platform in the
Baltic Sea [23]. Here also images from two perspec-
tives are available while both show the wind park
Baltic 2 [23]. One also shows parts of the platform
(cam08) while the other only shows a small portion
of a railing (cam02). The dataset starts on the 8th of
March 2022 (cam02) and on the 29th of April 2022
(cam08) respectively and images are taken in a ten-
minute interval. For both cameras, images until the 30th

of June are considered. For cam02, 7853 images and for
cam08 4525 are available in the respective time frames.
Coordinates for this site are from [23].

Figure 2 shows where exactly the sites are located in
the North and the Baltic Seas. The map was plotted using
geopandas [24] and data for the coastlines from [25].

A. Image Selection
Before labelling, some of the images were discarded when

they were blurred or when the wind speed was too high at

Fig. 2. Map of northern Germany and parts of the Baltic and North Seas.
The red dots show the locations where the images for the respective datasets
were taken.

the time when the picure was taken. Romano [1] showed that
slicks do not occur at wind speeds above 5 m s�1. When
wind speed data was available, the images were filtered out
if the wind speed above the sea surface exceeded 5 m s�1.
This reduces the imbalance in the data.For the sites, Alte
Weser and Nordergründe wind speed data from a sensor at
the lighthouse Alte Weser was used. The measurements were
taken at a height of approximately 17m over the sea surface.
For Fino2 the database of the Fino-project [26] was used where
the heights were given. No, or not enough wind speed data
was available for the images from Fino1 and for the images
from Spiekeroog. From the logarithmic wind profile [27, p.
76] the relationship in equation 1 can be derived. It was used
to calculate the wind speed measurement at which the wind
speed above the sea surface was 5ms�1. Here, z describes the
height at which the measurements were taken, zr is a height
right above the sea surface which in this case is set to 0.1m,
u is the wind speed at the specified heights and z0 is the
characteristic roughness length which was set to 10�4 m [27,
p. 77]. When setting u(z0) to 5ms�1, the corresponding u(zr)
can be calculated. Additionally, the u(zr) is rounded up to the
next integer. According to this, the dataset is filtered.

ln

✓
z

z0

◆
u(z)�1 = ln

✓
zr
z0

◆
u(zr)

�1 (1)

B. Labelling the data
All other images were manually labelled as “true” (contains

a slick), “false” (no slick) and “unsure” (the labeller was
unsure). For the datasets from the sites AlphaVentus and
Nordergründe the images labelled as “unsure” were reviewed
again and relabelled if a better fitting label could be assigned.
An additional label was used for the sites AlphaVentus and
Nordergründe which is called ”marginal” and shows small
slicks or slicks with undefined edges. Often, these images
come before or after images labelled as “true”. In these cases,
they show the development or disintegration of slicks. For
the training and testing, only the images labelled as “true”
or “false” are taken into consideration.

C. Inter-rater-reliability
To determine the validity of the labelling, 1000 images from

the complete dataset are labelled by a second person. For the



subset belonging to the site AlphaVentus, the second labeller
was instructed to use the classes “true”, “false” and “marginal”
while for the other images, the labeller was supposed to use
the classes “true” and “false”. Then, Cohen’s kappa [28] is
calculated from the results according to equation 2.

 =
Po � Pe

1� Pe
(2)

Po is the fraction of samples where both labellers agreed
on a label and Pe is the fraction of samples where they could
have agreed by chance. Instead of just stating how often the
raters agreed on a label, Cohen’s kappa also takes into account
that an agreement could take place by chance and adjusts the
measure accordingly. Cohen’s kappa can take values between
�1 and 1, both inclusive, where �1 would mean that the raters
always disagree and 1 indicates that both raters always agree.
A value of 0 means that the fraction of samples where the
raters agreed correspond to the agreement by chance [28].

For both, the extended dataset as well as the AlphaVentus
dataset, Cohen’s kappa was calculated. The values were 0.803
and 0.747 respectively. For the AlphaVentus dataset, Cohen’s
kappa might be lower because three categories were used
instead of two. According to Landis and Koch [29], both these
values indicate a substantial agreement which means that the
quality of the labelled dataset is satisfactory.

D. Description of the final datasets

Figure 3 shows the number of images in each dataset after
filtering and labelling and the percentage of images labelled
as “true” at every site. The dataset size from Nordergründe
was clipped to 5000 images to be able to test more features.
Each dataset was then split into a subset for training (70%)
and for testing (30%). When a validation set was required,
the last 20% of the training dataset was used for validation.
The dataset Fino1 - AlphaVentus is completely set aside for
independent testing.

Fig. 3. Number of images per site and class. The percentages denote the
portion of slick images per site.

IV. METHODS

The following will first introduce the metrics used to assess
the performance of the trained models. Then the feature
extraction which is necessary for auto-sklearn is described.
AutoKeras performs the feature extraction automatically and
can directly take the images as input.

A. Metrics

Table I introduces the confusion matrix [30, p. 33]. The
ground truth value corresponds to the label assigned by hand
and the prediction value is the outcome of the model.

TABLE I
THE CONFUSION MATRIX

Prediction
True False

Ground True true positive (TP) false negative (FN)
truth False false positive (FP) true negative (TN)

The dataset is quite imbalanced (cf. Figure 3). In the case
of imbalanced datasets the accuracy might distort the actual
performance of a model [31]. Therefore, other metrics should
be considered for evaluation. In this work, those are balanced
accuracy and the f1-score. The balanced accuracy is defined
in equation 3 [31]:

Balanced accuracy =
1

2
(

TP

TP + FN
+

TN

TN + FP
) (3)

The first summand of equation 3 is also known as recall
which is the correctly predicted portion when looking at all
samples labelled as “true” (see equation 4) [32]:

Recall =
TP

TP + FN
(4)

The correctly predicted portion of all samples classified as
“true” by a model is called precision (see equation 5) [32]:

Precision =
TP

TP + FP
(5)

Balanced accuracy does not include precision in its defini-
tion. The f1-score combines recall and precision by forming
their harmonic mean [32] (see equation 6):

f1� score =
2

1/P + 1/R
=

2PR

P +R
=

2TP

2TP + FN + FP
(6)

B. Feature Extraction

For the approach using auto-sklearn, image features need to
be extracted. These features were mainly taken from [14] and
[15]. In both papers, the attempt to estimate the roughness of
the sea surface was made and as a second step, oil slicks were
detected with these features.



1) Creating the features: The following features were con-
sidered as candidates:

• The energy derived from the grey level-gradient co-
occurrence matrix [14].

• The edge frequency for edge lengths 5, 10, 15, ..., 50
(in pixels) [14].

• The auto-correlation function for the maximum offsets
5, 10, 15, ..., 50 (in pixels) [14].

• The fractal dimension determined with the improved
box-counting method [15]. Here, two lengths need to be
provided where one is larger than the other. The lengths
can take the values 5, 10, 15, ..., 50 and the combinations
are created so that the difference between the values can
be 5, 10, ..., 40 (in pixels).

• The fractal dimension determined with the grey value
statistic method [15]. Here, the size of the quadratic sub-
images is varied from 35, 70, ..., 245, 280 (in pixels).

• From the grey level co-occurrence matrix features char-
acterising an image can be derived. This matrix counts
how often grey-level pairs occur in an image [16, p. 271].
For this, a fixed distance and a direction to the pixel
neighbour need to be defined [16, p. 271]. For every such
combination, a new co-occurrence matrix can be created
[16, p. 271]. From every co-occurrence matrix several
measures are calculated with scikit-image [33]. For these
measures, the co-occurrence matrices were calculated for
the directions 0° (horizontal) and 90° (vertical) and for
each direction the pixels were 1-5 pixels apart. From
these ten co-occurrence matrices, the following features
are computed:

– homogeneity
– energy
– contrast
– dissimilarity
– correlation

• Furthermore, on the base of 40 co-occurrence matrices
with directions 0°, 45° and 90°, 135° and pixel distances
1 - 10 weighted co-occurrence matrices are created
[15]. Specifically, for every pixel distance, the four co-
occurrence matrices are averaged, where each one corre-
sponds to a different direction, according to Table 1 in
[15]. For every feature that is supposed to be extracted,
the weights are different. The following features are
computed using the implementations of scikit-image [33]:

– homogeneity
– angular second momentum
– contrast
– entropy

The image features are extracted from the grey-scale images
with their original size of 1920 x 1080. Subsequently, the
image features of the training data are standardised and then,
using the same mean and standard deviation, the test set
features are standardised.

2) Selecting the features: After the features are created, a
subset of them is selected to increase efficiency and because a

classifier learns relevant patterns better [30, p. 266 ff.]. Several
different methods exist to reduce the number of features. First,
features are selected using the t-test and after that two filter
methods are considered. Filter methods discard features only
based on their values and interactions but do not consider the
classifier [30, p. 266 ff.].

Some of the features were filtered out using the one-
sample t-test [34, p. 273 f.]. For that, all described features
were extracted from 100 randomly selected images. This was
repeated for the same images with the difference that 10% of
pixels in the images were ignored randomly. This procedure
was followed to ensure the validity of the features for another
approach which was compared to the approach in this work.
Then, for every feature, a ratio was calculated by comparing
the two features extracted from both image versions. After
that, the t-test was carried out on the distribution of the ratio
for every feature. Features were excluded when the t-test’s
p-value is smaller than 0.05.

Subsequently, the features are filtered by the mutual in-
formation criterion (MIC) or by the f-value. Both of these
tests are implemented in scikit-learn [35]. For an explanation
of the MIC, refer to Zhou [30, p. 267 f.]. The f-value is
calculated based on ANOVA (Analysis of variance) [36, p.
146]. The analysis is supposed to answer the question of
whether two distributions are different or whether they are
subsets of the same underlying distribution [30, p. 146]. While
the f-value detects linear dependencies, the MIC also detects
other dependencies between features [37]. Both criteria are
used independently to filter features in the following.

To avoid choosing too many similar features, per feature
only the best variation as defined by the list in IV-B is
selected based on the f-value or the MIC. Only for the features
calculated from the single grey-level co-occurrence matrices,
the best variation per direction (0°or 90°) is selected. For
example, one feature is chosen from the contrast calculated
from the co-occurrence matrices where the pixel distances are
1-5 and the direction between the pixels is 0°.

V. EXPERIMENTS AND RESULTS

The experiments performed and their results are described
below. The first part describes how auto-sklearn was applied
to the selected image features. The second part describes how
AutoKeras was applied to the images directly. Next, additional
hyperparameter tuning was applied to the final model selected
and trained by AutoKeras. Finally, the model is trained on the
extended dataset containing images from six different sites.

A. Slick Recognition based on Image Features using auto-
sklearn

1) Experimental Setup: The AutoSklearn Classifier [10] is
applied to the features selected as described in section IV-B.
Before classification, oversampling was applied to the set of
features calculated from the images because of its imbalanced
distribution of classes. The SMOTE technique was used for
this [38]. The following settings and hyperparameters were
altered and tested:



• Feature selection method: MIC or f-value (f).
• Number of base classifiers in the ensemble: 25 or 50.
• Optimisation objective: accuracy or f1-score.
In total, auto-sklearn was trained for eight combinations.

For every trial, an hour of computation time was allocated.
2) Results: The results are reported in table II. The best

model was optimised towards the f1-score, consisting of 50
models and achieves an f1-score of 0.658 on the test dataset.
The features for this model were selected using the f-value.
The features used in this model are the following:

• The energy derived from the grey level-gradient co-
occurrence matrix;

• The edge frequency for edge length 10;
• The auto-correlation function for the maximum offset 5;
• The fractal dimension determined with the improved box-

counting method with the length combination 10 and 15;
• The fractal dimension determined with the grey value

statistic method with the sub-image size 280.
• For the features derived from the single co-occurrence

matrices, the following combinations were chosen (pixel
distance, direction):

– homogeneity (5, 90°), (5, 0°)
– energy (5, 90°), (5, 0°)
– contrast (5, 90°), (4, 0°)
– dissimilarity (5, 90°), (5, 0°)
– correlation (5, 90°), (5, 0°)

• For the features derived from the weighted co-occurrence
matrices, the following features were chosen (pixel dis-
tance):

– homogeneity (10)
– angular second momentum (10)
– contrast (10)
– entropy (10)

TABLE II
RESULTS OF ALL EIGHT CONFIGURATIONS USING AUTO-SKLEARN

filter objective models f1-score balanced accuracy

f f1-score 50 0.658 0.817
f f1-score 25 0.653 0.816

MIC accuracy 50 0.648 0.815
MIC f1-score 50 0.644 0.808

f accuracy 25 0.638 0.800
f accuracy 50 0.621 0.774

MIC accuracy 25 0.621 0.788
MIC f1-score 25 0.613 0.773

B. Slick Recognition with AutoKeras
1) Experimental Setup: For the Deep Learning approach,

the ImageClassifier class of AutoKeras was used [11]. Before
using the grey-scale images for training and testing they are
resized to 224 x 224. The parameters were set as follows:

• Batch size: 32 (16 for large models)
• Number of trials: 50
• Loss function: binary cross-entropy
• Optimisation objective: f1-score

When more complex models were tested by AutoKeras, the
batch size was automatically reduced to 16 because of limited
memory. During the training, the last 20% of the training
dataset was used as the validation dataset. To avoid over-
fitting, an early stopping condition was introduced: when
the validation f1-score does not improve by more than one
percentage point for ten epochs, the training is stopped. In the
end, the model that reached the highest f1-score was chosen.
Furthermore, a threshold of when an image is classified as
”true” was determined manually after training by maximising
the f1-score on the training data.

2) Results: The best architecture chosen by AutoKeras
was EfficentNet-b7 with an f1-score of 0.842 and a balanced
accuracy of 0.887 when setting the threshold to 0.566. It is
the most complex version of EfficientNet [39]. This model
was trained with a batch size of 16. The final hyperparameters
selected by AutoKeras are listed in table III.

TABLE III
LIST OF THE HYPERPARAMETERS OF THE BEST MODEL CHOSEN BY

AUTOKERAS WHEN USING THE PREDEFINED SEARCH SPACE

Hyperparameter chosen value

normalize True
augment True

translation factor 0.1
horizontal flip False

vertical flip False
rotation factor 0

zoom factor 0
contrast factor 0

block type efficient
pre-trained True

trainable True
version b7

imagenet size True
reduction type global avg

dropout 0
optimiser adam

learning rate 2e-5

Figure 4 shows the precision-recall curve of the test (red)
and training data (black).

Fig. 4. Precision and recall at varying thresholds for the test and train data.



C. Hyperparameter tuning of EfficientNet

AutoML methods try many configurations of the machine
learning pipeline. Since the budget, e.g. the number of trials,
is often limited, not all options were tested and the best option
might not have been found. Therefore, additional hyperpa-
rameter tuning is performed on the final model. For this, the
selected model architecture, i.e. EfficientNet-b7, was retrained
starting from the weights of the ImageNet dataset [40] which
was also the starting point for the AutoKeras search [11]. Only
the learning rate was tuned.

1) Experimental Setup: The Hyperband-Tuner is used [41]
with the Hyperband implementation of the module KerasTuner
[42]. Since 2 ⇤ 10�5 is the learning rate of the model returned
by the AutoKeras search, the new values are centred around
this value. The ten tested learning rates are logarithmically
spaced between 10�6 and 10�4. The performance of a model
is determined by the f1-score on the validation dataset. The
maximum number of epochs was set to ten to achieve this
within a reasonable timeframe.

2) Results: The best-performing learning rate was 2.783 ⇤
10�6. The threshold maximising the f1-score on the training
data is 0.5. Table IV summarises the results of all three
methods, namely the auto-sklearn approach, the model found
by AutoKeras, and the found AutoKeras architecture retrained
with the tuned learning rate ⌘. While the f1-score on the test
dataset has only risen by 0.002 to 0.844, the balanced accuracy
has improved by 0.027 to 0.914. This shows that the additional
hyperparameter tuning actually improved performance.

TABLE IV
RESULTS OF ALL THREE METHODS

Method Threshold f1-score balanced accuracy

Auto-sklearn 0.5 0.658 0.817
AutoKeras 0.566 0.842 0.887

AutoKeras + tuned ⌘ 0.5 0.844 0.914

D. Training the model on the extended dataset

1) Experimental Setup: To be able to recognise slicks at
different sites, the model needs to be trained on the extended
dataset which contains images from six different sites. The
sample size of the extended dataset contains 14530 samples
(70%) in the training and 6230 samples (30%) in the test subset
which makes it around four times larger than the previously
used dataset. In the following, the obtained model is trained
on this extended dataset and its performance is evaluated on
the extended test set as well as an unseen seventh dataset,
the AlphaVentus dataset. The training starts from scratch
with the architecture and hyperparameters obtained in the
previous section. Early-stopping is applied: when the loss on
the validation dataset has not decreased for five epochs, the
training is stopped and the model from five epochs prior is
restored. The training on the extended dataset concluded after
22 epochs and weights of epoch 17 were restored.

2) Results: Figure 5 shows the precision-recall curves for
this model on the training (black curve) and the test dataset
(red curve). The threshold is set to 0.636 which maximises
the f1-score on the training dataset. As expected, the model
performs slightly better on the training than on the test dataset
which indicates that no or minimal overfitting is taking place.
The precision-recall curve for the test dataset suggests a good
overall performance for the obtained model.

Fig. 5. Model trained on the extended training dataset for 17 epochs. The
precision-recall curves for the prediction of the model on the training as well
as the test dataset are shown.

Table V shows the performance of the model trained on
the Nordergründe dataset only (single site) and the model
trained on the extended dataset (six sites). Both are evaluated
on the Nordergründe dataset, the extended test dataset and the
unseen AlphaVentus dataset. Both models perform similarly
on the Nordergründe dataset. The overall f1-score achieved on
the extended test dataset by the new model is 0.924 and the
balanced accuracy is 0.954. Not surprisingly, the performance
on the completely unseen dataset is decreased compared to
familiar sites. Whereas the single-site model performed very
poorly on both unseen datasets, the six sites model was able
to generalise fairly well to the AlphaVentus dataset.

TABLE V
PERFORMANCES OF THE MODEL TRAINED ON A SINGLE SITE VS SIX SITES

ON THE TEST SET, THE EXTENDED TEST SET AND THE UNSEEN
ALPHAVENTUS DATASET

training threshold evaluation f1-score balanced
accuracy

single site 0.5 test dataset 0.844 0.914
six sites 0.636 test dataset 0.841 0.924

single site 0.5 extended test dataset 0.316 0.660
six sites 0.636 extended test dataset 0.924 0.954

single site 0.5 AlphaVentus (unseen) 0.381 0.525
six sites 0.636 AlphaVentus (unseen) 0.710 0.925

VI. DISCUSSION

This section will analyse why AutoKeras outperforms auto-
sklearn. We then consider the generalisation ability of the final
model. Finally, we will comment on the dataset.



A. Model Comparison
The results show that deep learning with AutoKeras clearly

outperforms the feature extraction approach combined with
auto-sklearn on the task of recognising marine surface slicks
on images. The best auto-sklearn model achieved an f1-score
of 0.658 and a balanced accuracy of 0.817. The AutoKeras
model is 0.184 higher in the f1-score and 0.083 better in the
balanced accuracy.

One explanation for the overall moderate performance of
the auto-sklearn approach is that the selected features do not
capture all of the relevant information. Either the features
might be unsuitable for the task or the features are still not
diverse enough meaning that many of them capture similar in-
formation. To see whether the models improve, more features
could be added. However, because deep neural networks au-
tomatically learn suitable features during the training process,
it seemingly produces a better outcome.

Another explanation could be that the training might have
been cut-off early or the hyperparameters were not set well.
Increasing the maximum duration and testing more hyperpa-
rameter settings might yield better results. This is also true for
the AutoKeras approach, more trials make it possible to test
more configurations. Moreover, the subsequent hyperparame-
ter tuning for the AutoKeras approach could be more extensive
by considering more hyperparameters and more values.

B. Generalisation Ability of the Model
Section V-D examines how the model performs when it

is trained on the extended dataset and tested on an unseen
dataset. The performances of the model trained on the images
from Nordergründe on the extended test dataset as well as the
AlphaVentus dataset are reported in table V. While overall the
model trained on the extended dataset shows an improvement
in both f1-score (0.924) and balanced accuracy (0.954) on the
extended test dataset compared to the model trained on the
smaller dataset, it performs similarly to the previous model on
the images from Nordergründe. This indicates that the model
trained on the extended dataset did not suffer from underfitting
which might happen if the training data is too diverse so that
no patterns can be learned by the model.

The performances on the extended test dataset and the
AlphaVentus dataset have both improved strongly compared
to the single-site model: the difference in performance is 0.4
for the balanced accuracy and 0.329 for the f1-score on the
unseen AlphaVentus dataset. This shows that training on more
diverse images leads to the classifier learning more general
aspects of a slick’s appearance. The fairly good performance
on the unseen dataset shows the generalisation ability of the
model. However, the f1-score and the balanced accuracy on
the AlphaVentus dataset still stay behind the performance on
the extended test dataset. This is expected since no images
from AlphaVentus were seen during training.

C. Datasets and Labelling
In this work, four classes were considered for the labelling

of the datasets (true, false, marginal, unsure), of which only

images of the two labels “true” and “false” were used. The
inter-rater reliability showed that the labelling can be consid-
ered reliable.

The class “true” contains both images where the whole sea
surface is covered with a slick and images where the slicks
are fragmented. However, these cases might be quite different
in the recognition process. Labelling different strengths of a
slick and seeing it as either a multi-class classification problem
or a regression problem might improve performance. This
might especially improve the auto-sklearn approach since the
features used for the classical machine learning models focus
on texture. For example, in one case the whole sea surface is
smooth while in the other case, the presence of edges might
indicate a slick. For this, more data needs to be available to
get a sufficient amount of images where the whole sea surface
is covered in a slick.

In general, the number of slick images in the dataset is
small. Considering that the distribution of images among the
sites is different, there is only a small number of slick images
from some sites.

VII. CONCLUSION AND FUTURE WORK

In this work, a model was developed that can detect the
presence of a sea surface slick in an optical image. Two
Automated Machine Learning methods were compared: auto-
sklearn with self-engineered image features and AutoKeras
using deep learning. AutoKeras clearly outperformed auto-
sklearn by 0.184 in the f1-score and 0.08 in balanced accuracy.
AutoKeras found EfficientNet-b7 to be the best choice for
identifying sea surface slicks. The learning rate for the model
was fine-tuned after the search process which marginally
improved performance. The final model was retrained on more
data (six different sites instead of one). On the extended test
dataset, an f1-score of 0.924 and a balanced accuracy of
0.954 are achieved. Moreover, the model’s ability to generalise
to images from unseen sites was investigated by measuring
the performance on an unseen dataset. Its performance only
moderately decreased compared to the performance on famil-
iar sites: here, the f1-score drops to 0.710 and the balanced
accuracy reaches a value of 0.925. This is a huge difference
from the model only trained on data from one site which failed
to recognise slicks on images from unknown sites reliably.
This shows that the model trained on six sites is able to identify
marine sea surface slicks at several different, also unfamiliar,
locations with a relatively high recall and precision.

From this, the following future work can be derived:
1) Improve the method. To improve the auto-sklearn

method, more features could be added. The AutoKeras
method might find a better model when the budget
is increased. Moreover, more extensive hyperparameter
tuning can be done. It is also possible that another
AutoML method performs better.

2) Larger, more diverse dataset. A larger, more diverse
training dataset would improve the robustness of the
model. That includes data from more sites, different
seasons of the year and different angles of the camera.



Also, splitting the “true” label into ”whole slick” and
”fragmented slick” might improve performance.

3) Slick segmentation. Another next step could be the
development of a model localising the slick in the image
and estimating the area covered by it. This might be
important information when estimating the impact of
sea surface slicks on a process such as the gas transfer
velocity in an area.

4) Slick frequency. The model could help in estimating
the general frequency of slicks at a large scale.

5) Slick prediction. Given other data, such as wind speed
or sea surface temperature, the conditions that might
or might not favour the development or disintegration
of sea surface slicks could be analysed. Based on that,
a model predicting when and where a slick will occur
could be developed.
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