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Abstract TeachOpenCADD is a free online platform that offers solutions to common
computer-aided drug design (CADD) tasks using Python programming and open-source data and
packages. The material is presented through interactive Jupyter notebooks, accommodating
users from various backgrounds and programming levels.

Due to the tremendous impact of deep learning (DL) methods in drug design, the
TeachOpenCADD platform has been expanded to include an introduction to molecular DL tasks.
This edition provides an overview of DL and its application in drug design, highlighting the usage
of diverse molecular representations in this field. The platform introduces various neural
network architectures, including graph neural networks (GNNs), equivariant graph neural
networks (EGNNs), and recurrent neural networks (RNNSs). It demonstrates how to use these
architectures for developing predictive models for molecular property and activity prediction,
exemplified by the Quantum Machine 9 (QM9), ChEMBL, and Kinase Inhibitor BioActivity (KiBA)
data sets. The DL edition covers methods for evaluating the performance of neural networks
using uncertainty estimation. Furthermore, it introduces an application of GNNs for
protein-ligand interaction predictions, incorporating protein structure and ligand information.
The TeachOpenCADD platform is continuously updated with new content and is open to
contributions, bug reports, and questions from the community through its GitHub repository
(github.com/volkamerlab/teachopencadd). It can be used for self-study, classroom instruction, and
research applications, accommodating users from beginners to advanced levels.

Introduction

CADD in the deep learning era
The process of discovering new drugs remains both expensive and time-consuming. The approval
of a single drug typically takes between 10 and 15 years, with average costs exceeding one bil-
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lion US dollars (Scannell et al., 2012). Computer-aided drug design (CADD) has become a crucial
componentin the drug development process, offering data-driven guidance in the search for or op-
timization of innovative compounds. Over the last decade, the immense growth of freely available
chemical databases such as ChEMBL (Gaulton et al., 2017) and Protein Data Bank (PDB) (Berman
et al., 2000) has further stimulated the development and application of data-driven approaches
such as machine and deep learning (DL). The latter has brought about significant advancements
in various fields in recent years, as evidenced by innovations like ChatGPT (Brown et al., 2020) and
AlphaFold (Jumper et al., 2021; Wu et al., 2022).

In the realm of drug discovery, DL has demonstrated immense potential (Volkamer et al., 2023)
due to its ability to process and learn from large and complex data sets (Lavecchia, 2019). Here,
we propose a learning pipeline based on Jupyter notebooks for chemists, biologists, and computer
scientists alike. Previous training material is available introducing cheminformatics and DL but
with a different scope and setup (Menke et al., 2023), or a stronger computer science background
(Ramsundar et al., 2079). We start from scratch by explaining the theoretical foundations and
show practical examples in Python, solving real-world molecular problems using widely known
DL methods. The learning pipeline is based on the well-established TeachOpenCADD framework
(Sydow et al., 2019, 2022; Kimber et al., 2021).

Molecular deep learning in a nutshell

In the field of drug discovery, DL has been applied to many different problem settings, such as
molecular activity, and toxicity prediction (Coley et al., 2017; Unke and Meuwly, 2019; Wu et al.,
2018; Mayr et al., 2016; Coley et al., 2017). Moreover, several docking approaches based on DL
have been published reporting promising results (Corso et al., 2022; Ganea et al., 2021; Stdrk et al.,
2022), as well as generative models for de novo drug design (Jin et al., 2020; Hoogeboom et al.,
2022).

A DL network typically consists of multiple, connected layers with non-linear, parameterized
transformations. The data is provided to the input layer, which then gets processed through a pre-
defined number of hidden layers, and finally, an output layer generating the prediction (see Figure
1 for some drug design examples) (Goodfellow et al., 2076). In the process of training a network,
the parameters are adjusted to distill large data sets down to relevant features and patterns asso-
ciated with the prediction task. Neural networks can be trained for a variety of tasks. They can be
used for classification tasks, such as determining whether a molecule is toxic or not, or regression
tasks, like predicting binding affinity. Depending on the input data, there are many different classes
of neural networks suited for handling molecular data, each having different (dis)advantages. For
instance, graph neural networks (GNNs) offer a natural architecture for molecular graphs that has
several advantages: They capture both atom and bond information, as well as the connectivity
between atoms while being invariant to the nodes’ input order. They can handle molecules of
varying sizes and complexities and learn both local and global features of molecular structures.
Convolutional neural networks (CNNs) are often used for image data, while recurrent neural net-
works (RNNs) and transformers are designed to handle sequential data (such as text). Some of
these architectures will be covered in our tutorials.

TeachOpenCADD: Scope and DL extension

As of September 2022, TeachOpenCADD (Sydow et al., 2022) contained 28 talktorials covering
diverse topics in the broader area of CADD. Most talktorials are exemplified by compound and
structural data available for the EGFR kinase (Herbst, 2004). The platform contains talktorials in-
troducing the following topics: (i) Cheminformatics basics, e.g. molecular filtering, clustering, and
substructure search, as well as similarity search and machine learning models for activity predic-
tion; (ii) chemical database queries, e.g. ChEMBL (Gaulton et al., 2017), PDB (Berman et al., 2000),
PubChem (Kim et al., 2022), and KLIFS queries (Kanev et al., 2020); (iii) structural bioinformatics,
e.g. binding site detection and comparison, docking, protein-ligand interaction profiling, as well as
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Figure 1. Some applications of DL in the field of drug discovery.

molecular dynamics simulations; and (iv) kinase similarity assessment including different perspec-
tives, e.g. sequence, structure, interaction, and profiling data (Kimber et al., 2021).

With the TeachOpenCADD-DL edition, we introduce the concepts of DL applied to molecules in
six new talktorials. The topics are summarized in Figure 2. As an introduction, we discuss various
methods of representing molecules to facilitate their processing by neural networks. For each of
the representations, we introduce a class of neural networks: (i) GNNs with molecules represented
as a graph, (ii) RNNs where molecules are represented as a SMILES string (Weininger, 1988), and (iii)
equivariant graph neural networks (EGNNs) which process molecules as point clouds. Each neu-
ral network is trained to perform a regression task with the objective of predicting the quantum-
mechanical properties of small molecules. In addition to the network architectures, we also cover
uncertainty estimations to evaluate the performance of a trained model using molecular finger-
prints as input. Finally, we describe an important application of DL for protein-ligand interaction
prediction.

Data
In this section, we describe the three molecular data sets used to exemplify the different architec-
tures to solve diverse prediction tasks.

Quantum Machines 9 (QM9) Data Set

QM9is a public data set that consists of 130k small, organic molecules with up to 9 heavy atoms (Ra-
makrishnan et al., 2014). Each molecule is annotated with various geometric, energetic, electronic,
and thermodynamic properties. QM9 is part of MoleculeNet (Wu et al., 2018), a widely adopted
property prediction benchmark in the molecular machine learning community, e.g., see (Schiitt
et al., 2017, Gilmer et al., 2017; Gasteiger et al., 2020). PyTorch Geometric (Fey and Lenssen, 2019)
provides pre-implemented classes and methods for working with the QM9 data set in a molecular
ML setting.
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Figure 2. DL-talktorials: The newly contributed talktorials cover molecular representations for machine
learning (T033), corresponding deep learning architectures for processing them (T034-36), and more involved
topics such as concrete applications (T037) and uncertainty analysis (T038).

ChEMBL EGFR Subset

In the uncertainty estimation talktorial, we make use of activity data available for the EGFR kinase
from ChEMBL (Gaulton et al., 2017). Protein kinases play a central role in many stages of a cell's life
cycle. Dysfunctional signaling of EGFR kinase, e.g., has been associated with cancer progression
(Chen et al., 2016). The activity data we use is extracted from the public ChEMBL database (Gaulton
et al., 2017), version 25. Only IC50 data from binding assays (assay_type="B") and exact measure-
ments (standard_type="=") were kept. The data set contains ~3900 compounds with activities from
binding assays available as IC50 values.

Kinase Inhibitor BioActivity Data Set

The Kinase Inhibitor BioActivity (KiBA) data set has been assembled from diverse published kinase
profiling data sets to provide a large benchmark set for kinase drug-target activity. It is a collection
of 467 kinases, 52,498 ligands, and 246, 088 KiBA scores thereof. The KiBA scores are computed
to combine data acquired through different bioactivity experiments and measurements such as
IC50, K(i), and K(d) (Tang et al., 2014).

For the protein-ligand interaction talktorial (see Section Protein-Ligand Interaction Prediction),
we selected a subset of KiBA in order to speed up the training process, reduce memory consump-
tion, and make it trainable on average CPUs in a reasonable time. This is done in two steps: First,
all ligands measured against less than 200 kinases are discarded. Second, from the remaining
data points, all kinases with data available for less than 10 ligands are removed. Furthermore, a
pipeline was provided to scrape the matching PDB structure per kinase starting from UniProt IDs
(Consortium, 2022) and enforcing some structure quality filters. This resulted in 76 kinases, 275
ligands, and 20, 475 KiBA scores thereof.
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Table 1. Summary of the topics covered in the TeachOpenCADD-DL edition.

Topic Description Mol. input

Molecular representations | Introduction to molecules and their representa- | All below
tions

Recurrent neural networks | RNNs and Gated Recurrent Unit (GRU) for molec- | SMILES

(RNNs) ular property prediction

Graph neural networks | Convolutional and isomorphism GNNs for | Graph

(GNNs) molecular property prediction

E(3)-invariant graph neural | EGNNs compared to standard GNNs for molec- | Point clouds

networks (EGNNSs) ular property prediction

Uncertainty estimation Methods for model uncertainty estimation Fingerprints

Protein-ligand interaction | Applying GNNs to predict protein-ligand interac- | SMILES & PDB

prediction tions

Talktorials

In this section, we describe the six novel topics covered in the TeachOpenCADD-DL edition (see
Table 1). Note that all talktorials serve as teaching or starting examples, thus, the architectures
were intentionally kept simple and no parameters are tuned to optimize prediction performance.

Molecular Representations

Molecules are intricate, dynamic, three-dimensional (3D) entities composed of atoms, interacting
with each forming covalent as well as non-covalent bonds. It is essential to represent molecules
in a computer-readable form that corresponds to the information processed through a neural
network. In this talktorial, we cover popular molecular representations and discuss their unique
implications and (dis-)advantages. This will provide the foundation for subsequent talktorials.

Representing molecules as graphs allows for an intuitive and comprehensive representation of
their structure. In a graph-based representation, atoms are represented as (labeled) nodes, and
bonds are represented as (labeled) edges. However, to represent a graph, we need node ordering.
This node ordering, while necessary, is arbitrary, and ideally, a DL predictor should yield the same
output regardless of the node order chosen. GNNs address this issue by inherently ensuring this
so-called permutation invariance by design (Atz et al., 2021).

Molecular fingerprints are fixed-length, permutation-invariant representations of the molecular
graphs. Unlike GNNs, which learn task-specific representations, molecular fingerprints are task-
independent. They can be generated based on the occurrences of specific sub-graphs (i.e., molec-
ular fragments or atom environments) (Rogers and Hahn, 2010). Generally, it is not feasible to
reverse-engineer a fingerprint back to the original molecular graph. Due to their fixed length, fin-
gerprints are compatible with machine learning methods that require a constant input size, such
as Multi-Layer Perceptrons (MLPs).

Text-based representations (like SMILES (Weininger, 1988), SELFIES(Krenn et al., 2020), or InChl
(Grisoni, 2023)) traverse the molecular graph and convert it into a sequence of characters. How-
ever, ambiguity can occur due to the possibility of multiple strings mapping to the same molecule,
depending on the order of traversal. To reduce ambiguity, canonical SMILES can be used, although
what counts as canonicalized SMILES string is not standardized and may differ based on the soft-
ware package in use. A text-based molecular representation is well-suited for machine learning
(ML) models capable of handling sequences with varying lengths. Specifically, they have been suc-
cessfully used as input to language models (Wang et al., 2019; Chithrananda et al., 2020).

Point cloud representations annotate atoms with their 3D coordinates, corresponding to a sin-
gle conformation. Amolecular conformation (conformer)is a specific spatial arrangement of atoms
within a molecule, reflecting a single energetically favorable configuration of its 3D structure. Like
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in GNNSs, this necessitates a special type of invariance for DL methods that take point clouds as
input. Our specific goal is to attain invariance to Euclidean space transformations (e.g., the output
of the neural network model should remain unchanged when the entire molecule is rotated). Point
cloud representations are especially advantageous, as they encompass more comprehensive infor-
mation. In particular, they capture the relative atomic positions, which reflect the collective effect
of all forces acting within a molecule, beyond just covalent bonds (Atz et al., 20217).

In our talktorial, we discuss the different molecular representations in more detail and demon-
strate how to generate and utilize them in Python.

Recurrent Neural Networks

In recent years, DL-based natural language processing (NLP) has made significant progress, with
RNNs and transformers among the most successful models. These models proved to be good at
capturing text semantics and, when applied to molecular data, can capture the molecular structure
in its textual representation. As a result, NLP models have become a powerful tool in numerous
drug discovery applications, including de novo drug design (Gupta et al., 2018), virtual screening
(Karimi et al., 20719), and molecular property prediction (Bjerrum, 2017).

RNNs were originally developed to handle sequential data (E/man, 1990). These models can
process variable-length sequences of inputs and propagate the information through the sequence
using their internal state. In this talktorial, we focus on applying RNNs to SMILES strings. We briefly
cover the usual preprocessing steps that transform SMILES into numerical form and discuss two
RNN architectures in detail, starting with the Elman network, also known as a simple RNN (E/man,
1990). This architecture is suitable for demonstrating the basic principles of RNNs, butin practice, it
struggles with learning long-term dependencies in the data. This problem is addressed in the more
advanced Gated Recurrent Unit (GRU) (Cho et al., 2014) architecture. GRU selectively updates its
internal state using gating mechanisms, allowing the model to learn to identify and retain the most
important information while discarding irrelevant information.

We implement RNN- and GRU-based regression models and apply them to molecular property
prediction using the QM9 data set. As a regression task, we have chosen to predict the dipole
moment u, which is a measure of a molecule’s polarity. Our results show that the GRU model
learns faster and achieves better performance than the simple RNN model.

Graph Neural Networks

The most natural representation for molecules are graphs spanned by their atoms and bonds.
Thus, one intuitive way to apply DL techniques to molecular data is using GNNs. GNNs are widely
used in drug discovery, for example for property prediction (Wu et al., 2018; Wieder et al., 2020)
and de novo drug design (Xia et al., 2019; Tong et al., 2021).

Instead of the fully connected layers commonly used in standard neural networks, GNNs have
message-passing layers, that collect information about the neighboring nodes in the graph (Kipf
and Welling, 2016). For each node in the graph, all the information from the neighbors is gathered
and aggregated using an aggregation function such as the sum. One important property of a GNN
is the permutation invariance. This means that changing the arbitrary order of nodes in the graph
should not have an effect on the outcome. On the other hand, GNNs should ideally also be able to
distinguish between similar graphs.

In our talktorial, we present two commonly used GNN architectures in more detail: one of the
simplest GNNs, namely the graph convolutional neural network (GCN (Kipf and Welling, 2016)),
and a more powerful GNN called the graph isomorphism network (GIN (Xu et al., 2018)). GINs
are better at distinguishing similar, non-identical graphs compared to GCNs, which often leads to
better performance. We demonstrate how to implement GNNs and how to train them using the
QM9 data set (see Section Quantum Machines 9 (QM?9) Data Set) to predict one quantum-mechanic
property of small molecules. We predict the same molecular property as in the previous talktorial
(see Section Recurrent Neural Networks).
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E(3)-invariant Graph Neural Network

Reasoning about molecular properties is often easier when 3D information (e.g. in the form of con-
formations) is available. Some tasks may also strictly require the use of molecular representations
that include 3D information. Examples of this are binding pose predictions of ligand-protein com-
plexes (Corso et al., 2022) or force predictions for molecular dynamics simulations (Doerr et al.,
2021). It is widely accepted that GNNs which process molecules based on their point cloud repre-
sentation (see Section Molecular Representations) should satisfy certain invariance or equivariance
properties with respect to global Euclidean transformations such as translations or rotations.

The Euclidean group that corresponds to these transformations in three dimensions is denoted
by E(3). E(3)-invariance implies that the output of a GNN is unaffected by rotations or translations
of its input point cloud. For example, when predicting binding affinity based on the structure of
a ligand-protein complex, this prediction should remain unchanged if the entire complex is trans-
lated or rotated. E(3)-equivariance implies that rotating or translating the GNN's input should in-
duce an equivalent transformation of its output. For example, when predicting the binding pose of
a ligand-based on a given protein structure, rotating the latter should give rise to an equivalently
rotated pose prediction.

This talktorial discusses these concepts in more detail in the theory part. It demonstrates how to
implement E(3)-invariant graph neural networks for property prediction based on the point cloud
representation of the molecules included in the QM9 data set. The practical part concludes by
training and evaluating such a model in comparison to a plain GNN. The application shows that
the theoretical advantages mentioned above also lead to better results in practice.

Uncertainty Estimation

Often researchers pay a lot of attention to the overall accuracy of their predictions. However, when
implementing any predictive method in practice, it is equally important to understand the level of
confidence in a given estimation. The uncertainty can stem from both the experiments themselves
(epistemic) and/or the predictive model (aleatoric). In the former case, the uncertainty of the model
arises typically due to a lack of training data while the latter case refers to inherent randomness
such as measurement noise (Der Kiureghian and Ditlevsen, 2009). Thus, it would be beneficial to
obtain not only a point estimate of the prediction but also an indication of how certain we can
be about that estimate. The certainty is often modeled by replacing the point estimate with a
distributional estimate (Gawlikowski et al., 2021). For example, instead of a number as a prediction
of an IC50 value, one obtains a distribution of the predicted values.

In this talktorial, we showcase uncertainty estimation on a practical example. We start our
demonstration by creating a simple model ensemble. This means we train the same model multi-
ple times with a varying random seed. At test time, we evaluate all models and use the mean as a
predictor. The variance across the ensemble serves as a variance estimate for that prediction. We
discuss the calibration of this estimator, which - as is typical - under-estimates the actual variance.

In the second step, we improve our ensemble by not only varying the random seed during
training but also the data itself. This variation is achieved by bootstrapping the training data. This
helps to more accurately estimate uncertainty.

Finally, we showcase test time data augmentation as an alternative to the modification of our
predictive model. In this technique, we create variants for each query point in our test set. The
variants are created by applying random flips to a fingerprint datum. This way, we get an ensemble
of predictions out of a single model, without the need to modify the model itself.

Protein-Ligand Interaction Prediction

Protein-ligand interaction prediction is an important field in drug development, e.g. to screen for
novel drug candidates. Classical methods to predict drug-target interactions are based on docking
(de Azevedo Jr et al., 2003; M Bernhardt Levin et al., 2017), biological networks (AY et al., 2007;
Chen et al., 2012), and many more (Zhao et al., 2022). More recently, models use DL encoders
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such as MLPs, i.e. CNNs and GNNs, to compute latent space representations, also called embed-
dings, of biochemical molecules (Oztiirk et al., 2018; Nguyen et al., 2021). While in classical docking
methods, the complex structure is generated and then scored, in these works the two interaction
partners are treated separately. The embeddings are combined for each pair of potentially inter-
acting molecules, usually concatenated, and then fed into an MLP to predict the output variable.
The variable can either be a proxy value for binding affinity or a classification value separating
binding and non-binding pairs of protein and ligand.

The goal of this talktorial is to introduce the reader to the field of protein-ligand interaction
prediction using GNNs for proteins and ligands independently. In contrast to previous works in
which the protein was encoded as sequence and a CNN was used for the embedding, (Oztiirk
et al., 2018; Nguyen et al., 2021), GNNs are used for both, proteins and ligands. Ligands are rep-
resented as graphs constructed from the SMILES string. Representing proteins is more complex
and done using Residue Interaction Networks (RINs) (Doncheva et al., 2011). These are graphs
where nodes represent amino acids and edges represent covalent and non-covalent interactions
between amino acids. To compute those, RINminer (Keller et al., 2020) can be used or a distance
threshold between amino acids in the three-dimensional space as a surrogate of such. The talk-
torial exemplifies this task of predicting interactions between proteins and ligands using the KiBA
subset (see Section Kinase Inhibitor BioActivity Data Set) and shows that predicting interaction on
the KiBA dataset is possible with little effort and simple GNNs.

Prerequisites and technical information

Target audience

The talktorials were developed to support researchers who are interested in the topics and are
new to the field. The covered scope is intended to further bridge the fields of CADD and DL. The
talktorials are recommended for biologists, medicinal chemists as well as computer scientists; and
should enable the user to apply the techniques in their own work. Since the talktorials form an
extension to the TeachOpenCADD platform, they serve as teaching material in the field of structural
bio- and cheminformatics.

Background knowledge

The tutorials are meant to be an introduction to DL and its application to the field of drug discovery.
In each talktorial, we first present the theoretical background for the biological and chemical ba-
sics as well as the computer science fundamentals. Secondly, we provide thoroughly documented
Python code to illustrate the application of DL. However, some proficiency in Python and Jupyter
would be helpful.

Software requirements

All talktorials are written in Python and make use of well-known open-source packages such as
Pandas (McKinney, 2011), NumPy (Harris et al., 2020), Matplotlib (Hunter, 2007), SciPy (Virtanen
et al., 2020), RDKit (Landrum, 2006). The novel DL talktorials make heavy use of PyTorch (Paszke
et al., 2019) and PyTorch Geometric (Fey and Lenssen, 2019). The user only needs to install the
teachopencadd conda-forge package, which will install all relevant packages and save a copy of
all TeachOpenCADD notebooks on the user’s local machine. A read-only mode of the talktorials is
accessible via the TeachOpenCADD website at projects.volkamerlab.org/teachopencadd/.

Structure of the talktorials

The talktorials serve a teaching purpose and are structured as follows: Each Jupyter notebook is
split into two parts. We first explain the underlying theory of each topic. We explain the problem
setting, give relevant references, and list possible applications. The second part is focusing on the
actual implementation in Python. We explain and document each step in the code. We want to
make it easy to follow and give the user the chance to extend this to different applications in the
field.
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Conclusion

This study provides an insightful introduction to DL important for and applied to molecular predic-
tion tasks. We presented six talktorials covering topics such as commonly used representations of
molecules and proteins, graph and recurrent neural networks, uncertainty measures, and protein-
ligand interaction predictions. Through these talktorials, users can gain a better understanding of
DL and its potential applications in drug discovery. We believe that these methods can be used as
a starting point and can be adapted for different molecular data sets and more complex questions.
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