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Abstract TeachOpenCADD is a free online platform that offers solutions to common16

computer-aided drug design (CADD) tasks using Python programming and open-source data and17

packages. The material is presented through interactive Jupyter notebooks, accommodating18

users from various backgrounds and programming levels.19

Due to the tremendous impact of deep learning (DL) methods in drug design, the20

TeachOpenCADD platform has been expanded to include an introduction to molecular DL tasks.21

This edition provides an overview of DL and its application in drug design, highlighting the usage22

of diverse molecular representations in this field. The platform introduces various neural23

network architectures, including graph neural networks (GNNs), equivariant graph neural24

networks (EGNNs), and recurrent neural networks (RNNs). It demonstrates how to use these25

architectures for developing predictive models for molecular property and activity prediction,26

exemplified by the Quantum Machine 9 (QM9), ChEMBL, and Kinase Inhibitor BioActivity (KiBA)27

data sets. The DL edition covers methods for evaluating the performance of neural networks28

using uncertainty estimation. Furthermore, it introduces an application of GNNs for29

protein-ligand interaction predictions, incorporating protein structure and ligand information.30

The TeachOpenCADD platform is continuously updated with new content and is open to31

contributions, bug reports, and questions from the community through its GitHub repository32

(github.com/volkamerlab/teachopencadd). It can be used for self-study, classroom instruction, and33

research applications, accommodating users from beginners to advanced levels.34

35

Introduction36

CADD in the deep learning era37

The process of discovering new drugs remains both expensive and time-consuming. The approval38

of a single drug typically takes between 10 and 15 years, with average costs exceeding one bil-39
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lion US dollars (Scannell et al., 2012). Computer-aided drug design (CADD) has become a crucial40

component in the drug development process, offering data-driven guidance in the search for or op-41

timization of innovative compounds. Over the last decade, the immense growth of freely available42

chemical databases such as ChEMBL (Gaulton et al., 2017) and Protein Data Bank (PDB) (Berman43

et al., 2000) has further stimulated the development and application of data-driven approaches44

such as machine and deep learning (DL). The latter has brought about significant advancements45

in various fields in recent years, as evidenced by innovations like ChatGPT (Brown et al., 2020) and46

AlphaFold (Jumper et al., 2021;Wu et al., 2022).47

In the realm of drug discovery, DL has demonstrated immense potential (Volkamer et al., 2023)48

due to its ability to process and learn from large and complex data sets (Lavecchia, 2019). Here,49

we propose a learning pipeline based on Jupyter notebooks for chemists, biologists, and computer50

scientists alike. Previous training material is available introducing cheminformatics and DL but51

with a different scope and setup (Menke et al., 2023), or a stronger computer science background52

(Ramsundar et al., 2019). We start from scratch by explaining the theoretical foundations and53

show practical examples in Python, solving real-world molecular problems using widely known54

DL methods. The learning pipeline is based on the well-established TeachOpenCADD framework55

(Sydow et al., 2019, 2022; Kimber et al., 2021).56

Molecular deep learning in a nutshell57

In the field of drug discovery, DL has been applied to many different problem settings, such as58

molecular activity, and toxicity prediction (Coley et al., 2017; Unke and Meuwly, 2019; Wu et al.,59

2018; Mayr et al., 2016; Coley et al., 2017). Moreover, several docking approaches based on DL60

have been published reporting promising results (Corso et al., 2022;Ganea et al., 2021; Stärk et al.,61

2022), as well as generative models for de novo drug design (Jin et al., 2020; Hoogeboom et al.,62

2022).63

A DL network typically consists of multiple, connected layers with non-linear, parameterized64

transformations. The data is provided to the input layer, which then gets processed through a pre-65

defined number of hidden layers, and finally, an output layer generating the prediction (see Figure66

1 for some drug design examples) (Goodfellow et al., 2016). In the process of training a network,67

the parameters are adjusted to distill large data sets down to relevant features and patterns asso-68

ciated with the prediction task. Neural networks can be trained for a variety of tasks. They can be69

used for classification tasks, such as determining whether a molecule is toxic or not, or regression70

tasks, like predicting binding affinity. Depending on the input data, there aremany different classes71

of neural networks suited for handling molecular data, each having different (dis)advantages. For72

instance, graph neural networks (GNNs) offer a natural architecture for molecular graphs that has73

several advantages: They capture both atom and bond information, as well as the connectivity74

between atoms while being invariant to the nodes’ input order. They can handle molecules of75

varying sizes and complexities and learn both local and global features of molecular structures.76

Convolutional neural networks (CNNs) are often used for image data, while recurrent neural net-77

works (RNNs) and transformers are designed to handle sequential data (such as text). Some of78

these architectures will be covered in our tutorials.79

TeachOpenCADD: Scope and DL extension80

As of September 2022, TeachOpenCADD (Sydow et al., 2022) contained 28 talktorials covering81

diverse topics in the broader area of CADD. Most talktorials are exemplified by compound and82

structural data available for the EGFR kinase (Herbst, 2004). The platform contains talktorials in-83

troducing the following topics: (i) Cheminformatics basics, e.g. molecular filtering, clustering, and84

substructure search, as well as similarity search and machine learning models for activity predic-85

tion; (ii) chemical database queries, e.g. ChEMBL (Gaulton et al., 2017), PDB (Berman et al., 2000),86

PubChem (Kim et al., 2022), and KLIFS queries (Kanev et al., 2020); (iii) structural bioinformatics,87

e.g. binding site detection and comparison, docking, protein-ligand interaction profiling, as well as88
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Figure 1. Some applications of DL in the field of drug discovery.

molecular dynamics simulations; and (iv) kinase similarity assessment including different perspec-89

tives, e.g. sequence, structure, interaction, and profiling data (Kimber et al., 2021).90

With the TeachOpenCADD-DL edition, we introduce the concepts of DL applied to molecules in91

six new talktorials. The topics are summarized in Figure 2. As an introduction, we discuss various92

methods of representing molecules to facilitate their processing by neural networks. For each of93

the representations, we introduce a class of neural networks: (i) GNNs withmolecules represented94

as a graph, (ii) RNNswheremolecules are represented as a SMILES string (Weininger, 1988), and (iii)95

equivariant graph neural networks (EGNNs) which process molecules as point clouds. Each neu-96

ral network is trained to perform a regression task with the objective of predicting the quantum-97

mechanical properties of small molecules. In addition to the network architectures, we also cover98

uncertainty estimations to evaluate the performance of a trained model using molecular finger-99

prints as input. Finally, we describe an important application of DL for protein-ligand interaction100

prediction.101

Data102

In this section, we describe the three molecular data sets used to exemplify the different architec-103

tures to solve diverse prediction tasks.104

QuantumMachines 9 (QM9) Data Set105

QM9 is a public data set that consists of 130k small, organicmoleculeswith up to 9heavy atoms (Ra-106

makrishnan et al., 2014). Eachmolecule is annotated with various geometric, energetic, electronic,107

and thermodynamic properties. QM9 is part of MoleculeNet (Wu et al., 2018), a widely adopted108

property prediction benchmark in the molecular machine learning community, e.g., see (Schütt109

et al., 2017; Gilmer et al., 2017; Gasteiger et al., 2020). PyTorch Geometric (Fey and Lenssen, 2019)110

provides pre-implemented classes and methods for working with the QM9 data set in a molecular111

ML setting.112
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Figure 2. DL-talktorials: The newly contributed talktorials cover molecular representations for machinelearning (T033), corresponding deep learning architectures for processing them (T034-36), and more involvedtopics such as concrete applications (T037) and uncertainty analysis (T038).

ChEMBL EGFR Subset113

In the uncertainty estimation talktorial, we make use of activity data available for the EGFR kinase114

from ChEMBL (Gaulton et al., 2017). Protein kinases play a central role inmany stages of a cell’s life115

cycle. Dysfunctional signaling of EGFR kinase, e.g., has been associated with cancer progression116

(Chen et al., 2016). The activity data we use is extracted from the public ChEMBL database (Gaulton117

et al., 2017), version 25. Only IC50 data from binding assays (assay_type="B") and exact measure-118

ments (standard_type="=") were kept. The data set contains ~3900 compounds with activities from119

binding assays available as IC50 values.120

Kinase Inhibitor BioActivity Data Set121

The Kinase Inhibitor BioActivity (KiBA) data set has been assembled from diverse published kinase122

profiling data sets to provide a large benchmark set for kinase drug-target activity. It is a collection123

of 467 kinases, 52, 498 ligands, and 246, 088 KiBA scores thereof. The KiBA scores are computed124

to combine data acquired through different bioactivity experiments and measurements such as125

IC50, K(i), and K(d) (Tang et al., 2014).126

For the protein-ligand interaction talktorial (see Section Protein-Ligand Interaction Prediction),127

we selected a subset of KiBA in order to speed up the training process, reduce memory consump-128

tion, and make it trainable on average CPUs in a reasonable time. This is done in two steps: First,129

all ligands measured against less than 200 kinases are discarded. Second, from the remaining130

data points, all kinases with data available for less than 10 ligands are removed. Furthermore, a131

pipeline was provided to scrape the matching PDB structure per kinase starting from UniProt IDs132

(Consortium, 2022) and enforcing some structure quality filters. This resulted in 76 kinases, 275133

ligands, and 20, 475 KiBA scores thereof.134
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Table 1. Summary of the topics covered in the TeachOpenCADD-DL edition.
Topic Description Mol. input
Molecular representations Introduction to molecules and their representa-

tions
All below

Recurrent neural networks
(RNNs)

RNNs andGated Recurrent Unit (GRU) formolec-
ular property prediction

SMILES
Graph neural networks
(GNNs)

Convolutional and isomorphism GNNs for
molecular property prediction

Graph
E(3)-invariant graph neural
networks (EGNNs)

EGNNs compared to standard GNNs for molec-
ular property prediction

Point clouds
Uncertainty estimation Methods for model uncertainty estimation Fingerprints
Protein-ligand interaction
prediction

Applying GNNs to predict protein-ligand interac-
tions

SMILES & PDB

Talktorials135

In this section, we describe the six novel topics covered in the TeachOpenCADD-DL edition (see136

Table 1). Note that all talktorials serve as teaching or starting examples, thus, the architectures137

were intentionally kept simple and no parameters are tuned to optimize prediction performance.138

Molecular Representations139

Molecules are intricate, dynamic, three-dimensional (3D) entities composed of atoms, interacting140

with each forming covalent as well as non-covalent bonds. It is essential to represent molecules141

in a computer-readable form that corresponds to the information processed through a neural142

network. In this talktorial, we cover popular molecular representations and discuss their unique143

implications and (dis-)advantages. This will provide the foundation for subsequent talktorials.144

Representing molecules as graphs allows for an intuitive and comprehensive representation of145

their structure. In a graph-based representation, atoms are represented as (labeled) nodes, and146

bonds are represented as (labeled) edges. However, to represent a graph, we need node ordering.147

This node ordering, while necessary, is arbitrary, and ideally, a DL predictor should yield the same148

output regardless of the node order chosen. GNNs address this issue by inherently ensuring this149

so-called permutation invariance by design (Atz et al., 2021).150

Molecular fingerprints are fixed-length, permutation-invariant representations of the molecular151

graphs. Unlike GNNs, which learn task-specific representations, molecular fingerprints are task-152

independent. They can be generated based on the occurrences of specific sub-graphs (i.e., molec-153

ular fragments or atom environments) (Rogers and Hahn, 2010). Generally, it is not feasible to154

reverse-engineer a fingerprint back to the original molecular graph. Due to their fixed length, fin-155

gerprints are compatible with machine learning methods that require a constant input size, such156

as Multi-Layer Perceptrons (MLPs).157

Text-based representations (like SMILES (Weininger, 1988), SELFIES(Krenn et al., 2020), or InChI158

(Grisoni, 2023)) traverse the molecular graph and convert it into a sequence of characters. How-159

ever, ambiguity can occur due to the possibility of multiple strings mapping to the same molecule,160

depending on the order of traversal. To reduce ambiguity, canonical SMILES can be used, although161

what counts as canonicalized SMILES string is not standardized and may differ based on the soft-162

ware package in use. A text-based molecular representation is well-suited for machine learning163

(ML) models capable of handling sequences with varying lengths. Specifically, they have been suc-164

cessfully used as input to language models (Wang et al., 2019; Chithrananda et al., 2020).165

Point cloud representations annotate atoms with their 3D coordinates, corresponding to a sin-166

gle conformation. Amolecular conformation (conformer) is a specific spatial arrangement of atoms167

within a molecule, reflecting a single energetically favorable configuration of its 3D structure. Like168
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in GNNs, this necessitates a special type of invariance for DL methods that take point clouds as169

input. Our specific goal is to attain invariance to Euclidean space transformations (e.g., the output170

of the neural networkmodel should remain unchangedwhen the entiremolecule is rotated). Point171

cloud representations are especially advantageous, as they encompassmore comprehensive infor-172

mation. In particular, they capture the relative atomic positions, which reflect the collective effect173

of all forces acting within a molecule, beyond just covalent bonds (Atz et al., 2021).174

In our talktorial, we discuss the different molecular representations in more detail and demon-175

strate how to generate and utilize them in Python.176

Recurrent Neural Networks177

In recent years, DL-based natural language processing (NLP) has made significant progress, with178

RNNs and transformers among the most successful models. These models proved to be good at179

capturing text semantics and, when applied tomolecular data, can capture themolecular structure180

in its textual representation. As a result, NLP models have become a powerful tool in numerous181

drug discovery applications, including de novo drug design (Gupta et al., 2018), virtual screening182

(Karimi et al., 2019), and molecular property prediction (Bjerrum, 2017).183

RNNs were originally developed to handle sequential data (Elman, 1990). These models can184

process variable-length sequences of inputs and propagate the information through the sequence185

using their internal state. In this talktorial, we focus on applying RNNs to SMILES strings. We briefly186

cover the usual preprocessing steps that transform SMILES into numerical form and discuss two187

RNN architectures in detail, starting with the Elman network, also known as a simple RNN (Elman,188

1990). This architecture is suitable for demonstrating the basic principles of RNNs, but in practice, it189

struggles with learning long-term dependencies in the data. This problem is addressed in themore190

advanced Gated Recurrent Unit (GRU) (Cho et al., 2014) architecture. GRU selectively updates its191

internal state using gatingmechanisms, allowing themodel to learn to identify and retain themost192

important information while discarding irrelevant information.193

We implement RNN- and GRU-based regression models and apply them to molecular property194

prediction using the QM9 data set. As a regression task, we have chosen to predict the dipole195

moment 𝜇, which is a measure of a molecule’s polarity. Our results show that the GRU model196

learns faster and achieves better performance than the simple RNN model.197

Graph Neural Networks198

The most natural representation for molecules are graphs spanned by their atoms and bonds.199

Thus, one intuitive way to apply DL techniques to molecular data is using GNNs. GNNs are widely200

used in drug discovery, for example for property prediction (Wu et al., 2018; Wieder et al., 2020)201

and de novo drug design (Xia et al., 2019; Tong et al., 2021).202

Instead of the fully connected layers commonly used in standard neural networks, GNNs have203

message-passing layers, that collect information about the neighboring nodes in the graph (Kipf204

and Welling, 2016). For each node in the graph, all the information from the neighbors is gathered205

and aggregated using an aggregation function such as the sum. One important property of a GNN206

is the permutation invariance. This means that changing the arbitrary order of nodes in the graph207

should not have an effect on the outcome. On the other hand, GNNs should ideally also be able to208

distinguish between similar graphs.209

In our talktorial, we present two commonly used GNN architectures in more detail: one of the210

simplest GNNs, namely the graph convolutional neural network (GCN (Kipf and Welling, 2016)),211

and a more powerful GNN called the graph isomorphism network (GIN (Xu et al., 2018)). GINs212

are better at distinguishing similar, non-identical graphs compared to GCNs, which often leads to213

better performance. We demonstrate how to implement GNNs and how to train them using the214

QM9data set (see SectionQuantumMachines 9 (QM9) Data Set) to predict one quantum-mechanic215

property of small molecules. We predict the same molecular property as in the previous talktorial216

(see Section Recurrent Neural Networks).217
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E(3)-invariant Graph Neural Network218

Reasoning about molecular properties is often easier when 3D information (e.g. in the form of con-219

formations) is available. Some tasks may also strictly require the use of molecular representations220

that include 3D information. Examples of this are binding pose predictions of ligand-protein com-221

plexes (Corso et al., 2022) or force predictions for molecular dynamics simulations (Doerr et al.,222

2021). It is widely accepted that GNNs which process molecules based on their point cloud repre-223

sentation (see SectionMolecular Representations) should satisfy certain invariance or equivariance224

properties with respect to global Euclidean transformations such as translations or rotations.225

The Euclidean group that corresponds to these transformations in three dimensions is denoted226

by E(3). E(3)-invariance implies that the output of a GNN is unaffected by rotations or translations227

of its input point cloud. For example, when predicting binding affinity based on the structure of228

a ligand-protein complex, this prediction should remain unchanged if the entire complex is trans-229

lated or rotated. E(3)-equivariance implies that rotating or translating the GNN’s input should in-230

duce an equivalent transformation of its output. For example, when predicting the binding pose of231

a ligand-based on a given protein structure, rotating the latter should give rise to an equivalently232

rotated pose prediction.233

This talktorial discusses these concepts inmore detail in the theory part. It demonstrates how to234

implement E(3)-invariant graph neural networks for property prediction based on the point cloud235

representation of the molecules included in the QM9 data set. The practical part concludes by236

training and evaluating such a model in comparison to a plain GNN. The application shows that237

the theoretical advantages mentioned above also lead to better results in practice.238

Uncertainty Estimation239

Often researchers pay a lot of attention to the overall accuracy of their predictions. However, when240

implementing any predictive method in practice, it is equally important to understand the level of241

confidence in a given estimation. The uncertainty can stem from both the experiments themselves242

(epistemic) and/or the predictivemodel (aleatoric). In the former case, the uncertainty of themodel243

arises typically due to a lack of training data while the latter case refers to inherent randomness244

such as measurement noise (Der Kiureghian and Ditlevsen, 2009). Thus, it would be beneficial to245

obtain not only a point estimate of the prediction but also an indication of how certain we can246

be about that estimate. The certainty is often modeled by replacing the point estimate with a247

distributional estimate (Gawlikowski et al., 2021). For example, instead of a number as a prediction248

of an IC50 value, one obtains a distribution of the predicted values.249

In this talktorial, we showcase uncertainty estimation on a practical example. We start our250

demonstration by creating a simple model ensemble. This means we train the same model multi-251

ple times with a varying random seed. At test time, we evaluate all models and use the mean as a252

predictor. The variance across the ensemble serves as a variance estimate for that prediction. We253

discuss the calibration of this estimator, which – as is typical – under-estimates the actual variance.254

In the second step, we improve our ensemble by not only varying the random seed during255

training but also the data itself. This variation is achieved by bootstrapping the training data. This256

helps to more accurately estimate uncertainty.257

Finally, we showcase test time data augmentation as an alternative to the modification of our258

predictive model. In this technique, we create variants for each query point in our test set. The259

variants are created by applying random flips to a fingerprint datum. This way, we get an ensemble260

of predictions out of a single model, without the need to modify the model itself.261

Protein-Ligand Interaction Prediction262

Protein-ligand interaction prediction is an important field in drug development, e.g. to screen for263

novel drug candidates. Classical methods to predict drug-target interactions are based on docking264

(de Azevedo Jr et al., 2003; M Bernhardt Levin et al., 2017), biological networks (AY et al., 2007;265

Chen et al., 2012), and many more (Zhao et al., 2022). More recently, models use DL encoders266
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such as MLPs, i.e. CNNs and GNNs, to compute latent space representations, also called embed-267

dings, of biochemical molecules (Öztürk et al., 2018;Nguyen et al., 2021). While in classical docking268

methods, the complex structure is generated and then scored, in these works the two interaction269

partners are treated separately. The embeddings are combined for each pair of potentially inter-270

acting molecules, usually concatenated, and then fed into an MLP to predict the output variable.271

The variable can either be a proxy value for binding affinity or a classification value separating272

binding and non-binding pairs of protein and ligand.273

The goal of this talktorial is to introduce the reader to the field of protein-ligand interaction274

prediction using GNNs for proteins and ligands independently. In contrast to previous works in275

which the protein was encoded as sequence and a CNN was used for the embedding, (Öztürk276

et al., 2018; Nguyen et al., 2021), GNNs are used for both, proteins and ligands. Ligands are rep-277

resented as graphs constructed from the SMILES string. Representing proteins is more complex278

and done using Residue Interaction Networks (RINs) (Doncheva et al., 2011). These are graphs279

where nodes represent amino acids and edges represent covalent and non-covalent interactions280

between amino acids. To compute those, RINminer (Keller et al., 2020) can be used or a distance281

threshold between amino acids in the three-dimensional space as a surrogate of such. The talk-282

torial exemplifies this task of predicting interactions between proteins and ligands using the KiBA283

subset (see Section Kinase Inhibitor BioActivity Data Set) and shows that predicting interaction on284

the KiBA dataset is possible with little effort and simple GNNs.285

Prerequisites and technical information286

Target audience287

The talktorials were developed to support researchers who are interested in the topics and are288

new to the field. The covered scope is intended to further bridge the fields of CADD and DL. The289

talktorials are recommended for biologists, medicinal chemists as well as computer scientists; and290

should enable the user to apply the techniques in their own work. Since the talktorials form an291

extension to the TeachOpenCADDplatform, they serve as teachingmaterial in the field of structural292

bio- and cheminformatics.293

Background knowledge294

The tutorials aremeant to be an introduction to DL and its application to the field of drug discovery.295

In each talktorial, we first present the theoretical background for the biological and chemical ba-296

sics as well as the computer science fundamentals. Secondly, we provide thoroughly documented297

Python code to illustrate the application of DL. However, some proficiency in Python and Jupyter298

would be helpful.299

Software requirements300

All talktorials are written in Python and make use of well-known open-source packages such as301

Pandas (McKinney, 2011), NumPy (Harris et al., 2020), Matplotlib (Hunter, 2007), SciPy (Virtanen302

et al., 2020), RDKit (Landrum, 2006). The novel DL talktorials make heavy use of PyTorch (Paszke303

et al., 2019) and PyTorch Geometric (Fey and Lenssen, 2019). The user only needs to install the304

teachopencadd conda-forge package, which will install all relevant packages and save a copy of305

all TeachOpenCADD notebooks on the user’s local machine. A read-only mode of the talktorials is306

accessible via the TeachOpenCADD website at projects.volkamerlab.org/teachopencadd/.307

Structure of the talktorials308

The talktorials serve a teaching purpose and are structured as follows: Each Jupyter notebook is309

split into two parts. We first explain the underlying theory of each topic. We explain the problem310

setting, give relevant references, and list possible applications. The second part is focusing on the311

actual implementation in Python. We explain and document each step in the code. We want to312

make it easy to follow and give the user the chance to extend this to different applications in the313

field.314
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Conclusion315

This study provides an insightful introduction to DL important for and applied to molecular predic-316

tion tasks. We presented six talktorials covering topics such as commonly used representations of317

molecules and proteins, graph and recurrent neural networks, uncertainty measures, and protein-318

ligand interaction predictions. Through these talktorials, users can gain a better understanding of319

DL and its potential applications in drug discovery. We believe that these methods can be used as320

a starting point and can be adapted for different molecular data sets andmore complex questions.321
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