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Abstract

Biodiversity loss is taking place at accelerated rates
globally, and a business-as-usual trajectory will
lead to missing internationally established conser-
vation goals. Biosphere reserves are sites designed
to be of global significance in terms of both the
biodiversity within them and their potential for
sustainable development, and are therefore ideal
places for the development of local solutions to
global challenges. While the protection of biodi-
versity is a primary goal of biosphere reserves, ad-
equate information on the state and trends of bio-
diversity remains a critical gap for adaptive man-
agement in biosphere reserves. Passive acous-
tic monitoring (PAM) is an increasingly popular
method for continued, reproducible, scalable, and
cost-effective monitoring of animal wildlife. PAM
adoption is on the rise, but its data management and
analysis requirements pose a barrier for adoption
for most agencies tasked with monitoring biodiver-
sity. As an interdisciplinary team of machine learn-
ing scientists and ecologists experienced with PAM
and working at biosphere reserves in marine and

terrestrial ecosystems on three different continents,
we report on the co-development of interactive ma-
chine learning tools for semi-automated assessment
of animal wildlife.

1 Introduction
Biodiversity loss is increasing rapidly, and the importance of
its conservation is expressed in the United Nations (UN) Sus-
tainable Development Goals (SDGs) 14 (Life Below Water)
and 15 (Life On Land). The UN Conference of the Parties
to the Convention on Biological Diversity (CBD) has set a
biodiversity conservation framework with goals and targets
for the current decade [CBD, 2022], and experts estimate
that meeting those targets will require transformative change
[IPBES, 2019].

Established by UNESCO’s Man and the Biosphere pro-
gramme, biosphere reserves are ideal sites for testing new ap-
proaches to understanding and managing biodiversity [UN-
ESCO, 2019]. As biosphere reserves include terrestrial and
marine ecosystems, they allow for the development of local
solutions to global challenges. Biosphere reserves are com-
posed of core protected areas surrounded by zones of various
degrees of human development, and most have established



networks linking researchers and land managers (both inside
and outside of protected areas). The core protected areas pro-
vide habitats that buffer many species against extinction while
also providing essential ecosystem services to humans [Wat-
son et al., 2014]. As indicated by the goal set by CBD of pro-
tecting 30% of all terrestrial, inland water, marine and coastal
ecosystems [CBD, 2022], protected areas are globally recog-
nised as essential for conservation. The surrounding zones of
a biosphere reserve are meant for economic activities based
on sound ecological practices, fostering socio-culturally and
ecologically sustainable economic development [UNESCO,
2019].

While the protection of biodiversity is a primary goal of
biosphere reserves, adequate information on the state and
trends of biodiversity remains a critical gap for adaptive man-
agement of biosphere reserves and global biodiversity assess-
ments. Adaptive management is a learning-based approach to
planning and managing natural resource systems. It is based
on a perception that managed ecosystems are complex, dy-
namic systems with a large degree of unpredictability [Gun-
derson, 2008]. As such, they generate compelling AI chal-
lenges, and research in interactive machine learning can make
important contributions to help address them. However, to
harness the potential of this research, it is crucial to establish
proper data generation and management processes.

Biodiversity is a broad concept, encompassing multiple di-
mensions of diversity (from genes to ecosystems) and is both
conceptually difficult and expensive to measure and monitor.
In the present proposal, we define the scope at the species
and ecosystem level monitoring of animal wildlife. Tradi-
tional methods of animal wildlife monitoring rely on special-
ists being physically present on the monitored locations (e.g.,
[Plumptre, 2000]). More recently, passive acoustic monitor-
ing (PAM)—the use of audio recording devices to capture
sounds and vocalisations in the environment in a minimally
invasive manner—has emerged as an alternative for continu-
ous, reproducible, scalable, and cost-effective monitoring of
animal wildlife [Sugai et al., 2019]. While PAM has been
widely used for research over the past decade, it has yet to
be adopted by managers of protected areas or agencies tasked
with long-term monitoring of biodiversity at national or re-
gional scales. The amount of data produced by PAM is large
enough to demand automation, raising data management and
analysis requirements that pose a barrier for adoption.

As an interdisciplinary team of machine learning scien-
tists and ecologists experienced with PAM and working at
biosphere reserves in marine and terrestrial ecosystems on
three different continents, we are co-developing interactive
machine learning tools for analysis of PAM datasets. In
section 2, we provide a brief overview of the existing tools
for PAM data analysis, and introduce the methods being co-
developed by our teams. In section 3 we describe the con-
text in which these tools will be deployed to support adaptive
management of biosphere reserves. In section 4, we discuss
the impact and relevance of our project in light of the UN
SDGs.

Figure 1: Proof-of-concept interactive interface for scikit-maad.
The prototype will include other important functionalities from
the scikit-maad library such as spectrogram segmentation and
event clustering. (Available at the time of publication at https:
//gitlab-1137-main-3r37sitkfa-lz.a.run.app/)

2 Methods
The emergence of PAM raises new challenges to the ecology
community, and to biosphere reserve management in particu-
lar. Information extraction is often done manually with soft-
ware such as Audacity1 or Label-Studio2: domain experts lis-
ten to each audio file, annotating events by selecting time seg-
ments on a graphical representation of the sound (e.g., ampli-
tude envelope or spectrogram) with point-click-drag actions.
This approach is laborious and incompatible with continued,
wide coverage monitoring due to the large volume of data
generated by PAM.

Several solutions for efficient analysis of PAM datasets
have been proposed. DetEdit is a machine learning-free tool
that allows simultaneous detection of bouts of events through
a configurable signal processing pipeline that includes a
GUI for accepting/rejecting detections [Solsona-Berga et al.,
2020]; it runs on a proprietary platform, and has only been
evaluated on odontocete echolocation click datasets. scikit-
maad is a tool for large scale PAM data analysis by spectro-
gram segmentation and clustering [Ulloa et al., 2021]; as a
command line tool, it lacks interactivity (but see section 2.1).
Another set of solutions consists of fully automated detection
software (e.g., [Gillespie et al., 2009; Heinicke et al., 2015;
Kahl et al., 2021]). A related alternative consists of train-

1https://www.audacityteam.org/
2https://labelstud.io/

https://gitlab-1137-main-3r37sitkfa-lz.a.run.app/
https://gitlab-1137-main-3r37sitkfa-lz.a.run.app/
https://www.audacityteam.org/
https://labelstud.io/


Figure 2: A toy example of graphical data programming. Visual inspection of latent dimensions of a linear autoencoder reveals inter-
pretable features. (top) A dialog between astronauts aboard Apollo 13 and Houston base. Colours distinguish between speakers. (mid-
dle) Spectrogram of the dialog recording. (bottom) First two principal components of the spectrogram (preceded by temporal smooth-
ing). Hand-set thresholds isolate event occurrences (PC1: voice vs background; PC2: selective for Houston voices). Data source:
https://en.wikipedia.org/wiki/File:Apollo13-wehaveaproblem.ogg.

ing custom supervised machine learning methods, including
deep learning models (e.g., [Stowell, 2022]). This approach
requires expertise in designing the models, and is often lim-
ited by the lack of annotated datasets for training. Fully auto-
mated solutions are often non-interpretable and community-
specific, with geographically restricted demonstrated valid-
ity (often tailored to ecosystems located in the global North.)
Furthermore, while automated detection can in principle de-
liver high productivity gains, these gains are often offset by
the independent verification efforts required to develop trust
in them, as well as performing the adjustments they require
when applied to previously unseen datasets (e.g., in a geo-
graphical location not represented in the training set). For
these reasons among others, experts who are responsible for
important decisions are often hesitant to rely solely on hands-
off methods [Rudin, 2019], and intermediate levels of au-
tomation may be more desirable [Parasuraman et al., 2000;
Van Zoelen et al., 2023].

Interactivity can help alleviate these problems by shorten-
ing the cycle of verification (developing trust) and fine tuning
(feeding expert knowledge back into the model) [Amershi et
al., 2014; Tusfiqur et al., 2022]. While acknowledging the
importance of machine learning research driven by develop-
ing novel algorithms evaluated based on their accuracy on an-
notated benchmark datasets, the research field of interactive
machine learning emphasises improving the effectiveness of
machine learning tools that are designed and utilised by do-
main experts in their areas of expertise, where qualities such
as interpretability may be more crucial [Simard et al., 2017;
Hartmann et al., 2022].

In the present project we set out to co-develop a set of inter-
active machine learning tools for facilitating analysis of PAM
datasets by designing intelligent user interfaces (IUIs) that

integrate interpretable machine learning models with interac-
tive interfaces [Zacharias et al., 2018]. We start by proposing
a template for raising the impact of existing tools by mak-
ing them interactive (section 2.1). Next, we propose methods
for data annotation by hand-designing interpretable features
(section 2.2), or by harnessing explainable methods to extract
strong labels from existing weakly annotated collections (sec-
tion 2.3). Finally, we propose forms of interacting with deep
neural networks in their own inner space (section 2.4).

2.1 Serving Existing Tools Interactively
While the acquisition, handling and storing of audio data can
be very cost-effective, relying on human labor to annotating
audio data is very inefficient. Some tasks of the data anno-
tation process can be automated, which relieves the work-
load of human annotators. For these use cases, the Python
package scikit-maad has been proposed, which implements
functionality to automate audio data annotation [Ulloa et al.,
2021]. scikit-maad requires its users to write applications in
the Python programming language, which create static plots
of the audio data annotation steps. scikit-maad aims to pro-
vide a low-code environment for these use cases. To enable
users without any programming knowledge to participate in
the audio annotation workflow, we will implement a no-code
interactive user interface for automation-assisted audio anno-
tation based on scikit-maad [Ulloa et al., 2021] and Plotly
Dash3. Our proof-of-concept of such a scikit-maad applica-
tion replaces the static matplotlib plots with Plotly plots, han-
dles their integration using React.js and serves an interactive
web application using flask, as can be seen in figure 1. This
web service has been containerised as a Docker image and
deployed using Google Cloud Run. Note that by using web

3https://plotly.com/dash/

https://en.wikipedia.org/wiki/File:Apollo13-wehaveaproblem.ogg
https://plotly.com/dash/


Figure 3: Spectrogram representation of a sample from an ani-
mal sound collection. The target species is black-naped oriole bird
(Oriolus chinensis). The first 5 and the last 30 seconds of the record-
ings consist of human speech, while many different co-occurring
species are heard in the background. The zoomed-in region high-
lights the target vocalisations, and the highlighted patch illustrates
a distinctive feature learned by local prototype models. (Recording
kindly provided by Fonoteca Neotropical Jacques Vielliard).

technologies, the delivery process from our web server in the
cloud to the web browser of the user is as trivial as opening
a link and loading the website. Once they loaded the web-
site, the users of our proof-of-concept application can select
an audio file from a list of predefined files. The system will
then plot a simple spectrogram of the audio data contained in
the selected file. The user can then zoom and pan the spec-
trogram interactively using plotly’s interaction mechanisms.

The tool mentioned above exemplifies a broader objective
within the proposed research project: to promote evidence-
based biodiversity management by delivering state-of-the-art
machine learning solutions to domain experts in a timely and
user-centric manner in the form of interactive web applica-
tions.

2.2 Graphical Data Programming
Data programming is a data annotation approach based on de-
signing a set of heuristic labelling functions, each of which
may have low accuracy but wide coverage. Compared to
manual annotation of individual event occurrences, this ap-
proach promises higher efficiency [Ratner et al., 2016].

We have proposed a graphical implementation of data pro-
gramming for PAM data based on exposing feature design
primitives on a graphical user interface (GUI) [Gouvêa et
al., 2022a; Gouvêa et al., 2022b]. Experimenting with these
primitives is facilitated by incremental and reversible actions
that provide immediate feedback. When an informative fea-
ture is identified (i.e. one whose activation is indicative of
occurrence of an event of interest), data can be efficiently
annotated by setting a threshold on that feature’s activation
level. Figure 2 illustrates this principle using a toy model and
dataset.

2.3 Semi-Supervised Learning With Local
Prototype Networks

Existing animal sound collections such as UNICAMP’s
Fonoteca Neotropical Jacques Vielliard (FNJV)4 or Cor-

4https://www2.ib.unicamp.br/fnjv/

(a) Before re-training (b) After re-training

Figure 4: Actionable visualisation of PAM data in latent space
of a deep neural network. State-space representation of the fine-
tuned model before and after annotating one file and re-training the
deep generative model (50 epochs). The gain for annotation is vis-
ible in the upper left corner, where retraining increases the distance
between non-events (circled group of points) and events (outliers),
making it easier for the user to distinguish between points that are
non-events and points that are events.

nell University’s Macaulay Library5 constitute valuable re-
sources. However, leveraging these collections to provide the
annotated data for training supervised machine learning al-
gorithms poses technical challenges as these datasets are of-
ten weakly annotated (i.e., they are labelled at the file level,
rather than identifying time segments containing the calls of
the species of interest); furthermore, they often contain mul-
tiple signals alongside the target one, such as human speech
and other co-occurring species (figure 3).

To address this challenge, we plan to extract the relevant
signals by repurposing explainable machine learning meth-
ods based on learning local patterns (prototypes) that are
representative of the classes of interest [Biehl et al., 2016;
Chen et al., 2019; Brendel and Bethge, 2019]. For an initial
evaluation, we trained a compact model inspired on ProtoP-
Net [Chen et al., 2019] on the MNIST dataset, achieving a
validation accuracy of 95.9 %. The next step will be to pre-
process the data from the FNJV collection by transforming
them into spectrograms, feed them to our neural prototype
model and visualise the learned prototypes that lead to the
predictions. In line with our human-in-the-loop approach, an
interactive interface will facilitate triage of learned prototypes
by a human expert.

By learning local patches, either in input- [Brendel and
Bethge, 2019] or latent space [Chen et al., 2019], we ex-
pect to be able to extract the species-identifying calls from
the multi-signal files that make up the collections, generating
strong (timestamp level) annotations from weakly (file level)
annotated data, thus rendering these datasets amenable to su-
pervised learning methods.

2.4 Interactive Representation Learning
In all tools listed above, the user interacts with the system
in input space, i.e., by operating on visual representations of
the sound. However, interaction with deep learning models

5https://www.macaulaylibrary.org



is also possible in latent space, at the level where the ‘rea-
soning’ of the model (its internal representations, transforma-
tions, and learning process) takes place. We are developing
tools that explore this potential through interactive represen-
tation learning.

Representation learning refers to a set of machine learn-
ing techniques to automatically discover and construct mean-
ingful features from raw, high-dimensional data. The objec-
tive is to learn a compressed and abstract representation of
the data that captures the underlying structure and relation-
ships present in the input [Bengio et al., 2013]. There are
different approaches to representation learning, including un-
supervised, semi-supervised, and supervised methods. Un-
supervised techniques learn representations without explicit
labels or supervision (e.g., variational autoencoders (VAEs)
[Kingma and Welling, 2013]). Semi-supervised methods
leverage a small amount of labelled data along with un-
labelled data to improve the learned representations (e.g.,
[Kingma et al., 2014; Siddharth et al., 2017]). Supervised
methods, on the other hand, utilise labelled data to learn rep-
resentations that are directly optimised for a specific task. In
the situations represented in this proposal, where annotations
are scarce or unavailable, unsupervised and semi-supervised
methods become particularly relevant and applicable.

Our goal is to investigate effective strategies for utilising
these techniques to generate annotations through interactive
graphics. We have previously used compact learned repre-
sentations to facilitate data annotation with an IUI. In [Prange
and Sonntag, 2021], activations of the hidden layers of a con-
volutional neural network (CNN) trained on an image clas-
sification task were projected down to a 3D space with un-
supervised methods. This representation was then rendered
in virtual reality where the user could use hand gestures to
annotate the data. The annotations were used to fine tune
the CNN, leading to a new 3D visualisation in an iterative
workflow. In the current project, we propose to extend that
tool by leveraging semi-supervised methods to jointly learn a
compact representation that captures both the structure of the
input data and the user-added annotations [Kath et al., 2023a;
Kath et al., 2023a; Kath et al., 2023b; Kath et al., 2023c].

In [Kath et al., 2023b], we present a tool that offers three
ways to annotate PAM audio files. First, it allows experts
to draw bounding boxes directly on the spectrogram, as is
common practice in the field. Second, the user can request
suggestions for bounding boxes from a semi-supervised deep
generative model fit to the data [Kath et al., 2023a]. Lastly,
the user can interact directly with the latent space of the semi-
supervised model by lasso-selecting one or more points in the
state-space representation, where each point represents one
short time segment of the audio file. This creates a corre-
sponding table of all selected times around which the user
can create bounding boxes using a button. After creating new
annotations, the user can re-train the deep generative model
to increase the prediction accuracy of the proposed bound-
ing boxes and the margin between events and non-events in
the state-space representation, as shown in figure 4. We con-
ducted preliminary evaluations of bounding box prediction
and usability of state-space representations using a synthetic
dataset, resulting in a fine-tuned model with a bounding box

Figure 5: Location of the biosphere reserves and protected ar-
eas. Data acquisition is either ongoing (green) or planned (orange).
(Credit: NatGeo Mapmaker)

prediction accuracy of 79.9 % and an F-score of 94.2 % (for
more information refer to [Kath et al., 2023b]).

3 Implementation Plan
In the previous section, we described the interactive machine
learning tools that are being developed for efficient annota-
tion of PAM datasets. Next, we describe the context in which
these tools will be deployed, and how they will support adap-
tive management in biosphere reserves. We also provide a
timeline of the proposed activities and expected outputs in
figure 6.

3.1 Data Acquisition
We aim to establish demonstration sites for PAM-based mon-
itoring of biodiversity in both protected areas and adjacent
land uses, in marine and terrestrial ecosystems in 3 biosphere
reserves on 3 continents (figure 5).

Active PAM data acquisition is currently ongoing at
Espinhaço Mountain Range, Brazil (EMR-BR) and Fernando
de Noronha, Brazil (FDN-BR)6. Drawing from this experi-
ence and following engagement with relevant managers of
protected areas and landowners at different sites, we aim to
establish multiyear PAM programs in Berlengas Biosphere
Reserve, Portugal (BER-PT), Kruger-to-Canyons Biosphere
Reserve, South Africa (K2C-SA), Vhembe Biosphere Re-
serve, South Africa (VHE-SA), and Algoa Bay, South Africa
(ALB-SA). Acoustic sampling will be carried in terrestrial
ecosystems at EMR-BR, K2C-SA, and VHE-SA, while ma-
rine recorders will be set up in the coastal areas of BER-
PT and ALB-SA. Long-term research projects are already in
place at all these sites, with direct involvement of at least one
team member on this proposal. Networks to landowners and
managers, and permission to access the sites are well estab-
lished.

6Fernando de Noronha, Brazil (FDN-BR) is a designated pro-
tected area recognised by UNESCO as a World Natural Heritage
site.

https://mapmaker.nationalgeographic.org


The data from these acoustic recorders will be used to de-
velop optimal sampling designs for long-term monitoring of
biodiversity in a variety of ecosystems. In addition, all data
produced will be processed, archived, and disseminated in ac-
cordance with the FAIR principles [Wilkinson et al., 2016]
(see data management plan on section 3.5).

3.2 Tool Development
The overall goal for the tools described in section 2 is to ex-
tract variables of interest, as defined in the ecology lexicon,
from raw acoustic data. For that purpose, tool development
is being carried in line with principles of co-development
[Woodall et al., 2021], with domain experts as an integral part
of the AI project and getting involved from an early stage in
development.

Our team holds regular meetings that help guide initial de-
sign choices, and frequent feedback is decisive for priori-
tising tools, and adjusting for the needs of the domain ex-
pert in charge of biosphere reserve management. Of rele-
vance for tool development is the fact that the concept of
biodiversity encompasses multiple dimensions (from genes to
ecosystems). Even after setting our scope to animal wildlife
suitable for acoustic monitoring, observations of interest still
span a range of abstraction levels—from syllables, to calls, to
species, to communities, to soundscapes—thus posing chal-
lenges to the task of mapping from acoustic events to eco-
logical phenomena. The latter, however, have been helpfully
organised by the ecology community into a taxonomy of es-
sential biodiversity variables (EBVs) [Pereira et al., 2013;
Jetz et al., 2019]. By working together, we have identified
the need for tools that are agnostic about the EBV level of
abstraction: they should allow ecologists and biosphere re-
serve managers to set the level of granularity as required by
the specific questions arising in the context of their adaptive
management practice (see section 3.3 for a concrete exam-
ple).

The tools described in section 2 are currently at early stages
of development. We expect to have functional prototypes of
all of them within the next months, and to have concluded
the first user studies around first quarter of 2024 (see project
timeline in figure 6). All software and source code will be
made available on DFKI’s public GitHub page7.

3.3 Data Analysis
Adaptive management of biosphere reserves comprises the
practice of performing integrative assessments and develop-
ing hypotheses to be evaluated through management actions.
A necessary early step is to establish standardised methods
for monitoring over large temporal and spatial scales.

Once PAM data acquisition is established in a given studied
biosphere reserve, the tools described in section 2 will be used
to characterise trends and dynamics of animal biodiversity, as
well as to assess the impact of management decisions in an
evidence-based manner.

As a concrete example, a new pest control initiative was
carried at one of the sites that are part of this project. PAM
data has been acquired before and after the eradication of the

7https://github.com/DFKI-Interactive-Machine-Learning
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DATA ACQUISITION
EMR-BR
FDN-BR
BER-PT
VHE-SA
K2C-SA
ALB-SA

TOOL DEVELOPMENT
Tool prototype creation

User studies
DATA ANALYSIS

w/ ML partners
Autonomously

DISSEMINATION OF RESULTS
FAIR datasets

Code and software
Promote adoption

Figure 6: Project timeline.

invasive species. Our tools will help assessing the effective-
ness and impact of the program (e.g., change in composition
of the communities). Another example is the lack of data in
face of the occurrence of unpredictable disturbances such as
wildfires. Although it is known that altered fire regimes have
an important impact on biodiversity, managers of protected
areas rarely have access to standardised data from before and
after a wildfire to properly assess its impacts. A continuous
monitoring program will provide data on the impacts of this
unpredictable event, as well as other disturbances of natu-
ral and anthropogenic causes. Other specific questions will
arise at each recording site as the data comes in—each with
its own focus on, e.g., occurrence and abundance of species
of conservation concern, or impact of different management
actions. We expect to report on specific questions in the near
future. Importantly, these reports will at first be in the form
of joint studies involving the machine learning and domain
(ecologists and biosphere reserve managers) expert partners.
In the long run, we aim at domain experts developing full au-
tonomy in using the tools to carry out the analyses required
to address adaptive management questions that arise in their
practice (figure 6).

3.4 Dissemination of Results
Besides making software, source code, and data publicly
available, results from our work will be disseminated in other
significant ways. We will engage with managers of pro-
tected areas and national and international agencies mandated
to monitor biodiversity, at both the establishment and output
phases of the project, to better understand barriers to the use
of PAM-based biodiversity monitoring, and promote transna-
tional adoption.

The Brazilian national biodiversity conservation agency
(ICMBio) has implemented MONITORA, one of the largest
biodiversity monitoring programmes in the world. With the
main goal of measuring the effectiveness of protected areas to
conserve biodiversity, the programme executes data sampling
in various, extremely diverse ecosystems. Within the MONI-
TORA program, the acoustic monitoring efforts are being led
by one of our team members. The results of our project are

https://github.com/DFKI-Interactive-Machine-Learning


going to inform decisions by ICMBio about extending PAM
into some of the most diverse protected areas on the planet.
Similar dissemination will take place in the other countries
involved.

In South Africa, we will engage with the following stake-
holders that are relevant in this regard: 1) The South
African National Biodiversity Institute (SANBI), a govern-
ment agency mandated to monitor and study changes in bio-
diversity at a national level); 2) the Oceans and Coast division
of the national government Department of Forestry, Fisheries
and Environment; 3) the Scientific Services department of
SANParks (the South African authority responsible for man-
aging all the national parks of South Africa); 4) the scientific
division of MTPA (the state / provincial agency responsible
for management of the BRCNR reserve. To encourage the
use of the PAM protocol at a broader African scale, outside
of South Africa, the Head of Science Support for Africa Parks
will also be included in all engagements (Africa Parks is an
NGO responsible for managing 22 national parks throughout
Africa).

In Portugal, BER-PT already has a co-management plan
running between private stakeholders (e.g., from fishing and
tourism industries), academia, NGOs (e.g., birdwatchers so-
ciety), and public authorities, and we will contribute to raising
awareness about the ecological dynamics and resource man-
agement strategies in the biosphere reserve. The Polytechnic
Institute of Leiria (IPL), represented in our team, has good
ties with the public administration. The association of IPL
with Smart Ocean Peniche (SOP), a business incubator, will
provide a fruitful ecosystem for potential commercial routes
for disseminating and scaling the methods developed in this
project.

3.5 Data Management Plan
The proposed research project poses a series of challenges to
the hardware and software infrastructure. Because the partic-
ipants are distributed across multiple institutions, time zones
and continents, close collaboration at a distance is paramount.
Because the project participants are experts in a diverse set of
domains, interdisciplinary work needs to be fostered. We will
address these challenges by using tools and platforms that are
universal and agnostic on every level. For example, our data
set will be stored on Google Cloud storage, making it acces-
sible globally without requiring any organization account. In
addition, datasets will be indexed and published through the
Global Biodiversity Information Facility (GBIF) in line with
FAIR principles [Wilkinson et al., 2016]. Source code and ac-
companying configuration will be stored on public repository,
which is also a neutral third party to all the participants. This
will avoid the development of information silos, as all partici-
pants get access on equal terms. Most of our software projects
will be written in Python, as it has become the de-facto stan-
dard language of data science. This will lower the barrier of
entry for collaboration on code artefacts. We will test our
software projects using tox, which ensures setting up test en-
vironments repeatably. This will enable every researcher to
run and debug any software of the whole research project lo-
cally. The accompanying documentation will be hosted on
the third-party hosting service readthedocs.org. This will en-

sure maximum accessibility of any information necessary for
working with the code and dataset artefacts. We will aim to
also document our code by means of code itself and to that
end include the examples to our code base in our test suites.
Example applications are by the virtue of their graphicness
more readable to novice users of a software package than the
more abstract parts of the test suite.

4 Discussion
As a team of machine learning scientists, ecologists, and
managers experienced with PAM and working at marine and
terrestrial ecosystems in biosphere reserves in three different
continents, we are co-developing interactive machine learn-
ing tools for PAM with the purpose to facilitate adaptive,
evidence-based management of biosphere reserves and pro-
tected areas.

Protected areas are globally recognised as essential for
conservation [CBD, 2022], and biodiversity management re-
quires enhanced knowledge management. The widespread
adoption of standardised PAM-based biodiversity monitoring
in different ecosystem types would be a significant step for-
ward for evidence-based management of biodiversity both in-
side and outside protected areas, with positive implications
for SDGs 14 (life below water) and 15 (life on land).

Traditionally, each ecosystem type (forest, grassland,
desert, freshwater, marine, etc.) has its own sampling method
to generate information on biodiversity states and trends. To
the best of our knowledge, there are no global initiatives on
biodiversity monitoring that cover ecosystems as diverse as
the ones covered in our project—namely forests, grasslands
and marine ecosystems. In addition, the proposed transna-
tional co-development of PAM-based biodiversity monitor-
ing protocols and analysis tools is well in line with SDG 17
(Partnerships for the goals) and Target 20 of the Kunming-
Montreal Biodiversity Framework, namely to “[s]trengthen
capacity-building and development, access to and transfer
of technology, [. . . ] including through South-South, North-
South and triangular cooperation, to meet the needs for effec-
tive implementation [. . . ] commensurate with the ambition of
the goals and targets of the framework.” [CBD, 2022].

We are exploring different routes for designing interac-
tive machine learning tools based on interpretable models—
from a graphical user interface for design of interpretable
features, to learning of interpretable prototypes, to action-
able visualisations of the latent space of semi-supervised
deep generative models—and we are developing a deploy-
able, cloud-compatible data management and analysis infras-
tructure to serve tools—both developed in house and pub-
lished by others—as user facing web applications. In con-
trast with the common machine learning practice of extract-
ing expert knowledge by generating labels for model training
with the goal of fully automating inference, our methods keep
the user/domain expert in the loop to inspect and validate ev-
ery sample while optimising for efficiency. This choice for a
lower level of automation [Parasuraman et al., 2000] seeks to
implement a pattern of collaboration between domain experts
and AI that harnesses the power of machine learning while
privileging human judgment [Van Zoelen et al., 2023].
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