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Abstract—Modelling biological pathway plays an important
role in understanding different processes for decision making,
especially in forensic investigations on doping activities in sports.
Recently, the issue of sample swapping has arisen as a potential
fraudulent behaviour by athletes to avoid a positive doping test
result. The current detection models neglect an important factor,
i.e., leveraging the steroid metabolism pathway of the human
body. The spatial relationships between different metabolites
within the steroid metabolism pathways are important and
cannot be merely treated as linear correlations when assessing
similarities among the samples obtained from athletes. To address
this challenge, we propose the GRAMP model based on graph
representation learning to incorporate domain knowledge into
the model decision for the detection of sample swapping. Our
model takes into account the spatial structural dependencies of
different metabolites using a graph attention mechanism and
generates high-level embeddings to detect fraudulent behaviour.
We evaluate our approach through extensive experiments on real-
world datasets and find that our proposed model outperforms
existing state-of-the-art models for fraud detection tasks in sports,
demonstrating the effectiveness of our approach and its potential
impact on decision making.

Index Terms—Metabolism Pathways, Graph Attention Net-
work, Fraud Detection, Sample Swapping, Doping, Sports

I. INTRODUCTION

Modelling biological pathways is an essential aspect of
bioinformatics and biochemical research. Biological pathways
represent a series of interconnected molecular events that
occur within a cell to carry out specific functions, such as
signal transduction, metabolism, and gene regulation [19].
Understanding these pathways can provide insights into the
underlying mechanisms of various cellular processes and aid

in the discovery of novel therapeutic targets. There are several
approaches to modelling biological pathways, ranging from
qualitative to quantitative methods [12], [15], [30]. However,
these methods have challenges like parameter estimation,
model complexity, dynamic behaviour, etc. Therefore, using
these methods for modelling biological pathways leads to
inaccurate predictions and limited applicability.

Many forensic investigations primarily focus on analysing
these biological pathways to identify the fraudulent behaviour
of the individual, especially doping activities in sports [4].
Recent investigation at the 2014 Olympics Games in Sochi
discovered a new form of fraudulent behaviour by athletes.
Athletes were found attempting to replace their doping sam-
ples with clean samples obtained from other individuals to
avoid positive test results, known as ’sample swapping’ [17].
This fraudulent activity poses a substantial challenge in the
forensic investigations of the World Anti-Doping Organisation
(WADA) and other organisations.

WADA maintains a longitudinal profile for every athlete,
which includes a record of all the samples collected from
that athlete so far for the purpose of doping tests. Identi-
fying sample swapping in sports events can be a difficult
task, and the conventional method involves conducting DNA
analysis on all samples [16], which is costly and time-
consuming. Furthermore, the majority of instances involving
sample swapping remain undetectable. Alternative methods,
such as monitoring each sample and comparing it to the
athlete’s reference range to detect abnormally high values are
available [22], [25], [32]. In addition, machine learning has
attracted considerable attention for detecting doping activities.



[24], [32] Nevertheless, these approaches neglect an important
factor, i.e., steroid metabolism pathways [29]. In other words,
the spatial relationship of different metabolites in the steroid
metabolism pathways of the athlete is essential to consider
these dependencies when comparing similarities within an
athlete’s longitudinal profile. Therefore, there is a need for a
better method that incorporates the information about domain
knowledge into the model decision making.

Over the past decade, several new scenarios from sciences
or everyday life have benefited from formulating a relationship
between entities as a graph. Therefore, graph networks have
become increasingly popular in modelling complex systems
due to their ability to capture intricate relationships [34].
They can be used to model complex real-world networks
like biological pathways, where vertices represent biological
entities, and edges indicate underlying connectivity [11]. Em-
ploying graph networks to model domain knowledge facilitates
comprehensive coverage of essential properties and theories in
the field. Additionally, it helps to comprehend the semantics
in pathways, such as the functionalities among data and the
species associated with the data. Therefore, in this paper, we
propose the following research questions:

• RQ1: What is the potential impact of leveraging and
integrating domain knowledge of the steroid metabolism
pathway into the machine learning model for improving
decision making?

• RQ2: How can graph representation learning be effec-
tively employed for modelling the steroid metabolism
pathway?

To answer these questions, we propose a method to incor-
porate the spatial relationships between different metabolites
and leverage their intricate connections into the model. By
doing so, we aim to enhance the understanding and predictive
capabilities of machine learning models for better decision
making. The key contributions of this work are summarised
as follows:

• We present a novel GRAph-based modelling for
Metabolism Pathway (GRAMP model), which is capa-
ble of integrating the domain knowledge of biological
pathways into a machine model. It is comprised of an
attention mechanism that captures the direct relationships
between different metabolites in the metabolism pathway
to improve decision making.

• Unlike previous solutions, we propose a method that
leverages the spatial and temporal relationship of steroid
metabolism to achieve a more informative representation.
To the best of our knowledge, this is the first time that a
fraud detection problem in sports has been addressed by
considering metabolism pathways.

• We focused on a particular fraud detection problem in
sports, i.e., sample swapping. Our method is extensively
evaluated on a real-world dataset collected by anti-doping
organisations and laboratories. The experimental results
show the efficacy of our proposed model, which could
detect more fraud athletes with relatively high specificity

compared with state-of-the-art baseline models.

II. RELATED WORK

In this section, we discuss the related research work and the
state-of-the-art methods in the following categories:

A. Graph Representation Learning

Graph representation learning (GRL) [40] automates the
discovery of meaningful vector representations for nodes,
edges, or entire graphs to facilitate downstream graph mining
applications. There are three main groups of GRL methods:
(1) network embedding models [7], [9], [21], which preserve
the proximities among contextual nodes to capture graph
structure information; (2) graph neural networks (GNNs) [14],
[35], [39], which aggregate neighbour feature information to
learn node embeddings; and (3) knowledge graph embed-
ding methods [3], [6], [31], which model the acceptabil-
ity score of each fact triplet to learn node and edge (i.e.,
entity and relation) embeddings by constructing the graph
as a collection of fact triplets. The GRL backbone is most
commonly built using GNNs, which are currently the state-
of-the-art in GRL. Recent advancements in GNNs, such as
Graph Convolutional Networks (GCNs) [14], Graph Attention
Networks (GATs) [35], and GraphSAGE [10], have further
improved their expressive power and scalability. GATs incor-
porate an attention mechanism to calculate the weights of node
neighbourhoods during the aggregation of feature information.
By considering the correlations between different samples, it
effectively captures the interdependencies and relationships
within the data. GraphSAGE is a semi-supervised model that
learns node embeddings by sampling neighbouring nodes and
aggregating their features using functions like mean or max
pooling.

B. Fraudulent Detection in Sports

Anti-doping organisations have long struggled to fight
against fraudulent activities in sports, such as doping. Re-
cently, the use of machine learning techniques for detecting
such activities has gathered significant attention. For exam-
ple, [32] proposed a Bayesian approach that detects abnormal
values in longitudinal profiles based on the reference popu-
lation. Other studies, including [13], [24], [27], [37], have
used various machine learning algorithms to detect anomalous
samples in the profile. However, these studies fail to address
the issue of sample swapping. Current detection methods for
sample swapping involve laboratory-based methods such as
gas chromatography-mass spectrometry and DNA-STR analy-
sis [22], [33].

Although [25] proposed a visualisation model for detecting
fraudulent behaviour in athletes, this approach neglects the
metabolism pathways of different steroid parameters that can
be useful in detecting fraudulent activities. In this paper, we
propose a novel approach for detecting fraudulent activities in
sports, i.e., sample swapping using graph representation learn-
ing that incorporates the domain knowledge of metabolism
pathways into ML-based decision making. This approach



can assist anti-doping organisations for detecting fraudulent
activities in sports.

III. PRELIMINARIES

A. Problem Statement

In this paper, we address the problem of the need for a
method capable of modelling the knowledge about biological
pathways to detect fraudulent behaviour in sports, especially
sample swapping by athletes. Specifically, the study aims to
develop an approach that incorporates structural information
about human steroid metabolism into the decision-making of
machine learning models.

B. Sample

WADA and other anti-doping organisations across the world
conduct doping tests throughout the year at various national
and international athletic events, which results in large-scale
historical blood and urine data for each athlete. A urine sample
collected from a given athlete for performing a doping test can
be denoted as xi = {f1, f2, · · · , fk} ∈ Rk, where k represents
the total number of parameters. Each sample contains a set
of parameters that reflect the concentration levels of various
steroid metabolites in the human metabolism, as listed in Table
I.

TABLE I
COMPREHENSIVE LIST OF METABOLISM PARAMETERS PRESENTS IN EACH
SAMPLE, ALONG WITH THEIR CORRESPONDING MOLECULAR FORMULAS,

REPRESENTING EACH PARAMETER’S CHEMICAL COMPOSITION.

Parameter Description Molecular Formula

T Testosterone C19H28O2

E Epitestosterone C19H28O2

Etio Etiocholanolone C19H30O2

A Androsterone C19H30O2

5αAdiol 5α-androstane-3α, 17β-diol C19H32O2

5βAdiol 5β-androstane-3α, 17β-diol C19H32O2

Fig. 1. Simplified human steroid metabolism pathway based on measured
urinary steroids, illustrating the intricate interplay of metabolites involved in
the synthesis and breakdown of steroid hormones.

C. Longitudinal Profile

The athlete’s longitudinal profile s is defined as a sequence
of samples collected over time and is represented by X(p) =
{x1, x2, · · · , xn} ∈ Rn×k, where n is the total number of
samples collected. The longitudinal profile is unique to each
athlete and helps to track the steroid metabolites and their
levels over time in athletes’ biological samples, such as urine
(or blood). Longitudinal profiling provides a comprehensive
understanding of an athlete’s steroid metabolism patterns and
can be used as a tool for anti-doping agencies to the monitoring
of changes in steroid profiles and the detection of potential
doping practices or irregularities in athletes’ hormone levels.

D. Fraudulent Behaviour

In this study, we focus on one of the major fraudulent
behaviour, i.e., sample swapping, where an athlete exchanges
their contaminated sample with a clean sample from another
individual. This results in a discrepancy between the sample
under consideration, xT , and the rest of the samples in
the athlete’s longitudinal profile. Therefore, this problem can
be well formulated as a graph classification problem where
each graph represents an athlete’s longitudinal profile. The
goal is to classify whether the given graph is suspicious of
sample swapping or not. In addition, the prevalence of sample
swapping in the real-world situation is very less compared
to the clean athletic population. Therefore, this task can be
formulated as fraud detection problem.

E. Steroid Metabolism

Steroid metabolism refers to the processes involved in
the synthesis, transportation, and breakdown of steroids in
the body. Steroids are lipids that are essential for a vari-
ety of physiological processes, including the regulation of
metabolism [29]. Steroid hormones, such as Testosterone and
estrogen, are synthesised in the gonads and adrenal glands
and transported through the bloodstream to target tissues.
Epitestosterone is a steroid that is structurally similar to
Testosterone but is considered inactive. It is produced in small
amounts in the body and is primarily used as a marker for
detecting the use of performance-enhancing drugs, such as
Testosterone. Etiocholanolone and Androsterone are mainly
produced in the adrenal glands and are only partly derived
from the liver. 5αAdiol and 5βAdiol are assumed to be
direct metabolites of Testosterone and are, therefore, good
markers, while Etiocholanolone and Androsterone represent
the end-products of androgen metabolism, and their urinary
concentrations are therefore definitely elevated after exogenous
Testosterone administrations. Fig. 1 represents a (strongly)
simplified pathway which was chosen based on the urinary
steroids measured. The real metabolism is much more compli-
cated, involving a multitude of additional enzymatic reactions,
intermediate metabolites, and regulatory mechanisms.

Steroid metabolism plays a significant role in athletic doping
because it involves the use, detection, and potential abuse of
anabolic-androgenic steroids (AAS) by athletes to enhance



Fig. 2. GRAMP model: Embedding the steroid metabolism pathway into a graph structure by representing metabolites as nodes and capturing their interactions
through edges.

their performance [2]. Anabolic steroids are synthetic deriva-
tives of testosterone, a naturally occurring hormone in the
body. They are known to promote muscle growth, increase
strength and endurance, and improve recovery time. In the
context of doping, athletes may misuse steroids in various
ways, such as:

• Performance-Enhancing Substance: Anabolic steroids are
used to enhance athletic performance by increasing mus-
cle mass, strength, and power. This can provide athletes
with a competitive edge over their opponents [2].

• Fat Reduction: Steroids can promote the breakdown of fat
and increase the metabolic rate, leading to reduced body
fat percentages. This can be advantageous for athletes
participating in sports where weight categories are a
factor.

• Increased Red Blood Cell Production: Administration of
Testosterone can stimulate the production of red blood
cells. This can improve oxygen-carrying capacity and
endurance performance [28].

The significance of steroid metabolism in athlete doping
lies in the detection and prevention of illicit usage. Anti-
doping organisations, such as WADA, employ various methods
to identify the presence of steroids or their metabolites in
athletes’ samples. These methods include urine and blood
tests, which can detect the misuse of steroids even if they
have been administered in different forms or masked through

metabolism.

IV. GRAMP MODEL

We propose a GRAph-based modelling for Metabolism
Pathway (GRAMP model) that incorporates the domain
knowledge for the identification of sample swapping in sports.
Our model consists of two main steps: 1) Embedding Steroid
Metabolism into Graph Structure and 2) Model Architecture
for Graph Classification.

A. Embedding Steroid Metabolism into Graph Structure:

In this step, we aim to transform the steroid metabolism
pathway into a graph structure, as shown in 2. To embed
the steroid metabolism pathway into a graph structure, we
consider each metabolite (such as testosterone, epitestosterone,
androsterone) as individual nodes in the graph. The edges
between these nodes represent the connections and interactions
between metabolites and reactions. For example, an edge
might represent the conversion of testosterone to androsterone
catalysed by a specific enzyme. By representing the pathway
as a graph, we can capture the spatial relationships and
dependencies between metabolites, allowing us to uncover im-
portant patterns and interactions within the steroid metabolism
process.

1) Graph Construction: A graph G = (V,E) with directed
edges consists of nodes V = {v1, v2, · · · , vm} and edges
E ⊆ V × V , where ei,j ∈ E represents an edge from node



Fig. 3. GRAMP model: Model architecture for the graph classification incorporating GAT layers followed by a ReLU activation function and dropout
regularisation. The model concludes with a fully connected layer and a sigmoid activation function for classification into anomalous and normal longitudinal
profiles.

j to node i. Each node vi ∈ V is assumed to have an initial
representation hl

i ∈ RF , where F is the number of features in
each node representation of lth layer. The neighbours of node
vi are defined as N(i) = j ∈ V |ei,j ∈ E.

We construct one graph for each longitudinal profile of the
athlete p:

V (p) =

nn

s=1

V (p,s) = {V (p,1) ∥ V (p,2) ∥ · · · ∥ V (p,n)} (1)

E(p) =

nn

i=1

nn

j=1

E
(p)
i,j ⊆ V (p) × V (p) (2)

where n denotes the total number of samples in the longi-
tudinal profile, and ∥ represents the concatenation symbol.

Each sample can be represented as:

V (p,s) = {v(p,s)0 , v
(p,s)
1 , v

(p,s)
2 , ..., v

(p,s)
k } ∈ R (3)

E
(p)
i,j ⊆ V (p,s) × V (p,s) (4)

where v
(p,s)
0 represents the master node for each sample and

v
(p,s)
1 to v

(p,s)
k nodes represent each metabolites.

2) Master Node: We define a master node for every sample
in the longitudinal profile of the athlete. These master nodes
are interconnected in a homogeneous graph representation.
Considering that all metabolites originate from a common
parent compound, we define the master node as the cumulative
representation of all metabolites within a given sample.

v
(p,s)
0 =

k∑
i=1

v
(p,s)
i (5)

where k represents the total number of steroid parameters, p
represents the athlete and s denotes the sample number within
the longitudinal profile.

B. Model Architecture for Graph Classification:

Once we have transformed the steroid metabolism pathway
into a graph structure, we need a suitable model architecture
for graph classification. The goal is to effectively utilise the



learned graph representations to classify whether the graph
representing the longitudinal profile of the athlete is normal
or anomalous. If there is an anomalous case, it means at least
one sample is manipulated and swapped with a clean sample
from another individual.

The GCN assigns equal importance to all neighbouring
nodes, which may not be suitable for this graph classification
task as certain nodes or metabolites could contain more
important information than others. Hence, the Graph Attention
Network (GAT) model architecture proves to be an optimal
choice, which incorporates attention mechanisms to focus on
important nodes and edges within the graph during the learning
process. It assigns different attention weights to neighbouring
nodes based on their relevance to the current node, enabling
the model to effectively aggregate and learn from the graph’s
structural information. By applying the GAT model to our
graph representation of the steroid metabolism pathway, we
can effectively capture the relevant features and interactions
between metabolites.

The GAT model is trained using labelled data, optimising
the attention weights and model parameters to achieve high-
performance graph classification on the steroid metabolism
pathway data. Fig. 3 and Fig. 4 show the detailed model archi-
tecture of the GRAMP model, including the graph attention
mechanism acting on different nodes of a graph structure.

1) Graph Attention Layer: The graph attention layer takes
a collection of node features as input, denoted as hi =
{h1, h2, ..., hm}, where m is the total number of nodes,
and F is the number of features associated with each node
representation. In our case, since we represent each node
with a single metabolism parameter, we have F = 1 and
hi ∈ R. The layer then generates a set of node features,
h′
i = {h′

1, h
′
2, ..., h

′
m}, where h′

i ∈ R′.
We perform self-attention on the nodes, i.e., a shared

attentional mechanism that computes attention coefficients:

aij = aT [Whi||Whj ] (6)

where W ∈ R1×1 is learnable shared weight matrix applied
to each node. The attention coefficient, aT indicates the
importance of the node j’s value to node i. The model allows
every node to attend to every other node. We inject the graph
structure discussed in the previous section into the mechanism.
In the next step, a non-linear activation function is added.

eij = LeakyReLU(aij) (7)

To make coefficients easily comparable across different
nodes, we normalise them across all choices of j using the
softmax function:

αij = softmax(eij) =
exp(eij)∑

q∈Ni
exp(eiq)

(8)

where αij represents the pairwise attention coefficients of
each metabolites in the metabolism structure.

Fig. 4. Detailed architecture of each layer in the GRAMP model showing
the input and output dimensions.

2) Loss Function: For the graph classification task of
distinguishing anomalous and normal longitudinal profiles,
we employed the binary cross-entropy (BCE) loss function.
This loss function is defined as the negative logarithm of a
categorical likelihood, which is parameterised by the softmax
output. Let p represent the output of softmax layer for a given
graph, and y denote the true label of the graph. Then, the BCE
loss can be mathematically expressed as follows:

L(y, p) = −
C∑
i=1

yi log pi (9)

where C ∈ {anomalous, normal}.

V. EXPERIMENTS

A. Datasets

The dataset represents the longitudinal profile of real-world
male and female athletes [25]. It consists of 1432 longitudinal
profiles corresponding to 7545 samples where each athlete
could have between 3-20 samples in their profile. We randomly
partitioned the dataset such that 80% of the data was used for
training and 20% for testing the algorithm. Table II shows the
summary of the number of samples belonging to male and
female athletes. Each sample consists of a set of biomarkers
called steroid metabolism parameters that show significant
changes in the administration of steroids, as listed in Table
I. Fig. 5 shows the data distribution of the number of samples
in the longitudinal profile per athlete for male and female
athletes. We observe that the majority of the longitudinal
profiles are from young or new athletes, i.e., with only 3-4
samples.

B. Baseline Models

We selected a set of baseline models that serve as a
performance benchmark for comparing our proposed GRAMP
model. These baselines consist of both non-graph and graph-
based models that do not incorporate domain knowledge



TABLE II
THE TABLE PROVIDES A COMPREHENSIVE OVERVIEW OF THE DATA

STATISTICS USED FOR TRAINING AND TESTING THE PROPOSED MODEL.

Male Female

Profile Sample Profile Sample

Training 846 4349 301 1594

Testing 211 1121 74 481

Total 1057 5470 375 2075

Fig. 5. Distribution of Samples in longitudinal profile per athlete for male
and female athletes in training and testing datasets.

into the model training. This performance comparison will
help us to explore the potential impact of leveraging the
steroid metabolism pathway into the decision making using
the GRAMP model. These baseline models were trained and
optimised using the training dataset.

• Bayesian Method (SoTA) [32]: use to determine the
personalised threshold for each steroid parameter which
is used to compare the new samples. These thresholds
are calculated from the prior distribution based on the
reference population.

• Random Forest (RF) [23]: uses multiple decision trees
and combines their output for classification problems,
achieving high accuracy and interpretability.

• eXtreme Gradient Boosting - XGBoost (XGB) [5]: uses
an optimized distributed gradient boosting algorithm to
achieve high performance on structured data.

• Graph Convolutional Network (GCN) [14]: can learn
representations of nodes in a graph, where each node
represents a sample in the longitudinal profile.

• Graph Isomorphism Network (GIN) [38]: can learn node
embeddings by aggregating local and global substructure
information of graphs, where each node represents a
sample.

• Graph Attention Network (GAT) [35]: uses attention
mechanisms to learn node embeddings in graphs, achiev-
ing state-of-the-art performance in a variety of graph-
based tasks, where each node represents a sample.

Table III shows the values of the different hyperparameters
selected to train all the baselines and GRAMP model. These
values are selected after performing the optimisation step.

TABLE III
THE TABLE PRESENTS THE HYPERPARAMETER VALUES OF ALL THE

BASELINES AND THE PROPOSED GRAMP MODEL AFTER PERFORMING
MODEL OPTIMISATION.

Model Parameter value

Random Forest (RF) n estimators = 100

criterion = gini

min samples split = 2

bootstrap = True

XGBoost (XGB) objective = binary logistic

learning rate = 0.1

max depth = 7

n estimators = 200

Graph Convolutional Network (GCN) n GNN layers = 1 (1 hop)

n linear layers = 2

n LayerNorm = 1

n Epochs per fold = 25

Dropout = 0.25

Graph Isomorphism Network (GIN) n GNN layers = 1 (1 hop)

n linear layers = 2

n LayerNorm = 1

n Epochs per fold = 25

Dropout = 0.25

Graph Attention Network (GAT) n GNN layers = 1 (1 hop)

n linear layers = 2

n LayerNorm = 1

n Epochs per fold = 25

Dropout = 0.25

Our Method (GRAMP) n GAT layers = 4 (4 hops)

n linear layers = 2

n LayerNorm = 1

n Epochs per fold = 75

Dropout = 0.25

optimiser = Adam

C. Implementation

Given that we have framed our fraud detection problem
as a supervised graph classification task, it is essential to
have a labeled dataset that includes samples for each class,
specifically normal and anomalous profiles. We performed a
random selection on the dataset, choosing 50% of the profiles.
In each selected profile, we manually replaced one sample with
a sample from a different profile. These modified profiles were
labelled as anomalous profiles (labelled as ’1’). The remaining
50% of the profiles were considered normal profiles (labelled
as ’0’). To ensure consistency, we normalised each profile to
the unit norm separately.

All the models are implemented based on the SCIKIT-
LEARN [20], XGBOOST [5], and PYTORCH-GEOMETRIC [8]
packages. One significant challenge during model training was



overfitting, which limits the model’s generalisation capability.
Since we have a small training dataset, addressing overfitting
became a critical concern in our analysis. Therefore, we
performed the k-fold cross-validation method [26] to train our
models, with k set to 5. Each fold was used as a validation set,
while the remaining folds were collectively employed as the
training dataset, and the overall performance was determined
by computing the mean performance across all the folded
models.

Each model comprises a set of hyperparameters that can
be adjusted to improve the training process. Consequently,
conducting a coarse grid search is necessary to determine
the optimal combination of these hyperparameters. We used a
hyperparameter optimisation framework to efficiently explore
a substantial grid space while promptly eliminating unpromis-
ing trials and implemented this framework using OPTUNA
package [1]. The optimised trained model is deployed on the
testing set, enabling predictions for previously unseen profiles.
Finally, the model’s performance was evaluated by calculat-
ing various evaluation metrics, facilitating a comprehensive
assessment of its efficacy.

D. Performance Metrics

The performance evaluation of each model was conducted
using accuracy, sensitivity, specificity, and area under the
ROC curve (AUC). Sensitivity indicates the percentage of
accurately identified anomalous longitudinal profiles, while
specificity measures the percentage of accurately identified
normal longitudinal profiles.

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP

where TP and TN denote the number of longitudinal
profiles classified correctly by the model as anomalous and
normal, respectively, while FN and FP denote the number
of misclassified anomalous and normal longitudinal profiles,
respectively.

VI. RESULTS

We compared the performance of our proposed GRAMP
model with all the baseline models for detecting fraudulent
behaviour, i.e., sample swapping on both male and female
datasets, as presented in Table IV and Table V respectively.
The uncertainties are calculated using a 5-fold cross-validation
approach. Among the baselines, SoTA and XGB demonstrated
better performance, highlighting the importance of bayesian
and boosting models for fraud detection. Despite an accuracy
of over 60%, GIN was not able to successfully detect any
anomalous profiles (sensitivity below 40%). In case of female
athletes, a similar trend can also be seen where SoTA and
XGB showed better performance among baselines. Graph
models (GCN, GIN, GAT) show high specificity values but
less accuracy compared to other baselines. This shows that the
homogenous graph structure, where each node representing the
sample is unable to leverage the metabolism pathways well.
Our proposed GRAMP model outperformed all baselines,

showing that adding domain knowledge by defining a graph
structure based on the metabolism pathway is effective. We
achieved sensitivity values over 80% and AUC values over
90% on both male and female athletes.

The ROC and PRC curves for all models evaluated on male
and female datasets are presented in Figure 6 and Figure 7,
respectively. As depicted, the proposed model outperforms
all the baseline models in both curves. The results for graph
models (GCN, GIN and GAT) are quite similar and better than
non-graph model RF, possibly because the fraud activity in
longitudinal profiles is too complex for a simple classification
model to handle. Of all the baselines, XGB is the most
competitive, likely because it generates a representation of
parameters through a boosting algorithm.

Fig. 6. Receiver Operating Characteristic (ROC) and Precision-Recall Curve
(PRC) plots show the performance of our proposed model with various
baseline models for male athletes. The ROC curve illustrates the trade-off
between the true positive rate and the false positive rate, while the PRC curve
showcases the precision-recall trade-off.

Fig. 7. Receiver Operating Characteristic (ROC) and Precision-Recall Curve
(PRC) plots show the performance of our proposed model with various
baseline models for female athletes.

We randomly took a longitudinal profile of both male and
female athletes from the testing dataset and computed the
pairwise attention coefficients for one of the samples. Fig. 8
shows the weighted contribution of the neighbourhood to each
node. We can observe that testosterone and epitestosterone
have the highest attention coefficient to the master node
compared to the other metabolism parameters, i.e., the model
gives more importance to the message passing between the
master node and testosterone and between the master node
and epitestosterone.

Since the data for male athletes are more sparse than for
female athletes in general, i.e., there is a high variation in
the concentration values of the metabolism parameters in
the male body than in females, we observe high attention



TABLE IV
COMPREHENSIVE PERFORMANCE COMPARISON OF THE PROPOSED MODEL ON MALE ATHLETES. THE MEAN AND STANDARD DEVIATION VALUES,

OBTAINED THROUGH CROSS-VALIDATION ON THE TRAINING SET, ARE REPORTED FOR ALL THE EVALUATION METRICS.

Metrics SoTA RF XGB GCN GIN GAT GRAMP

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

ACC - 0.76 0.65±0.01 0.66 0.73±0.01 0.74 0.68±0.02 0.69 0.62±0.04 0.67 0.66±0.08 0.72 0.89±0.04 0.91

SN - 0.73 0.65±0.02 0.68 0.76±0.02 0.77 0.36±0.04 0.38 0.21±0.08 0.35 0.35±0.20 0.55 0.86±0.02 0.86

SP - 0.82 0.64±0.02 0.65 0.71±0.02 0.70 0.99±0.01 1.00 1.00±0.00 1.00 0.96±0.04 0.90 0.93±0.07 0.97

AUC - - 0.65±0.01 0.73 0.73±0.01 0.81 0.67±0.05 0.79 0.83±0.04 0.89 0.75±0.08 0.83 0.91±0.04 0.92

TABLE V
COMPREHENSIVE PERFORMANCE COMPARISON OF THE PROPOSED MODEL ON FEMALE ATHLETES. THE MEAN AND STANDARD DEVIATION VALUES,

OBTAINED THROUGH CROSS-VALIDATION ON THE TRAINING SET, ARE REPORTED FOR ALL THE EVALUATION METRICS.

Metrics SoTA RF XGB GCN GIN GAT GRAMP

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

ACC - 0.71 0.64±0.01 0.63 0.76±0.03 0.73 0.68±0.05 0.68 0.56±0.05 0.60 0.52±0.03 0.53 0.70±0.06 0.88

SN - 0.38 0.66±0.03 0.67 0.79±0.03 0.78 0.35±0.08 0.37 0.08±0.06 0.21 0.08±0.04 0.11 0.60±0.17 0.82

SP - 0.85 0.62±0.02 0.60 0.72±0.04 0.67 1.00±0.00 1.00 1.00±0.00 1.00 1.00±0.00 0.97 0.82±0.14 0.95

AUC - - 0.64±0.01 0.68 0.76±0.03 0.81 0.76±0.06 0.76 0.72±0.07 0.74 0.61±0.06 0.70 0.82±0.11 0.95

Fig. 8. Pairwise attention coefficients for the randomly selected sample
from the longitudinal profile of male and female athletes from the testing
dataset. The attention coefficients highlight the significance and relevance of
information propagation between different metabolites within the GRAMP
model, shedding light on the specific interactions and dependencies of the
metabolism pathway.

coefficient values for the male athlete. In addition, we have
two cases of information propagation. First, when testosterone
is the source, and the master node is the destination, i.e., the
message is passing from testosterone to the master node, and
second, when the master node is the source and testosterone
is the destination. For the male athletes, we observe relatively
similar attention coefficient values in both cases suggesting
that the bidirectional message passing is significant, whereas,
in the case of females, we observe relatively high attention
coefficients for the latter case. Similar behaviour can also be
observed with epitestosterone.

Overall, the proposed GRAMP model consistently outper-
forms other state-of-the-art baseline models due to two factors.
Firstly, our model effectively captures the spatial behaviour
of longitudinal profiles through graph representation learning.
Unlike other graph models such as GCN, GIN, and GAT,

which treat longitudinal profiles as homogeneous graph struc-
tures, our model explicitly considers their spatial characteris-
tics. Secondly, our model incorporates an attention mechanism
that generates high-level embeddings, facilitating enhanced
pattern learning. Consequently, our model outperforms other
baselines, particularly at the initial stages of the curve, and
exhibits remarkable accuracy in detecting fraudulent longitu-
dinal profiles with high specificity, showcasing its promising
capabilities.

A. Ablation Studies

We performed ablation studies to study the effect of differ-
ent components in the GRAMP model, like the selection of
the master node and the number of graph layers/hops. First,
we tried different variations in the master node by selecting
different functions, i.e., SUM (nodes) (sum of values of all the
nodes), T/E (ratio between T and E), and Avg(nodes) (mean
of values of all the nodes). Fig. 9 shows the performance of the
model in all three variations on male and female athletes. Since
the master node represents the entire sample, it should contain
information about all the metabolism parameters. Therefore,
we observe that T/E shows the least performance for male
athletes because it only contains information about testos-
terone and epitestosterone. On the other hand, Avg(nodes)
shows the least performance for female athletes because the
concentration values of all the metabolism parameters have
different scales, especially for female athletes because of
data sparsity, so averaging all the values would not be a
feasible solution. Therefore, selecting the sum of all the values
of all the metabolism parameters outperforms the other two
variations for both male and female athletes.

Next, to understand the importance of the attention layer,
we varied the number of GAT layers in the model network.



Fig. 9. Performance of the GRAMP model with variation in the master node
for male and female athletes. This analysis provides insights into how different
configurations of the master node influence the detection and classification of
sample swapping, allowing for a comprehensive evaluation of the model’s
performance across testing dataset.

Fig. 10 shows the performance of the model for both male
and female athletes. We observe that the performance start
increasing as we keep adding the number of GAT layers until
a point after which it starts decreasing. We found 4 to be the
optimal number of layers for this problem, showing we need
at least four hops for complete message passing in the graph
network.

Fig. 10. Performance of the GRAMP method with respect to the number of
graph attention layers for male and female athletes. By varying the number of
GAT layers in the model, we analyse the impact on the overall performance
and effectiveness of the proposed model and find the optimal number of layers
required for this problem.

VII. CONCLUSION

The objective of this analysis is to address research ques-
tions regarding the potential impact of leveraging domain
knowledge in decision-making by machine learning models
and employing graph representation learning to model the
steroid metabolism pathway. Specifically, our investigation
focuses on assessing the benefits of integrating information
about metabolism pathways for enhancing anti-doping analysis
and improving the detection of sample swapping in sports.

In this paper, we propose the GRAMP model, which can be
helpful for the detection of fraudulent behaviour of athletes,
specifically sample swapping in sports using longitudinal pro-
files. Our proposed model considers the spatial behaviour of
the longitudinal profile and generates embedding maps using a
graph attention mechanism to capture the implicit relationship
among all the steroid parameters of the sample. Moreover,
by using single-node representation for each metabolite, we
showed how adding domain knowledge would be helpful in
improving decision making. This is the first work in which a
graph attention network has ever been employed to address

the fraudulent behaviour detection problem in sports. The
results indicate that our model outperforms other state-of-the-
art methods in terms of sensitivity and specificity.

Currently, WADA follows a standardised protocol to detect
sample swapping cases [36]. Firstly, all the athlete’s profiles
are analysed using the Adaptive model based on the Bayesian
method (SoTA). The athlete’s profiles flagged by the Adaptive
model then undergo laboratory testing, like DNA analysis.
The proposed graph-based method for incorporating domain
knowledge of the metabolism pathways can help the decision
makers to flag sample swapping cases 15% more accurately
than the Adaptive model. The graph-based method can help
the WADA experts to make decisions 17-25% more accurately
than the non-graph based model. This reduces the risk of
unnecessary laboratory testing by 10-15% (specificity), which
provides costs and time benefits. This demonstrate that our
model can effectively detect anomalous longitudinal profiles
and can help anti-doping authorities trigger fraudulent prac-
tices during sports events and make the sports clean.
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