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Abstract

Deep learning methods are well suited for data
analysis in several domains, but application is of-
ten limited by technical entry barriers and the avail-
ability of large annotated datasets. We present
an interactive machine learning tool for annotat-
ing passive acoustic monitoring datasets created for
wildlife monitoring, which are time-consuming and
costly to annotate manually. The tool, designed
as a web application, consists of an interactive
user interface implementing a human-in-the-loop
workflow. Class label annotations provided man-
ually as bounding boxes drawn over a spectrogram
are consumed by a deep generative model (DGM)
that learns a low-dimensional representation of the
input data, as well as the available class labels.
The learned low-dimensional representation is dis-
played as an interactive interface element, where
new bounding boxes can be efficiently generated
by the user with lasso-selection; alternatively, the
DGM can propose new, automatically generated
bounding boxes on demand. The user can accept,
edit, or reject annotations suggested by the model,
thus owning final judgement. Generated annota-
tions can be used to fine-tune the underlying model,
thus closing the loop. Investigations of the predic-
tion accuracy and first empirical experiments show
promising results on an artificial data set, laying the
ground for application to a real life scenario.

1 Introduction
Machine learning (ML) with deep neural networks has
achieved excellent performance in many tasks. Yet, the im-
pact of ML on several domains is limited by technical entry
barriers, as well as by lack of domain-specific annotated data
for supervised learning. Motivated by the quest to improve
efficiency of passive acoustic monitoring (PAM) of animal
biodiversity, we are developing a graphical interactive ML
tool for detection and annotation of events in PAM datasets.

PAM is an increasingly popular method for continuous, re-
producible, scalable, and cost-effective monitoring of animal
wildlife [Sugai et al., 2018]. While available low-cost record-

ing devices have allowed large-scale data collection [Hill et
al., 2019], processing this data is a bottleneck.

Due to the low quality of automatically generated anno-
tations for PAM datasets, annotation is usually done man-
ually: domain experts listen to each audio file, annotating
events by manually selecting time segments on a graphi-
cal representation of the sound (e.g. amplitude envelope or
spectrogram) [Audacity Team, 1999; Tkachenko et al., 2020;
Perry et al., 2021]. This approach is laborious and incompati-
ble with the large volume of data generated by PAM. Seadash
proposes a graphical implementation of data programming—
simultaneous whole-dataset annotation with a set of user-
defined heuristics [Ratner et al., 2016]—but hasn’t been eval-
uated on real life datasets [Gouvêa et al., 2022]. DetEdit is
a ML-free tool that allows simultaneous detection of bouts of
events through a configurable signal processing pipeline that
includes a GUI for accepting/rejecting detections; it runs on a
proprietary platform, and has only been evaluated on odonto-
cete echolocation click datasets [Solsona-Berga et al., 2020].
scikit-maad is a tool for large scale PAM data analysis by
spectrogram segmentation and clustering [Ulloa et al., 2021];
as a command line tool, it lacks interactivity.

We present an interactive ML-based tool for annotating
PAM datasets1. Implemented features are derived from audio
annotation tools and domain expert experience. Our approach
addresses three shortcomings of existing tools by allowing
multiple events to be annotated simultaneously, using addi-
tional annotations to continuously speed up the process rather
than following a linear annotation speed, and using clickable
labels rather than error-prone manual input. The underlying
deep generative model (DGM) [Rezende et al., 2014] im-
proves the machine predictions using the human-in-the-loop
concept [Monarch, 2021] and distorts the latent space to rep-
resent events as outliers. Interactive tools using the latent
space of ML systems can facilitate data interaction [Prange
and Sonntag, 2021]. While many datasets (e.g. Xeno-canto2)
are annotated weakly (i.e. on file level) and current tools cre-
ate strong (i.e. timestamp level) labels [Perry et al., 2021;
Grover et al., 2020], we use time- and frequency-aligned la-
bels visualised as bounding boxes, allowing noise reduction
and time-overlapping annotation (see figure 1, spectrogram).

1https://www.youtube.com/watch?v=VOfohkiWevU
2https://xeno-canto.org/

https://www.youtube.com/watch?v=VOfohkiWevU
https://xeno-canto.org/


Figure 1: Layout of the user interface: file selection bar (right), spectrogram interaction row (top left), state-space interaction row (bottom left)

2 System Description
User Interface. We designed a Dash3 interface composed
of three parts, namely the file selection bar, the spectrogram
interaction row and the state-space interaction row (see fig-
ure 1). The file selection bar allows the user to select an audio
file for annotation from a list. The spectrogram interaction
row displays annotation tools over and alongside the spectro-
gram of the selected file. Spectrograms are main elements of
current audio annotation tools and lend themselves to an intu-
itive presentation of raw data. Hovering over the spectrogram
reveals a toolbox that allows the user to zoom in and out, as
well as create and edit time and frequency aligned bound-
ing boxes to annotate regions of interest (ROIs). Selected
ROIs can be played as audio. A button below the spectro-
gram allows quick annotation by suggesting bounding boxes
and associated labels. Assigning, changing, and saving labels
is possible through selection elements displayed alongside the
spectrogram. More processed representations of the selected
audio file are shown in the state-space interaction row, with
each dot representing a colour-coded second in both figures.
The left figure shows representations of the pre-trained unsu-

3https://dash.plotly.com/

pervised learning model, the right figure the fine-tuned model
that also processes (generated) annotations. Hovering over
the figures reveals a toolbox that allows users to zoom in and
select data points, which are highlighted in the two figures
and used to create a table of associated times on the right. A
button below uses these times to create bounding boxes in the
spectrogram. Continuous fine-tuning of the model using all
(generated) annotations is possible by selecting a number of
epochs and the corresponding button. Another button resets
the model to the pre-trained state.

Workflow. Figure 2 shows the workflow of our system.
Starting from an incompletely annotated dataset, the user
loads the data used to train both models. The user selects a file
for annotation in the file selection bar, which is displayed as
a spectrogram and state-space representations of two differ-
ent models. The spectrogram contains existing annotations.
Adding annotations is done by one of three ways: The most
intuitive way for experts is to draw bounding boxes directly
on the spectrogram. Secondly, the user can retrieve a bound-
ing box predicted by the fine-tuned system. And thirdly, the
user can select one or more points in the state-space represen-
tation and create bounding boxes around the selected times.
Our fine-tuned model is designed to represent events as out-

https://dash.plotly.com/
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Figure 2: Workflow of the system: The unsupervised model (U) processes the entire dataset through unsupervised learning, the deep gener-
ative model (G) makes additional use of the existing annotations. After training, the dataset is processed by the models and used to create
spectrograms, state-space representations and predict events, all presented to the user via an interface. Using these information, the user can
annotate data, save the annotations and trigger re-training of the deep generative model.

liers, making it easy for the user to create accurate bounding
boxes around any time-aligned regions of interest. Regardless
of how the bounding boxes are created, the user can assign
labels to them and move, scale and delete them in the spec-
trogram. Saving intermediate or final results is possible via a
button and leads to an improvement of the dataset. This im-
provement can be used by selecting a number of epochs and
re-training the model, resulting in more accurate bounding
box suggestions as well as better separation in the state-space
representation. The improvement of our model enables faster
annotation of the next audio file.

Architecture of DGM. The requirements for the deep gen-
erative model include learning relevant data structures with-
out annotations, mapping these structures into a 2D latent
space, and a way to helpfully customise the latent space for
the user based on the added annotations. Our derived model
architecture is inspired by [Paige et al., 2017] and extends a
variational autoencoder (VAE) [Kingma and Welling, 2014]
with a classification head. The input data X is processed by
the encoder and mapped to the 2D-latent variable Z, which is
presented to the user as a state-space and represents the input
to the decoder and classifier. The decoder computes the re-
construction X̃ . The classifier is implemented as a multilayer
perceptron (MLP) and processes only annotated data by com-
puting predicted labels Ỹ from Z for all files with a label Y ,
grouping in Z data points of the same category. The VAE and
MLP are jointly optimized by minimizing the loss function

L = Lreconst(X, X̃) +DKL (qϕ(Z | X) || p(Z)) +H(Y, Ỹ ),

where the first two terms are as in [Kingma and Welling,
2014], and H is the cross entropy between Y and Ỹ . Efficient
storage of bounding boxes is implemented using tidy data ta-
bles [Wickham, 2014]. Data pre-processing includes the cal-
culation of the spectrogram and the subdivision of the audio
files into second-long units. The DGM (referred to as fine-
tuned model) implemented in Tensorflow4, in the absence of
labels, is identical to a VAE (referred to as pre-trained model)
displayed for comparison purposes. While the autoencoder is
trained on the entire dataset, the classification head only pro-
cesses regions of bounding boxes, which is why conspicuous
but uninteresting events (e.g. artefacts, geophony) can easily
be ignored by the DGM.

4https://www.tensorflow.org/

3 Preliminary Evaluation
We ran preliminary evaluations of bounding box prediction
and the usability of state-space representations. We created
a dataset of 50 one-minute audio files composed of a PAM
background (recorded in the Central Catchment Nature Re-
serve, Singapore) and foreground events from the Urban-
Sound8k dataset [Salamon et al., 2014] inserted at random
times (Poisson distributed, average of 4 per file). The VAE
was trained on the entire dataset (pre-training); 30 files were
used for fine-tuning (100 epochs), and the remaining 20 files
for evaluation.

Bounding box prediction was evaluated by predicting three
bounding boxes per file. Each bounding box capturing an
event was considered correct. The prediction accuracy of the
fine-tuned model is 79.9 %.

To obtain initial empirical results, we had a user cre-
ate bounding boxes by selecting all elements in the state-
space representations that were considered outliers of the pre-
trained and fine-tuned model. For evaluation, we categorised
selected items that contain events (true positive), selected
items that do not contain events (false positive) and unse-
lected items that contain events (false negative). To treat all
events and predictions equally, we used the respective sums
of all 20 evaluated files for the F-score calculation. The F-
score of the pre-trained model is 77.0 %, the F-score of the
fine-tuned model is 94.2 %.

4 Conclusion and Future Work
We propose an interactive, human-in-the-loop tool for ML-
assisted annotation of PAM datasets. By modifying the latent
space of a VAE through an added classifier head, we gener-
ate an actionable, low-dimensional representation of the in-
put data that can improve efficiency of event detection and
classification by the user. Future work includes making our
tool applicable to real-world problems [Gouvêa et al., 2023].
The webapp will be integrated with the users’s PAM database
and served remotely. To improve our tool in terms of imple-
mented features (e.g. providing frequency units in the state-
space representation, enabling playback of selected spectro-
gram regions, implementing existing libraries such as [Ulloa
et al., 2021], real-time update of the system) and interface
design, we plan to follow a human-centred AI approach. Us-
ing design science research methods [Peffers et al., 2008] we
plan to conduct a user study with domain experts.

https://www.tensorflow.org/
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man, editors, HHAI 2022: Augmenting Human Intel-
lect - Proceedings of the First International Conference
on Hybrid Human-Artificial Intelligence, Amsterdam, The
Netherlands, 13-17 June 2022, volume 354 of Frontiers
in Artificial Intelligence and Applications, pages 305–306.
IOS Press, 2022.
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