
AI-based Maize and Weeds detection on the edge
with CornWeed Dataset

Naeem Iqbal∗
DFKI

Plan-based robot control group
Osnabrueck, Germany.

naeem.iqbal@dfki.de

Christoph Manss∗
DFKI

Marine Perception
Oldenburg, Germany.

christoph.manss@dfki.de

Christian Scholz†, Daniel König‡, Matthias Igelbrink§, Arno Ruckelshausen¶
Faculty of Engineering and Computer Science

University of Applied Sciences Osnabrueck
Osnabrueck, Germany.

†c.scholz@hs-osnabrueck.de, ‡philipp-daniel.koenig@hs-osnabrueck.de,
§matthias.igelbrink@hs-osnabrueck.de, ¶a.ruckelshausen@hs-osnabrueck.de

Abstract—Agricultural applications with AI methods are used
more heavily and the lack of wifi connections on the fields make
cloud services unavailable. Consequently, the AI models have to
be processed directly on the edge. In this paper, we evaluate
state-of-the-art detection algorithms for their use in agriculture,
in particular plant detection. The current paper also presents the
CornWeed data set, which has been recorded on land machines,
showing labelled maize crops and weeds for plant detection.
The paper provides accuracies for the state-of-the-art detection
algorithms on the CornWeed data set, as well as FPS metrics for
these networks on multiple edge devices. Moreover, for the FPS
analysis, the detection algorithms are converted to ONNX and
TensoRT engine files as they could be used as future standards
for model exchange.

Index Terms—plant detection, deep learning, agriculture,
maize data, data acquisition, vision transformer

I. INTRODUCTION

When it comes to smart agriculture on farm devices, the
evaluation speed of obtained images plays a crucial role [2].
If the processing of the images is too slow, the farm device has
to adjust its speed, which results in a lower efficiency. Object
detection algorithms are already capable to provide object
recognition at real-time speed. Especially neuronal networks
are utilized for fast object detection, but the performance
of a neuronal network - inference speed and accuracy - is
influenced by its’ structure and size, and this determines if the
network can run on an edge device.

Object detectors that utilize bounding boxes can be cat-
egorized into one-stage and two-stage detectors. Two-stage
detectors use first a heuristic to identify regions of interest and
identify the object in this region. One-stage detectors do both
tasks in a single network. One-stage detectors are therefore
easier to train and are considered to be computationally
faster than two-stage detectors [13], [17]. Two-stage detectors
generally have a higher accuracy on the location information
of the object and they identify smaller objects much better.

∗Both authors contributed equally.

For one-stage detectors this lower accuracy often origins
from poor anchor boxes and the class imbalance problem.
Recently, one-stage detectors with an anchor-less approach
yielded higher accuracy for smaller objects [25]. This is useful
for agricultural applications as plants need to be detected in
early growth stages and as farm machines might have limited
computational power. Nowadays also an new form of object
detectors emerged - transformer networks for object detection
[6]. Such networks tend to be large, but they yield high
accuracies.

Yet, does it make sense to deploy algorithms directly on the
farm machines? In [31], the authors discuss the importance of
deploying algorithms directly on the farm machines for better
responsiveness and reducing the load on cloud computing. On
larger farmlands the network connection might be unreliable
such that no cloud services might be reached. It might also be
possible to use alternative sensors that are already available
such as satellite images and drone imagery. These could be
preprocessed before the field work. However, satellite imagery
can only give guidance for larger patches of land and can
not provide insightful information on individual plants due to
limited geometrical resolution. Even the alternative of using
drones prior to field cultivation or the application of herbicides,
is not scaling well as presented in [4]. For example, drone
imagery is expensive as it requires additional personal and it
is most often limited to good weather. Thus, sensor data should
be directly processed on the farm machine also because the
capabilities of edge devices are increasing [32].

For example, in [26], the authors present an object detection
algorithm for sugar beets that is able to detect the sugar beets
and count their leaves based on RGB and NIR data. The data
set is described in [8]. In [28], a robotic platform is presented
that utilizes the detector from [26]. This system is able to
distinguish weeds from crops such that it can destroy the
weeds with a mechanical stamp. As this robot relies on the
aforementioned object detector, the system requires RGB and



NIR data. However, often only RGB data is available.
In this paper we empirically evaluate typical object detection

networks for their applicability on the edge for the detection
of maize and weeds with RGB data. Because such networks
require large amounts of data to be trained, we also present
a data set which provides box labelled maize and weeds. The
networks are then trained from scratch with the presented data
set. Our contribution is therefore as follows:

• We present an agricultural dataset named CornWeed
dataset where maize and weeds plants have been labelled
for box object detection *.

• We evaluate object detection algorithms with various
neural network architectures based on their detection
accuracy (mean average precision).

• Each of the detection algorithms are evaluated on a farm
edge device based on a Nvidia Jetson Xavier NX and
Jetson AGX Orin regarding their real-time capabilities
(frames per second).

II. DATA SET

A. Hardware Setup and Data Acquisition

For data acquisition, we utilized a previously designed
sensor system [15]. This system comprises a computer, power
supplies, and sensors. System and sensors communicate via
ROS† such that data can be stored into ROSBags, see Fig.1.
The benefits of this system is that it is sensor agnostic, i.e. any

Fig. 1. System perspective of the utilized sensor system.

sensor can be integrated and connected. Here we utilized an
Intel Realsense D435i (3D stereo camera) and an RTK-GPS
receiver, as presented in Fig.1. For a robust and consistent
data base, data collection was conducted using two different
agricultural machines, an implement on a tractor and on a
remotely steered research platform BoniRob [1], see Fig.2.
In a first step, we integrated the sensor-system into BoniRob
platform (Sensorbox 2) to evaluate optimal camera angles,
heights, resolution, light conditions etc. on a small scale. In a
second step, the sensor system (Sensorbox 1) was mounted on
a conventional hoe with shifting frame and pulled through the
field trials with a tractor. For this setup, based on the first data
acquisition with Sensorbox 2 (640 x 480), the resolution of the

*Dataset Zenodo DOI 10.5281/zenodo.7961764
†Open Source Robotics Foundation. Robotic Operating System.https://

www.ros.org

Fig. 2. Platforms for data acquisition. On the left an implementation on the
tractor on a conventional hoe with shifting frame (Sensorbox 1). On the right
the BoniRob with Sensorbox 2.

RGB camera on Sensorbox 1 was increased to 1280x720 pixel
for a higher quality of the image data. Yet, both resolutions
are kept in the data set for variability.

B. Data Variability

To represent different stages of growth and weed pressures,
we conducted the field trials on multiple days. Therefore, the
data samples were recorded over a period of three weeks
to ensure different growth stages. Since the primary focus
of the research was to root out the weeds early enough to
ensure maximum crop growth, only the early growth stages
were targeted for detection application since only at that time,
weeds compete with the crop for resources (water, sunlight,
etc.) and the crops eventually take over. Hence, later growth
stages are less relevant for weeding applications. The data
set only contains samples in the daylight with cloudy and
sunny weather conditions, however, evening and early morning
samples in future could be added to extend the domain
knowledge for deep neural networks. The field trials always
took place on the same field such that the same soil conditions
and the same type of weeds occur in the data set.

C. Data Labelling

The number of detected weeds instances plays a crucial role
for later selective weeding. To keep track of the number of
detected objects, bounding boxes were chosen as the medium
of annotation. The data set contains 3574 outdoor field images
of maize and weeds, which are also the annotated classes in
the data set. An example image of the data set for Sensorbox
1 with labels is displayed in Fig. 3. The annotations were
generated by human annotators and reviewed by a different
human reviewer. We used the open-source CVAT labelling
tool [24] provided by Intel Corporation. The trained model
on the data set can be further incorporated into this tool to
further reduce the average labelling time. Thus, to speed up
the process of annotation, intermediate object detectors have
been trained during the annotation process with the interim
data to provide proposal annotations. The annotator then fine
tuned the proposed annotations by adding not detected weeds
and maize, changing the class labels of false positives, and
changing the sizes of the boxes. Such an interim detector can

https://www.ros.org
https://www.ros.org


Fig. 3. An example image of the data set taken with the setup on the
conventional hoe (Sensorbox 1). The images have resolutions of 640 × 480
with Sensorbox 2 and 1280× 720 with Sensorbox 1.

also be provided by models trained on a synthetic training data
as done by Naeem et. al. [12] in a similar use-case.

III. DETECTION ALGORITHMS

For a real-time detection scenario the accuracy is as impor-
tant as the achievable detection rate. In the considered use-
case of selective weeding, the movement speed of the farm
device constraints the minimum frames per second (FPS). In
our data acquisition setup, we used the Intel Realsense D435i
camera with a vertical field of view (FOV) of 69 °. The camera
was mounted at a height of 0.5 m, looking downwards. The
geometric size of the obtained image covers a length of 0.68 m.
To cover the whole ground with an average velocity of 8 km/h
(2.2 m/s) we require at least 3-4 FPS. Higher frame-rates are
of course desirable and would make the system more reliable.
Given the low frame-rate requirement, two-stage detectors
such as Faster-RCNN [23] can also be used since they have
higher accuracy than single stage detectors as shown by Garcia
and Mateo et. al. [7]. The authors show that while one-stage
detectors are generally faster in inference speeds at lower
image resolution, two-stage detectors outperform in terms of
accuracy and detecting small objects in the image. This is
specially relevant for the considered use-case here, since most
of the weeds should be rooted out in the early growth stages
before they start competing with the actual crop for resources.

This leads to the accuracy aspect because many of the
weeds are small, which might lead to poor object detection
performance. For example, anchor-based approaches [16],
[22], [23] have difficulties to find very small objects in the
image if the anchor boxes are not small enough. There are
however object detectors that use an anchor-free approach
[10], [25] and these are supposed to have a substantially
better performance on small objects. More recently, object
detectors based on transformer networks yield high accuracies
in multiple applications [6]. Accordingly, for the considered
use-case, we chose networks of the aforementioned categories.
The networks are introduced in the following.

A. Faster R-CNN

R-CNN is a two-stage detector where the first stage pro-
duces region proposals that are then fed into the second stage

where the object detection takes place. First versions of R-
CNN have been published in 2014 [11] and the following
versions have improved to be more computational effective
and more accurate. In this paper, the considered version is the
Faster RCNN [23]. This version uses a convolutional neural
network (CNN) as backbone to identify feature maps, which
are then sent to a region proposal network and a detection
network.

B. RetinaNet

The RetinaNet [16] is a one-stage object detector that is
based on the single-shot detector (SSD) [18] object detector.
The main idea of SSD is that the detection requires informa-
tion at different scales. Therefore this network pools directly
from multiple convolutional layers, which are referred to as
convolutional predictors for detection. This network utilizes
default boxes and aspect ratios, which have to be determined
beforehand. Each default box is then used for prediction on
a grid on the image. As the number of predicted boxes can
become large, hard negative mining is applied. Due to this
only few candidate boxes are considered during the training
of an SSD network, which is also known as the foreground-
background class imbalance problem [20]. To address this
problem, RetinaNet introduces the focal loss to put more
emphasis on the hard training examples instead of easy ones.
The authors showed that the focal loss substantially improves
the performance of one-stage detectors.

C. FCOS

Another one-stage detector that does not use anchor boxes
is the fully convolutional one-stage (FCOS) detector [25].
This detector does a pixel-wise detection and computes then
a center-ness of each pixel according to the ground-truth
boxes. The benefits of this are that the intersection over union
(IoU), which is computationally expensive, does not need to be
computed and that no anchor boxes are required. A downside
of this approach is that in the detection ambiguities can occur
as one pixel might be the center of multiple boxes. In such
cases the larger box is ignored such that the detector has a
better accuracy for smaller objects. For the use-case at hand,
this is actually good as there are many small weeds.

D. YOLO

The you only look once detector, initially published in [21],
has become very popular and has been extended in various
aspects. The you only look once (YOLO)V5 is an efficient
implementation [14] in Pytorch, which uses basically the same
network as introduced in [3]. In this detector, the authors make
excessive use of the so called bag of freebies – methods that
only change the training strategy or the training cost – and bag
of specials – methods of plugins that have a good performance
to inference cost ratio. The bag of freebies are for example
data augmentation methods that increase the robustness of the
detector. The bag of specials on the other hand are spatial
pyramid pooling, a spatial attention module, or other activation
functions.



A successor of the YOLOV5 is the YOLOX [10], where
the YOLO detector is re-designed into an anchor-free de-
tector. Furthermore, YOLOX uses other advanced detection
techniques, which would fall into the bag of specials, such as
no default anchors or decoupled heads. However, we do use
this version of the YOLO.

E. DINO Transformer
Most of the above object detection models require a prior

knowledge of the task in the form of anchors (single stage) or
proposals (two stage). The prior knowledge makes the model
specialized to a specific task but loses performance when
moved to a different detection task making transfer learning
difficult. Carion et. al. [5] propose DEtection TRansformer
(DETR) that is an end-to-end object detection transformer.
With this architecture, there is no need to post process the
bounding boxes or risk counting the same object twice due to
its bipartite matching loss function. The authors combine the
power of DETR with the following improvements: 1) Adding
a noisy version of the ground truth labels during training to
speed up the training process. 2) Mixed query selection 3) Box
update based on the current layer and the next layer during
back propogation. In Zhang et. al. [30], the authors argue that
even though with prior knowledge, anchor based detectors still
outperform the DETR.

IV. EXPERIMENTAL SETTING

This section goes through the lifecycle of the neural net-
works:

1) Training a neural network and selecting the best variant
from the training pipeline.

2) Deployment pipeline which explains how the network
is optimized for a particular edge device to maximize
performance throughput.

3) Edge devices used to evaluate inference speed of neural
networks on an Agricultural use-case.

A. Training pipeline
For all the models mentioned above, very sophisticated

Github repositories already exist. Thus, for the Faster RCNN,
the Retinanet, and the FCOS, we used the Detectron2 repos-
itory from Meta [29]. For each of these models, we set the
batch size to 32, the learning rate to 0.01, and the optimizer
was stochastic gradient decent. For YOLOV5, we utilized the
implementation of Ultralytics [14]. There, we set the batch
size to 32 and 16 for YOLOV5m and YOLOV5l, respectively.
Also, we specified the image size to be 800 pixel and to
be rectangular to have comparable results with the other
networks. During training, we also used the multi-scale option,
where the image size is varied during training. For the DINO
transformer, we used the Detrex research platform [9], which
is based on the Detectron2 repository. Due to the size of the
DINO transformer, we had to set the batch size to 4. The
learning rate was set to 0.0001. All other parameters of the
algorithms were left to the default values.

We trained each model on a NVidia Tesla V100 DGXS
32GB GPU with the CUDA Version 11.1.

Fig. 4. Deployment workflow showing how the models are trained in PyTorch,
converted to ONNX models, and then to TensorRT engine files.

B. Deployment pipeline

After training, the best model file is selected based on the
validation data split and then converted to an open neural
network exchange (ONNX) model. ONNX is a framework that
optimizes and acts as an intermediate representation of neural
networks to support conversion to any standard frameworks
such as PyTorch, TensorFlow, OpenVINO, TensorRT, etc.
However, a user can use this intermediate representation also
directly. In this paper, both the ONNX models and TensorRT
models are evaluated to highlight the impact of framework
choices. The ONNX models of the DINO transformer and
YOLO network were then converted to a TensorRT engine
file with precision of 16-bit and 32-bit floating points and 8-
bit integer. The different precision can make the model more
memory efficient and also advanced build-in function can be
used for faster computation [19]. The other models consist of
the layers that can not be optimized by the TensorRT engine
(up until version 8.5 ‡), hence failing to do the conversion to
a TensorRT engine. At the time of this publication, TensorRT
version 8.5 was available.

C. Edge Device

For all the experiments in this paper, two NVIDIA Jetson
devices were used:

1) the Jetson Xavier NX and
2) the Jetson AGX Orin.

Both edge devices have L4T 35.3.1 with Ubuntu 20.04, ROS
Noetic, CUDA 11.4 running on them. Jetson devices come
with predefined power modes utilizing varying number of
on-board CPUs and number of online CPU cores. For the
experiments shown in table II, the Xavier NX was set on mode
ID 6 with all cores online and 1400 MHz CPU frequency.
In this mode, the Xavier NX board consumes about 20 W

‡We are hopeful that with upcoming TensorRT 8.6, the performance
metrics can be updated for remaining networks in table II



of power. Similarly, we activated the MAXN power profile
on the AGX Orin to utilize all GPU and CPU cores and to
remove clock restrictions. In this power profile, the AGX Orin
consumes about 60 W. The input to the model is fed in the
form of image sequences via a ROS Bag. Each consecutive
image sample is read from the ROS Bag, and downscaled and
normalized according to the input size expected by the model.
The performance metrics are logged from the moment an
image is received until the detections are ready to be published
into the ROS ecosystem as detection messages.

V. RESULTS

This sections presents the accuracy results of the presented
networks for the data set and the speed results on the consid-
ered edge devices.

A. Training Results

The mean average precision (mAP) of the trained networks
for two confidence values is presented in Tab. I. The YOLOV5

TABLE I
MEAN AVERAGE PRECISION OF ALL OBJECT DETECTORS AT VARIOUS

CONFIDENCE VALUES AND CLASS IDS OF MAIZE AND WEEDS

Model mAP50 mAP50:95 mAP50
Maize

mAP50
Weeds

FCOS R50 FPN 69.3 39.8 87.0 51.7
RetinaNet R50 FPN 68.0 40.2 89.7 46.3
Faster RCNN FPN 71.6 41.8 88.1 55.1
YOLOv5 medium 85.4 53.3 93.0 77.8

YOLOv5 large 85.4 53.9 93.7 77.0
DINO Transformer 75.8 45.0 92.3 59.3

networks clearly have the best performance. However, the
YOLOV5 repository already offers many variations and aug-
mentations to the input data, see bag freebies in Sec. III-D.
These bag of freebies are also optimized during training by the
code in the repository. The networks based on Detectron2 on
the other hand don’t have such an optimization. Thus, if only
the networks based on the Detectron2 repository are compared
with each other, the DINO transformer stands out. Yet, the
DINO transformer still gives lower accuracy on weeds. This
is due to its inability to detect tiny objects such as weeds which
can be in some instances only be a few pixels. This behaviour
was first brought to light by Carion et. al. [5]. If the one-
stage networks of the Detectron2 repository are compared with
the two-stage detector Faster RCNN, the RetinaNet reached a
better performance on detecting maize.

B. Speed Results

As described in section IV-B, the trained models are op-
timized and then deployed for both NVIDIA Jetson Xavier
NX and Jetson AGX Orin. The average FPS time was logged
based on the input image which was feed from a ROS
bag recorded with Intel RealSense D435i camera for testing
purposes. For anchor-based implementations (e.g. RetinaNet,
YOLO), the non-maximum suppression is also part of the

inference time. This creates a fair comparison between anchor-
based and anchor-free models. The corresponding FPS metrics
are shown in table II. For the first three models (FCOS,
RetinaNet and Faster RCNN), the model contains layers that
cannot be converted into the TensorRT engine in v8.5. With
the next release of TensorRT v8.6 accompanied with the new
Jetpack release, these model should also be convertible to a
TensorRT engine. Looking at the numbers, in general, the
ONNX inference framework gives very low inference rates,
even with using CUDA execution provider, making it not
suitable for application purposes. However, the ONNX model
serves as a good intermediate model representation that can
be later converted to any other inference framework such as
TensorFlow, TensorRT, or PyTorch.

The TensorRT engine files with different floating point
and integer precisions yield higher FPS in general. The 8-
bit integer precision yields the highest inference rate for each
network. When comparing different networks, YOLOV5 gives
the highest FPS. Looking at the overall accuracy in table I,
the large variant of the YOLOv5 gives higher mAP values for
the maize class and in general. When comparing the accuracy
vs the inference rate, the YOLOV5 medium version has the
same accuracy as the YOLOV5 large variant. This implies
that increasing the model size does not necessarily lead to
improved performance while the medium variant gives more
inference speed on the edge device. On the other hand, the
DINO transformer provides high mAP50 on the maize class,
but surprisingly lower values on weed class §. According
to [5], the authors conclude that a transformer architecture
has lower performance on tiny object detection which is
consistent with our findings. While vision transformers usually
outperform most networks, it may not always give the best
performance depending on the size of the objects. The GPU
memory size and the input image resolution also plays a
critical role in deciding for the neural network architecture.

VI. CONCLUSION

This paper shows how state-of-the-art object detectors per-
form on an agricultural specific use-case on different edge
systems. With an accompanying data set, some neural network
characteristics are highlighted such as low accuracy on detect-
ing tiny objects which is a common challenge in agricultural
perception tasks. These shortcomings are not immediately
visible when training on a different domain data set such
as autonomous driving. The model deployment pipeline is
also included for readers who embark on a different use-case
and want to optimize their model’s inference speed. Generally
speaking, it is always better to convert a well trained model to
an edge device specific engine such as the TensorRT engine.
This way the FPS can increase by a factor of four. Thus,
using TensorRT yields faster networks, not only in the in the
agricultural domain but also other domains, e.g. [27].

§The DINO transformer was set to lower resolution of 512 x 683 because
otherwise it does not fit onto Jetson Xavier NX with 8GB VRAM. For a fair
comparison between Xavier NX and AGX Orin, it was set to that resolution.



TABLE II
AVERAGE INFERENCE RATE (IN FRAMES PER SECOND) FOR ALL THE DETECTORS FROM TABLE I ON EDGE DEVICES WITH ONNX CUDA Execution

Provider (CEP) AND TENSORRT. THE INPUT IMAGE RESOLUTION WAS 800 X 1067 FOR FIRST THREE NETWORKS (FCOS, RETINANET, FRCNN), 800 X
1088 FOR THE BOTH YOLO NETWORKS AND 512 X 683 FOR DINO TRANSFORMER.THE VALUES MARKED WITH * WERE DUE TO A TENSORRT BUG NOT

UTILIZING CUDA WITH DINO MODEL.

Framework ONNX with CEP TensorRT
Edge device Jetson Xavier NX Jetson AGX Orin Jetson Xavier NX Jetson AGX Orin

int8 fp16 fp32 int8 fp16 fp32

FCOS R50 FPN 1.30 4.0 X X X X X X
RetinaNet R50 FPN 1.37 4.3 X X X X X X
Faster RCNN FPN 0.62 1.8 X X X X X X
YOLOv5 medium 2.5 6.0 19.3 12 3.7 51 33.5 16.8

YOLOv5 large 1.4 4.0 12.7 6.5 1.65 37 22 10.9
DINO Transformer 0.24 0.55 1.35* 1.47* 0.86* 3.2* 3.1* 3*

VII. ACKNOWLEDGEMENTS

The DFKI Lower Saxony (DFKI NI) is funded by the
Lower Saxony Ministry of Science and Culture and the
Volkswagen Foundation. The project Agri-GAIA on which this
report is based was funded by the German Federal Ministry
for Economics and Climate Action under the funding code
01MK21004A: Responsibility for the content of this publica-
tion lies with the author. Many thanks to Hof Langsenkamp,
Belm, Germany for providing the fields for data acquisition
and the used hardware (tractor and implement). We would
like to thank Oliver Zielinski for mainly writing on the parts
of the proposal that lead to this work. We would also like
to thank our labellers: Qalab Abbas, Jule Fröhlich, Novruz
Mammadli, Charles Lennart Müller, Dibyashree Nahak, Turgut
Nasrullayev, and Simon Zielinski.

REFERENCES

[1] W Bangert, A Kielhorn, F Rahe, A Albert, P Biber, S Grzonka,
S Haug, A Michaels, D Mentrup, M Hänsel, et al. Field-robot-based
agriculture:“remotefarming. 1” and “bonirob-apps”. In 71th conference
LAND. TECHNIK-AgEng 2013, pages 439–446, 2013.

[2] Lefteris Benos, Aristotelis C. Tagarakis, Georgios Dolias, Remigio
Berruto, Dimitrios Kateris, and Dionysis Bochtis. Machine Learning in
Agriculture: A Comprehensive Updated Review. Sensors, 21(11):3758,
January 2021.

[3] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
YOLOv4: Optimal Speed and Accuracy of Object Detection.
arXiv:2004.10934 [cs, eess], April 2020.

[4] Enyu Cai, Sriram Baireddy, Changye Yang, Melba Crawford, and
Edward J. Delp. Deep Transfer Learning for Plant Center Localization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 62–63, 2020.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection
with transformers. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16,
pages 213–229. Springer, 2020.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien
Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in
self-supervised vision transformers. In Proceedings of the International
Conference on Computer Vision (ICCV), 2021.

[7] Manuel Carranza-Garcı́a, Jesús Torres-Mateo, Pedro Lara-Benı́tez, and
Jorge Garcı́a-Gutiérrez. On the Performance of One-Stage and Two-
Stage Object Detectors in Autonomous Vehicles Using Camera Data.
Remote Sensing, 13(1):89, December 2020.

[8] Nived Chebrolu, Philipp Lottes, Alexander Schaefer, Wera Winterhalter,
Wolfram Burgard, and Cyrill Stachniss. Agricultural robot dataset
for plant classification, localization and mapping on sugar beet fields.
The International Journal of Robotics Research, 36(10):1045–1052,
September 2017.

[9] detrex contributors. detrex: An research platform for transformer-based
object detection algorithms. https://github.com/IDEA-Research/detrex,
2022.

[10] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. YOLOX:
Exceeding YOLO Series in 2021, August 2021.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
Feature Hierarchies for Accurate Object Detection and Semantic Seg-
mentation. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pages 580–587, Columbus, OH, USA, June 2014. IEEE.

[12] Naeem Iqbal, Justus Bracke, Anton Elmiger, Hunaid Hameed, and Kai
von Szadkowski. Evaluating synthetic vs. real data generation for ai-
based selective weeding. In Christa Hoffmann, Anthony Stein, Arno
Ruckelshausen, Henning Müller, Thilo Steckel, and Helga Floto, editors,
43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme, pages 125–135,
Bonn, 2023. Gesellschaft für Informatik e.V.

[13] Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi
Feng, and Rong Qu. A Survey of Deep Learning-based Object Detection.
IEEE Access, 7:128837–128868, 2019.

[14] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec,
NanoCode012, Yonghye Kwon, TaoXie, Jiacong Fang, imyhxy, Kalen
Michael, Lorna, Abhiram V, Diego Montes, Jebastin Nadar, Laughing,
tkianai, yxNONG, Piotr Skalski, Zhiqiang Wang, Adam Hogan, Cristi
Fati, Lorenzo Mammana, AlexWang1900, Deep Patel, Ding Yiwei, Felix
You, Jan Hajek, Laurentiu Diaconu, and Mai Thanh Minh. ultralyt-
ics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO
Export and Inference, February 2022.

[15] Daniel König, Matthias Igelbrink, Christian Scholz, and Andreas Linz.
Entwicklung einer flexiblen Sensorapplikation zur Erzeugung von vali-
den Daten für KI-Algorithmen in landwirtschaftlichen Feldversuchen.
In 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und
Ernährungswirtschaft, pages 165–170, Bonn, 2022. Gesellschaft für
Informatik e.V.

[16] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar.
Focal Loss for Dense Object Detection. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2980–2988, 2017.

[17] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen,
Xinwang Liu, and Matti Pietikäinen. Deep Learning for Generic
Object Detection: A Survey. International Journal of Computer Vision,
128(2):261–318, February 2020.

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot
MultiBox Detector. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Computer Vision – ECCV 2016, Lecture Notes in
Computer Science, pages 21–37, Cham, 2016. Springer International
Publishing.

[19] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and
Jeffrey S. Vetter. NVIDIA Tensor Core Programmability, Performance
& Precision. In 2018 IEEE International Parallel and Distributed

https://github.com/IDEA-Research/detrex


Processing Symposium Workshops (IPDPSW), pages 522–531, May
2018.

[20] Kemal Oksuz, Baris Can Cam, Sinan Kalkan, and Emre Akbas. Imbal-
ance Problems in Object Detection: A Review. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), pages 1–1, 2020.

[21] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi.
You Only Look Once: Unified, Real-Time Object Detection.
arXiv:1506.02640 [cs], May 2016.

[22] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improve-
ment. arXiv:1804.02767 [cs], April 2018.

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. arXiv:1506.01497 [cs], January 2016.

[24] Boris Sekachev, Nikita Manovich, Maxim Zhiltsov, Andrey Zha-
voronkov, Dmitry Kalinin, Ben Hoff, TOsmanov, Dmitry Kruchinin,
Artyom Zankevich, DmitriySidnev, Maksim Markelov, Johannes222,
Mathis Chenuet, a andre, telenachos, Aleksandr Melnikov, Jijoong Kim,
Liron Ilouz, Nikita Glazov, Priya4607, Rush Tehrani, Seungwon Jeong,
Vladimir Skubriev, Sebastian Yonekura, vugia truong, zliang7, lizhming,
and Tritin Truong. opencv/cvat: v1.1.0, August 2020.

[25] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully
Convolutional One-Stage Object Detection. arXiv:1904.01355 [cs],
August 2019.

[26] Jan Weyler, Andres Milioto, Tillmann Falck, Jens Behley, and Cyrill
Stachniss. Joint Plant Instance Detection and Leaf Count Estimation
for In-Field Plant Phenotyping. IEEE Robotics and Automation Letters,
6(2):3599–3606, April 2021.

[27] Mattis Wolf, Katelijn van den Berg, Shungudzemwoyo P. Garaba, Nina
Gnann, Klaus Sattler, Frederic Stahl, and Oliver Zielinski. Machine
learning for aquatic plastic litter detection, classification and quantifica-
tion (APLASTIC-Q). Environmental Research Letters, 15(11):114042,
November 2020.

[28] Xiaolong Wu, Stéphanie Aravecchia, Philipp Lottes, Cyrill Stachniss,
and Cédric Pradalier. Robotic weed control using automated weed and
crop classification. Journal of Field Robotics, 37(2):322–340, 2020.

[29] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross
Girshick. Detectron2. https://github.com/facebookresearch/detectron2,
2019.

[30] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu,
Lionel M Ni, and Heung-Yeung Shum. Dino: Detr with improved
denoising anchor boxes for end-to-end object detection. arXiv preprint
arXiv:2203.03605, 2022.

[31] X. Zhang, Z. Cao, and W. Dong. Overview of Edge Computing in
the Agricultural Internet of Things: Key Technologies, Applications,
Challenges. IEEE Access, 8:141748–141761, 2020.

[32] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang. Edge
Intelligence: Paving the Last Mile of Artificial Intelligence With Edge
Computing. Proceedings of the IEEE, 107(8):1738–1762, August 2019.

https://github.com/facebookresearch/detectron2

	Introduction
	Data Set
	Hardware Setup and Data Acquisition
	Data Variability
	Data Labelling

	Detection algorithms
	Faster R-CNN
	RetinaNet
	FCOS
	YOLO
	DINO Transformer

	Experimental Setting
	Training pipeline
	Deployment pipeline
	Edge Device

	Results
	Training Results
	Speed Results

	Conclusion
	Acknowledgements
	References

