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Abstract

We investigate whether using semi-supervised learning (SSL) methods can be benecial for

the task of word-level Quality Estimation of Machine Translation in low-resource conditions.

We show that the Mean Teacher network can provide equal or signicantly better MCC scores

(up to +12%) than supervised methods when a limited amount of labeled data is available.

Additionally, following previous work on SSL, we investigate Pseudo-Labeling in combination

with SSL, which nevertheless does not provide consistent improvements.

1 Introduction

Through the recent development of Machine Translation (MT), Quality Estimation (QE) has

come to serve the need to predict the quality of translation provided by MT systems when

no reference translations are available. QE has been mostly treated as a supervised learning

problem, where supervised models can be trained on the source and translated text along with

their respective quality labels. For example, QE at the word level includes the source and

translated sentences as the data and their label sequence includes an OK or BAD label for each

translated word in the sentence, which can determine if the word is correctly translated or not

and potential errors in the translations can be agged. In order to train supervised models for

such problems, a large amount of labeled data is needed. However, such data is expensive to

create as it involves human annotators to post-edit or generate labels for the given translations.

Whereas the unavailability of labeled data is a problem, there is an abundance of unlabeled

data for such a task, i.e. source sentences and the corresponding translations generated by MT

systems. Semi-supervised learning (SSL) methods could be utilized to train QE models with

few labeled data available along with unlabeled data that can be generated in abundance.

While the prominent SSL approach of Mean Teacher has shown good performance in

computer vision (Tarvainen and Valpola, 2017), there has been little experimentation in NLP.

Until now, no research has followed SSL to ne-tune pre-trained language models (LMs) for

the task of QE of MT. This work focuses on implementing the aforementioned SSL strategies

for word-level QE and tries to answer the following questions:

72



73



74



75



76



Labeled Unlabeled Validation Test

250 1750 500 1000

500 1500 500 1000

750 1250 500 1000

1000 1000 500 1000

1250 750 500 1000

1500 500 500 1000

1750 250 500 1000

Table 1: Labeled/Unlabeled split

probability with which the model predicted the label for the token. This high condence tokens

selection ensures the Student model to t the tokens with high condence better and thereby

improves the robustness of the model for low condence tokens.

4 Experiment Setup

4.1 Dataset

The experiments are performed using the dataset of Fomicheva et al. (2022) provided by the

WMT 2021 shared task (Specia et al., 2021). The original dataset consisted of 7000 train, 1000

test and 1000 dev data for all language pairs. From that dataset, in order to simulate a low-

resource setting, we sampled 2000 training sentence pairs along with 500 validation and 1000

test sentences to train the models for Mean Teacher, Pseudo-Labeling, and supervised set ups

and evaluate their performances. The ratio of labeled and unlabeled data was varied keeping the

amount of training sentences xed at 2000 as shown in Table 1, in order to test the performance

of SSL methods under different ratios, with the labeled data gradually increasing between 250

and 1750 sentences. For each given ratio in the table 1, a supervised model was trained on

the number of labeled samples mentioned for the ratio, and SSL models were trained using the

same labeled data and additional unlabeled data. The performance metrics for each model in the

experiments were evaluated on the xed 1000 test dataset provided in Fomicheva et al. (2022).

In all cases, one joined model was trained including all language pairs of the dataset.

The supervised models are shown as a baseline for SSL methods using the same amount

of labeled data. The performance of both the supervised and SSL models was compared in

order to check if SSL algorithms provided better performance due to the presence of additional

unlabeled data while training.

4.2 Model implementation

The experiments were performed with XLMRoBERTaBase by adding a feed-forward layer on top

of the model.1 For model training, AWS Sagemaker is used. The model is ne-tuned with early

stopping on the evaluation metric on validation data. It is trained in batches and while training,

the loss is calculated using weighted binary cross-entropy (Ho and Wookey, 2019) loss to tackle

the issue of the imbalanced dataset in our case. The hyperparameters where initiated based on

previous research involving LMs, and were optimized after multiple preliminary experiments

to the ones shown in table 2. The Loss ratio (r) was found best to have the rampup value from

0 to 1 on steps. The ratio was kept very low in the begining of the training so that the models

could adjust the weights according to actual labeled data provided and the loss of unlabeled

1The code and the data of the experiment are be publicly available with an open source license at

https://github.com/DFKI-NLP/semisupervised-mt-qe
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Hyper parameter Values

Classication cost (C(θ)) Weighted Binary Cross Entropy

Batch Size 8

Learning rate 2e− 5
Dropout 0.3

Optimizer Adam

Consistency cost (J(θ)) Mean Squared Error

Max length 128

Epochs 25
Early stopping 8

Loss Ratio (r) Rampup from 0 to 1.0 till 2 epochs (on steps)

Alpha (α) 0.99

Table 2: Hyperparameter Details

data have almost no contribution in the begining of the learning steps. This value is ramped up

till the number of steps involved in two epochs. A reason for choosing the rampup period till

two epochs was that LMs usually need around two epochs to ne tune for any problem. The

maximum value of ratio after rampup is set to 1 as higher values resulted into large deviations

of the learned weights and sudden increase in the validation errors. In order to determine the

value of alpha (α), that controls the amount of weights being transferred to Teacher models from

the Student models, various experiments were performed. The rampup of the EMA decay, as

suggested in previous works related to computer vision (Tarvainen and Valpola, 2017; Laine and

Aila, 2017) did not lead to good performance for our problem and hence we tried to determine

the value of the parameter by testing the values from the set [0.99, 0.995, 0.999], concluding

that the value of 0.99 performed relatively best amongst the values experimented and also gave

consistent results.

4.3 Training strategies

For each given ratio of labeled/unlabeled data in table 1, models were trained with these strate-

gies:

Supervised is the model trained on the amount of labeled data in a fully supervised fashion

as described in 3.1. For example, for labeled data 250, the Supervised model is trained on 250

labeled data, and performance metrics of the model are calculated on the xed 1000 test dataset.

So, one supervised model was trained for each set of ratio labeled/unlabeled data mentioned in

the table 1.

Mean Teacher: Teacher & Student are trained using the Mean Teacher network (Section

3.2). For each amount of labeled data, one Teacher and one Student model is trained. Apart

from the labeled data in the given ratio, the rest of the data is utilized as unlabeled data, which

is used in training the models with the Mean Teacher approach. The performance metrics for

the models trained by utilizing the different ratios of labeled and unlabeled data are reported in

the table with learning strategies as Mean Teacher Teacher and Mean Teacher Student. So, two

models were generated for each ratio of labeled/unlabeled data by using this SSL strategy of

ne-tuning.

Mean Teacher with Pseudo-Labeling: Teacher & Student are trained using the Pseudo-

Labeling network (Section 3.3). For each amount of labeled data, one Teacher and one Student

model is trained. Apart from the labeled data in the given ratio, the rest of the data is used as

unlabeled data, for training the models with the Pseudo-Labeling approach. So, two models
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lab’d supervised Student Teacher relative improvement (%)

Student Teacher(%)

250 0.252 0.280 *0.283 11.11 12.30

500 0.288 0.299 *0.300 3.82 4.17

750 0.313 0.317 0.312 1.28 0.00

1000 0.320 0.344 *0.346 7.50 8.13

1250 0.335 0.340 0.344 1.49 2.69

1500 0.333 *0.350 *0.350 5.11 5.11

1750 0.328 0.355 *0.361 8.23 10.06

Table 3: MCC scores for Supervised and Mean Teacher experiments; * indicates signicantly

better scores based on bootstrap re-sampling, as compared to the supervised baseline

were generated for each ratio of labeled/unlabeled data by using this SSL strategy of ne-

tuning. We repeated the experiments with condence thresholds of 0,6 and 0,8, and the latter

was chosen due to the higher performance. Additionally, we repeated the experiments without

a consistency cost, but results are not reported, as no signicant difference was observed.

4.4 Evaluation

For evaluating the systems generated with fully supervised approach or SSL approaches, the

metric used is Matthews correlation coefcient (MCC; Matthews, 1975), as per WMT (Zerva

et al., 2022) along with F1-scores for OK/BAD classes. In the rst part of our experiments,

contrary to WMT calculating MCC scores for source, target and gap tokens, we focused on

the MCC score for the whole sequence, to ensure that our models can produce good labels

for all the tokens of the sequence, as MCC for whole sequence consolidates classication and

misclassication errors for all the tokens. In the second part of our experiments, we present

disjoint MCC results, following the ofcial WMT calculation.

In order to test the signicance of the results with theMean Teacher, we tested these models

using paired bootstrap resampling method (Koehn, 2004). For this, 250 sentence sequences

were sampled out of 1000 test dataset with replacement to form 100 virtual test sets of 250

sentences each.

5 Results

5.1 Mean Teacher ne-tuning

The performance of models trained with Mean Teacher vs. supervised learning are shown in

table 3. Teacher models outperform the Student and supervised models signicantly for every

ratio of labeled to unlabeled data, apart from two cases where they don’t show a signicant im-

provement. In the best case, where a very little amount of training data is available, the Teacher

model gives a relative improvement of 12.3% over the supervised baseline. It is also noticed

that the average relative improvement for all experiments with different ratios of labeled/unla-

beled data is approximately 6% for Teacher and 5.5% for Student models. Conrming previous

work (Tarvainen and Valpola, 2017), the Teacher is more robust and performs better than the

Student after certain iterations of training.

5.2 Pseudo-Labeling

As seen in Table 4, the approach of Pseudo-Labeling gave small improvements for some exper-

iments but for most experiments it didn’t perform as expected. There could be several reasons

for this. One of them is models suffer from conrmation bias (Arazo et al., 2020), i.e mod-
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lab’d supervised Student Teacher relative improvement (%)

Student Teacher(%)

250 0.250 0.280 0.283 12.0 13.20

500 0.288 0.287 0.287 0.0 0.00

750 0.313 0.294 0.302 0.0 0.00

1000 0.320 0.306 0.310 0.0 0.00

1250 0.335 0.335 0.337 0.0 0.60

1500 0.333 0.314 0.331 0.0 0.00

1750 0.328 0.327 0.332 0.0 1.22

Table 4: MCC scores for Pseudo-Labeling

els relying on its own predictions. Additionally, despite experimenting with various condence

thresholds and the consistency cost, we generally used the same hyperparameters as in the Mean

Teacher setup, so it is not possible to exclude the case that better results occur after a broader

hyperparameter search.

5.3 Disjoint comparative analysis

More detailed results, following the disjoined calculations of all metrics as per WMT can be

seen in Table 5. Here we present the MCC and the F1-scores for BAD/OK labels, measured for

the source and target sentence with and without gaps, for every ratio of labeled/unlabeled data.

It can be seen that in all cases, the MCC score and and the F1 score for BAD labels outperform

the ones of the supervised baseline. In some cases there is no improvement shown for the F1

score for OK labels, but one should consider that the amount of OK labels in the dataset is

overly high, and the F1 score is affected by the big amount of true positives.

6 Conclusion

This research focused on the Quality Estimation of Machine Translation at the word level.

The goal is to generate a binary label of OK/BAD for each word and gap in the translations,

by predicting if the word is correctly translated or not. We investigated two approaches of

Semi-Supervised Learining that have not been explored yet for the given problem: The rst

utilized the well-known Mean Teacher approach that involves a Student and a Teacher model

while training, initialized with the default weights of a pretrained LM. The second proposed

architecture extends the former, by involving Pseudo-Labeling and follows a two-stage learning

approach. In the rst stage, the model is trained with limited labeled data available, through

supervised learning. In the second stage, the Teacher and Student model are initialized with the

model learned in the rst stage, and are further trained using only unlabeled data.

It was experimentally shown that in low-resource settings the Mean Teacher architecture

performed better or (in one case) comparably to the supervised models, achieving an improve-

ment of up to 12%. The second proposed architecture of using Pseudo-Labeling with Mean

Teacher framework did not behave as expected, when tested with various values of thresholds.

Further work could focus on the implication of the improvements on various language pairs, as

well as architectural improvements and data augmentation techniques.
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items model_words MCC F1 BAD F1 OK

supervised source 0.207 0.331 0.874

supervised target and gaps 0.282 0.374 0.906

250 supervised target 0.240 0.391 0.845

Mean Teacher source 0.240 0.373 0.828

Mean Teacher target and gaps 0.309 0.384 0.804

Mean Teacher target 0.248 0.411 0.759

supervised source 0.240 0.373 0.811

supervised target and gaps 0.319 0.401 0.840

500 supervised target 0.252 0.411 0.703

Mean Teacher source 0.249 0.379 0.816

Mean Teacher target and gaps 0.325 0.413 0.909

Mean Teacher target 0.276 0.430 0.768

supervised source 0.267 0.393 0.826

supervised target and gaps 0.341 0.427 0.878

750 supervised target 0.289 0.440 0.785

Mean Teacher source 0.276 0.399 0.826

Mean Teacher target and gaps 0.343 0.427 0.875

Mean Teacher target 0.291 0.440 0.780

supervised source 0.278 0.393 0.773

supervised target and gaps 0.345 0.423 0.854

1000 supervised target 0.288 0.434 0.736

Mean Teacher source 0.300 0.418 0.858

Mean Teacher target and gaps 0.375 0.458 0.899

Mean Teacher target 0.336 0.473 0.826

supervised source 0.295 0.414 0.858

supervised target and gaps 0.360 0.445 0.903

1250 supervised target 0.323 0.463 0.839

Mean Teacher source 0.304 0.421 0.863

Mean Teacher target and gaps 0.369 0.453 0.902

Mean Teacher target 0.330 0.469 0.834

supervised source 0.291 0.403 0.782

supervised target and gaps 0.354 0.433 0.858

1500 supervised target 0.305 0.445 0.742

Mean Teacher source 0.312 0.427 0.854

Mean Teacher target and gaps 0.374 0.456 0.898

Mean Teacher target 0.334 0.472 0.826

supervised source 0.288 0.407 0.820

supervised target and gaps 0.347 0.352 0.435

1750 supervised target 0.304 0.446 0.786

Mean Teacher source 0.320 0.433 0.851

Mean Teacher target and gaps 0.387 0.466 0.895

Mean Teacher target 0.347 0.480 0.819

Table 5: Comparative analysis of Supervised and MT models on disjoint performance of tokens

in source and target sentence.
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