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Abstract
Speech anonymisation prevents misuse of spoken data by removing
any personal identifier while preserving at least linguistic content.
However, emotion preservation is crucial for natural human-
computer interaction. The well-known voice conversion technique
StarGANv2-VC achieves anonymisation but fails to preserve
emotion. This work presents an any-to-many semi-supervised
StarGANv2-VC variant trained on partially emotion-labelled
non-parallel data. We propose emotion-aware losses computed on
the emotion embeddings and acoustic features correlated to emotion.
Additionally, we use an emotion classifier to provide direct emotion
supervision. Objective and subjective evaluations show that the
proposed approach significantly improves emotion preservation over
the vanilla StarGANv2-VC. This considerable improvement is seen
over diverse datasets, emotions, target speakers, and inter-group
conversions without compromising intelligibility and anonymisation.
Index Terms: speech anonymisation, voice conversion, StarGAN

1. Introduction
The increasing use of cloud-based speech devices, such as smart
speakers, raises concerns about the protection and confidentiality
of the sensitive data being collected and used [1, 2]. In case of data
compromise, the spoken data can be exploited to bypass the speaker
verification systems or impersonate authorised users [3, 4]. This
makes it crucial to anonymise the utterance before being shared
across systems, such that the speaker cannot be traced back. Voice
conversion (VC) achieves anonymisation by modifying the utterance
of the source speaker to sound like another target speaker while pre-
serving at least linguistic content. In cases where the response of a
speech device is driven by the end-user’s emotional state, the preser-
vation of emotion also becomes pertinent, e.g., a digital assistant
responding with comforting words when the user sounds sad.

Many VC approaches using parallel data have been proposed,
such as parametric statistical modelling-based [5, 6], non-parametric
exemplar-based [7, 8] and deep neural network-based [9]. Parallel
data comprise utterances having the same linguistic content from
both the source and target speakers, which is arduous and expensive
to acquire. Therefore, recent works focus more on non-parallel data,
as it is simpler to obtain and better represents real-life situations
where any arbitrary speech requires anonymisation.

A few non-parallel VC approaches [10, 11] use phonetic
posteriorgrams (PPGs) as one of the inputs to the encoder-decoder
framework to generate translated acoustic features. These
methods tend to produce mispronunciations due to alignment
issues [12], resulting in degraded prosody, which provides cues
about emotion [13]. The non-parallel variational autoencoder (VAE)
approaches [14, 15] typically disentangle the content and speaker

*These authors contributed equally to this work

henc

Generator

hF0

Encoder Decoder

Pre-trained
F0 Network

Speaker/Emotion code

hsc
Quality

Discriminator/Classifier

Speaker / Emotion 
Style Encoder

Acoustic Feature (AF) Loss 

Emotion Speaker

Emotion Embedding Loss

Source
Emotion ?

Real or
Fake ?r ...

...

Converted 
(Yr) 

Source 
(Xs) 

Reference
(Xr) Source

Speaker ?

Figure 1: The proposed framework adapted from StarGANv2-
VC [19]. The blue components do not belong to StarGANv2-VC.
In voice conversion, the style encoder captures speaker embeddings.
The same framework is used for emotion conversion, where the style
encoder learns emotion embeddings. The dashed components are
not used in the emotion embedding training.

embeddings using a reconstruction loss and relevant constraints
to remove speaker information. The VAE-based approaches are
prone to spectrum smoothing, which leads to a buzzy-sounding
voice, dampening the emotion [16]. A plethora of generative
adversarial network (GAN) based VC approaches [16, 17] were
proposed, which can use non-parallel data due to cycle-consistency
loss [18]. GANs overcome the over-smoothing effect through a
discriminator, which teaches the generator to produce natural sound-
ing conversions. Recently, StarGANv2-VC [19], a non-parallel
any-to-many GAN-based VC technique has been proposed. The
method is attractive due to its fast real-time conversion and naturally
sounding samples with high intelligibility. However, the model
fails to preserve the source speaker’s emotion, especially for diverse
emotions and acoustic conditions such as high varying pitch.

Thus, we propose the novel “Emo-StarGAN” in this paper,
which is an any-to-many semi-supervised emotion-preserving
variant of StarGANv2-VC. Two kinds of emotion supervision
are proposed: (i) direct: through an emotion classifier, which
provides feedback to the generator when the emotion ground truth
is available. (ii) indirect: through losses computed between source
and conversions using emotion embeddings or acoustic descriptors
correlated with emotion, improving the conversion quality for
diverse target speakers. Extensive evaluation is conducted on
three datasets, diverse target speakers, emotions, and various
group conversions such as accent and gender. Both objective and
subjective evaluations portray that Emo-StarGAN improves emotion
preservation significantly over StarGANv2-VC for all cases, without
hurting the naturalness, intelligibility and anonymisation.

2. StarGANv2-VC Architecture
Our method is based on the StarGANv2-VC architecture, as shown
in Figure 1. A single generator G is trained to convert a source
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utterance Xs to the target utterance Yr, conditioned on the speaker
style embedding hsc. The speaker style embedding hsc represents
speaker characteristics, such as accent. The speaker style-encoder
SE produces the speaker style embedding hsc using the target
speaker’s mel-spectrogram Xr having the style information and,
target speaker’s code r (one-hot encoding). SE comprises multiple
convolutional layers which are shared by all the speakers, followed
by a speaker-specific linear projection layer, which outputs an
embedding hsc for each target speaker. A mapping network M
having the same architecture as SE is trained along with it, which
inputs a random latent vector instead of a reference mel-spectrogram,
providing diverse style representation for all speakers. The converted
sample produced by the generator Yr = G(Xs,hF0,hsc) captures
the style of the target speaker-code r and has the linguistic content
of the source utterance Xs. In order to produce F0-consistent
conversions, the generator is fed with source-pitch embedding hF0

along with source utterance Xs and style representation hsc. The
pitch embedding hF0 is derived from the convolutional outputs
of a pre-trained F0 network [20]. The framework consists of
one discriminator D and one adversarial source speaker classifier
Cs. D is the typical adversarial discriminator, which encourages
the generator to produce plausible conversions. Cs has the same
architecture as D, which is trained to enforce the generator to
produce conversions having no details about the source speaker.

3. Emo-StarGAN
Recent VC works [21] including StarGANv2-VC have primarily
focused on generating naturally sounding voices with correct
linguistic content, and not much on emotion preservation. The
proposed Emo-StarGAN aims to anonymise an utterance by
modifying the source speaker’s timbre, while preserving the source’s
linguistic and emotional content es.

3.1. Direct Emotion Supervision

Our framework uses an additional emotion classifier Ce which
provides direct emotion supervision for utterances having emotion
labels, as shown in Figure 1. Ce encourages the generator to produce
emotion-consistent samples, such that the source and target samples
have the same emotion. When Ce is trained, the generator weights
are fixed, and the emotion classifier is trained to ascertain the emo-
tion of the source utterance through the classification loss Lemod.

Lemod=EXs,es

[
CrossEntropy(Ce(Xs),es)

]
(1)

In contrast, during the training of the generator, Ce weights are
fixed, and the generator is encouraged to produce samples having
the same emotion as the source through the loss Lemog.

Lemog=EXs,es,hsc

[
CrossEntropy(Ce(G(Xs,hsc)),es)

]
(2)

3.2. Indirect Emotion Supervision

Incorporation of explicit emotion supervision for the converted
samples becomes challenging due to the unavailability of the
emotion labels. Therefore, it becomes pertinent to measure the
emotion discrepancy between the source and the converted samples
through representations of emotion. To this end, we propose two
ways to measure discrepancies of the emotional content: acoustic
features correlated to emotion and deep emotion embeddings.

3.2.1. Emotion-aware Acoustic Feature Loss

We propose acoustic feature loss Laf , an unsupervised loss com-
puted between the acoustic descriptors of the source and converted
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Figure 2: Automatic emotion embedding extraction. N denotes the
number of emotions classes.

samples, as shown in Equation 3, where AF denotes an acoustic fea-
ture. The acoustic features are correlated with emotion and require

Laf =EXs,hsc

[
∥AF(Xs)−AF(G(Xs,hsc))∥1

]
(3)

being differentiable to provide feedback to the network. Based
on [22], the acoustic descriptors can be categorised into two groups,
spectral and non-spectral. Spectral features add additional informa-
tion about higher-level harmonics to that already existing in pitch,
which provides pertinent cues for the emotional state [23]. Many
works [23, 24] report spectral features to be better discriminators
in between emotions that have different degree of polarity (valence)
but similar intensity (arousal), such as anger and happiness. The
non-spectral features are energy or voicing-related, which are
typically prosodic and arousal indicative [25]. We consider two
descriptors from each of the two categories. All descriptors are
extracted over voiced segments using 50% overlapping windows,
to capture the local transients.
• Spectral centroid: Higher spectral centroid values indicate emo-

tions positioned in the upper-right quadrant of the valence-arousal
2D plane, such as excited or happy [26]. Lower values indicate
subdued emotions, such as sad.

• Spectral kurtosis: Spectral kurtosis shows the existence of
increased energy concentration within specific frequency ranges.
Further, it can detect the series of transients [27], which can make
it a good indicator of emotions, especially the ones having subtle
intonation changes, such as in the emotion surprise.

• Loudness: Loudness is an arousal indicative non-spectral feature,
which correlates stronger to emotion than root-mean-square
energy due to the perceptual A-weighting [28]. Louder sounds
elicit stronger emotional responses (high arousal), and vice-versa.

• Change in F0 (∆F0): ∆F0 is a prosodic non-spectral feature,
which captures change in intonation, where a considerable
change implies stronger emotions, such as anger or excited [28].

3.2.2. Emotion Embedding Loss

Another way of incorporating indirect emotion supervision is
through latent emotion representations. The emotion embedding
loss Lembed penalises the discrepancy between the latent emotional
content of the source and converted samples.

Lembed=EXs,hsc

[
∥Emb(Xs)−Emb(G(Xs,hsc))∥1

]
(4)

The emotion embedding is obtained by a two-stage training
on categorical emotion-labelled data. At Stage I, the vanilla
StarGANv2-VC model is trained for emotion conversion task
rather than voice conversion, as shown in Figure 1. The emotion
style-encoder learns N×64 embeddings of emotion classes, where
N denotes the number of emotion classes. However, this framework
cannot be used in the VC training, as an emotion label (code) is
required to generate the emotion embeddings, which is unknown
for the converted samples. Therefore, the pre-trained emotion
style-encoder from Stage I is fine-tuned for automatic embedding
extraction, as shown in Figure 2. At Stage II, the pre-trained emotion
style-encoder is extended with fully-connected layers and a softmax
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distribution is generated over all emotions. Further, the softmax
score is element-wise squared to encourage sparsity. Finally, a dot
product between the sparse 1×N score and the encoder output is
performed to produce a 1×64 dimensional latent emotion represen-
tation. This fine-tuned model is used in the VC training to extract
the emotion embeddings from both source and converted samples.

3.3. Training Objectives

The components in Emo-StarGAN are trained with the proposed
emotion-aware losses along with the losses from StarGANv2-VC.
The generator is trained with loss LG (Equation 5) comprising the
proposed emotion classification loss Lemod, unsupervised emotion-
aware losses (Laf and Lembed), and losses from StarGANv2-VC.

LG= min
G,SE,M

Ladv+λafLaf+λembedLembed+ (5)

λemogLemog+λaspkLaspk+λstyLsty

−λdsLds+λF0LF0+λasrLasr+λcycLcyc

The losses from StarGANv2-VC: Ladv is the typical GAN adversar-
ial loss, Laspk is the adversarial source speaker classification loss,
Lsty ensures that the style representations can be recreated from the
generated samples, Lds is maximised to ensure samples generated
from different speaker style-codes sound different, LF0 encourages
the generator to produce F0-consistent samples, Lasr ensures
source and converted samples have the same linguistic content and
Lcyc is the cyclic consistency loss, which preserves the non-timbre
features of the source. λaf , λembed, λemog, λaspk, λsty, λds,
λF0, λasr and λcyc are hyperparameters of the corresponding
losses. The discriminator and classifiers are trained using the
objective function shown in Equation 6, where λspk and λemod are
hyperparameters for the source speaker classification loss Lspk and
emotion classification loss Lemod, respectively.

LD= min
D,Ce,Cs

−Ladv+λemodLemod+λspkLspk (6)

4. Experiment and Results
4.1. Dataset and Training details

English utterances from VCTK [29], emotional speech dataset
(ESD) [30] and Ryerson audio-visual database of emotional
speech and song (RAVDESS) [31] datasets are considered. VCTK
has no emotion ground truth, whereas ESD and RAVDESS are
labelled with categorical emotions, where we consider five emotion
classes common to both, e ∈{happy, sad, anger, neutral, surprise}.
The utterances are re-sampled to 24kHz and randomly split as
0.8/0.1/0.1 (train/validation/test). All VC models are trained on 10
randomly selected speakers from VCTK and ESD each.

Our model has the same number of trainable model parameters
as StarGANv2-VC. Each model is trained on log mel-spectrograms
derived from 2 second audio samples, for 100 epochs with a batch
size of 16. Each training takes around 36 hours on average to com-
plete on A100 (80GB). We use pre-trained F0 and automatic speech
recognition models from [19]. AdamW optimizer [32] is used with
a learning rate of 10−4. We set λaspk=0.1,λemod=0.01,λemog=
0.01,λsty = 1,λds = 1,λF0 = 5,λasr = 1,λcyc = 1,λembed = 2
and λaf =2. A HiFiGAN [33] vocoder is trained on the mentioned
datasets, which generates one-minute long waveform from the
converted mel-spectrogram in 0.1 seconds on the A100. The
emotion conversion model is trained using cross-validation only
on ESD, using training split 0.9/0.1 (train/validation), and using the
same setup as the VC models. The best model is selected based on
the lowest mean absolute error (MAE). To evaluate emotion preser-
vation, a Support Vector Machine (SVM) based emotion classifier
is trained as in [34] on source utterances of ESD and RAVDESS.

4.2. Evaluation Setup
We evaluate our approach using both objective and subjective
measures. We consider StarGANv2-VC as the baseline. Further, we
perform experiments to find the best emotion-preserving acoustic
feature AFbest. We train our model Emo-StarGAN using the
combination of emotion classifier loss, emotion embedding loss
and acoustic feature loss using AFbest. For all experiments, an
equal number of female (F) and male (M) speakers are randomly
selected as source and target. From each of the three datasets,
10 source speakers are considered. For ESD and RAVDESS, 5
utterances for each source speaker and each emotion in e are
selected. We convert source utterances from ESD using ESD target
speakers (ESD→ESD) for within-corpus and RAVDESS→ESD
for cross-corpus scenarios. We select 6 target speakers from ESD,
leading to 1500 conversions for each scenario. For the inter-accent
conversion use case, VCTK→VCTK conversion is performed,
where 10 utterances from each source speaker and accent group
(British, American, and Canadian) and 6 target speakers having
British accent are considered, leading to 1800 conversions.

Objective Evaluation: Emotion preservation is evaluated in
four ways: (i) Accorig: SVM classification accuracy, considering the
emotion labels of the source utterance provided in the dataset, (ii)
Accsvm: SVM classification accuracy, considering SVM prediction
on source utterance as the emotion ground truth, (iii) Embedding
MAE: mean absolute error between the source and converted
emotion embedding outputs, (iv) Pitch correlation coefficient (PCC):
measures the degree of intonation preservation [35], which provides
cues to emotion preservation [36]. The voice quality is measured
by predicted mean opinion score (pMOS) [37]. We report the
character error rate (CER) using the transcriptions from Whisper
medium-english model [38]. Equal error rate (EER) measures
anonymisation using the state-of-the-art speaker verification model
ECAPA-TDNN [39]. For the metrics Accorig, Accsvm, PCC,
pMOS, and EER higher values indicate better performance, and
for Embedding MAE and CER lower values are preferable.

Subjective evaluation: We consider 100 randomly selected
conversions for subjective evaluation as it is expensive and time-
consuming to perform for all. 138 online subjects participated in the
user study through the Crowdee1 platform. For emotion preservation
assessment, subjects were presented with the source utterance and
two options: conversions from baseline and Emo-StarGAN. Further,
they were asked to choose one of the options having similar rhythm,
intonation, pauses, stresses and intensity as the source, irrespective
of voice quality and the linguistic content. The subjects were asked
to rate on a 5-point scale for naturalness (1: bad to 5: excellent). For
speaker anonymisation, the raters were presented with the converted
sample and another utterance from the source speaker, and were
asked to rate on a 5-point scale (1: different to 5: similar). At least
three subjects rated each task. The raters were not informed whether
the samples are original or converted. They were further provided
with anchoring examples and hidden trapping questions. Raters
caught in the latter twice were rejected from evaluations.

4.3. Results and Discussion

Selection of Acoustic Feature (AF) and Ablation: In order to get
AFbest, we train the baseline with acoustic feature loss, where the
AF is replaced with one of the acoustic features mentioned in Sec-
tion 3.2.1. Among all acoustic features, spectral kurtosis preserves
emotion the most (30.1% Accorig, 80.4 PCC), also outperforming
the baseline (19% Accorig, 78.1 PCC). The PCC values of the other
acoustic features are similar, having range 80.0 to 80.4. Accorig for

1https://www.crowdee.com/
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Table 1: Objective evaluation. Mean and standard deviation (in brackets) reported. Emo-SG denotes Emo-StarGAN. ‘All Conv.’ includes
all conversions. Type column denotes special cases, such as source-emotion, source-accent → target-accent, source and target same genders
(M→M, F→F), source and target different genders (M→F, F→M) or, ‘All’ including all sub-groups.

Source - Target Type Accorig [%] ↑ Accsvm [%] ↑ Embedding MAE [×102] ↓ PCC [×102] ↑ pMOS ↑ CER [%] ↓ EER [%] ↑
Baseline Emo-SG Baseline Emo-SG Baseline Emo-SG Baseline Emo-SG Baseline Emo-SG Baseline Emo-SG Baseline Emo-SG

All Conv. All 20.2 72.4 39.4 87.1 48.9 (11.1) 40.8 (10.9) 78.9 (12.9) 84.3 (10.6) 3.68 (0.41) 3.72 (0.44) 3.42 (8.39) 2.57 (7.08) 49.63 49.64

ESD
↓

ESD

All 19.1 68.9 20.1 94.7 43.4 (17.0) 31.5 (14.4) 78.1 (14.0) 84.9 (10.4) 3.75 (0.43) 3.90 (0.4) 4.27 (8.79) 3.56 (7.75) 45.86 45.45

Happy 10.7 69.7 13.1 85.7 43.3 (17.5) 31.0 (14.9) 76.7 (16.7) 84.0 (11.7) 3.60 (0.45) 3.76 (0.41) 5.21 (9.36) 4.92 (8.67) - -
Sad 15.7 96.2 15.7 96.2 40.7 (15.3) 32.4 (14.5) 82.3 (12.7) 87.5 (10.0) 3.76 (0.39) 4.07 (0.38) 2.47 (6.15) 2.38 (6.0) - -
Surprise 0.0 16.0 2.1 97.9 47.1 (15.5) 29.5 (11.6) 77.6 (11.2) 85.4 (7.4) 3.64 (0.38) 3.74 (0.35) 7.43 (11.17) 5.16 (9.3) - -
Angry 10.6 94.0 10.6 95.0 43.7 (17.8) 31.1 (14.5) 76.1 (14.8) 85.6 (9.6) 3.77 (0.39) 3.86 (0.34) 3.53 (8.02) 2.96 (7.01) - -
Neutral 79.3 99.3 79.7 99.3 40.7 (18.8) 34.5 (16.5) 78.0 (12.8) 80.4 (12.6) 4.08 (0.37) 4.19 (0.34) 1.63 (5.73) 1.69 (5.93) - -

Different gender 18.6 63.3 19.6 94.2 50.05 (15.7) 38.8 (14.0) 76.9 (14.7) 86.7 (9.0) 3.71 (0.44) 3.92 (0.37) 4.82 (9.09) 2.53 (5.70) - -
Same gender 19.5 78.6 21.1 96.3 37.6 (15.1) 25.35 (10.3) 79.1 (13.2) 82.7 (11.6) 3.78 (0.41) 3.80 (0.39) 3.78 (8.48) 3.27 (7.02) - -

RAVDESS
↓

ESD

All 27.8 49.2 41.4 76.0 52.5 (7.41) 44.7 (7.66) 86.2 (10.8) 88.0 (9.3) 3.44 (0.41) 3.49 (0.41) 4.57 (9.89) 4.52 (5.7) 50.19 50.44

Happy 0.0 14.0 63.0 96.0 51.2 (6.5) 44.2 (5.8) 89.0 (7.2) 90.7 (6.4) 3.35 (0.35) 3.40 (0.33) 5.19 (9.42) 2.95 (6.49) - -
Sad 0.0 59.0 9.0 73.0 55.1 (9.5) 44.8 (6.5) 76.1 (16.2) 81.0 (15.0) 3.20 (0.47) 3.13 (0.45) 13.11 (12.08) 8.96 (2.31) - -
Surprise 0.0 0.0 4.0 34.0 52.3 (6.1) 41.2 (6.4) 89.2 (6.2) 89.2 (7.5) 3.37 (0.25) 3.35 (0.34) 4.60 (8.35) 3.71 (5.45) - -
Angry 51.0 93.0 51.0 93.0 50.8 (7.5) 44.6 (9.1) 90.7 (5.4) 91.8 (4.2) 3.74 (0.33) 3.84 (0.31) 2.00 (8.50) 5.65 (3.02) - -
Neutral 80.0 88.0 80.0 88.0 53.1 (6.2) 48.8 (8.1) 86.1 (8.2) 87.7 (5.1) 3.34 (0.29) 3.48 (0.37) 2.63 (9.07) 1.28 (3.86) - -

Different gender 33.7 43.1 46.8 70.0 54.7 (5.2) 32.2 (6.3) 87.2 (7.1) 88.6 (6.9) 3.46 (0.42) 3.46 (0.40) 5.74 (11.26) 3.75 (2.50) - -
Same gender 24.2 52.9 38.1 72.9 51.6 (7.1) 43.1 (6.1) 85.6 (12.5) 87.6 (10.5) 3.46 (0.42) 3.51 (0.40) 3.73 (8.86) 4.97 (2.35) - -

VCTK
↓

VCTK

All - - 56.8 90.6 50.8 (13.0) 46.4 (12.1) 78.4 (11.8) 83.1 (10.8) 3.51 (0.36) 3.57 (0.37) 3.27 (8.31) 1.63 (5.54) 50.13 49.90

British → British - - 48.9 91.6 51.9 (13.4) 46.9 (12.6) 77.5 (10.8) 82.5 (9.7) 3.53 (0.35) 3.62 (0.36) 4.16 (9.5) 2.19 (6.45) - -
American → British - - 66.5 89.9 50.0 (12.3) 46.3 (11.7) 80.0 (11.6) 84.4 (10.4) 3.55 (0.38) 3.49 (0.37) 2.58 (7.59) 1.25 (5.07) - -
Canadian → British - - 53.3 89.9 50.0 (13.3) 45.9 (12.0) 77.2 (13.8) 81.5 (13.1) 3.52 (0.36) 3.49 (0.37) 2.85 (6.86) 1.28 (4.24) - -

Different gender - - 55.8 90.4 48.0 (12.0) 44.0 (10.0) 79.1 (10.8) 83.5 (9.9) 3.45 (0.36) 3.53 (0.36 3.62 (8.53) 1.76 (5.59) - -
Same gender - - 59.5 91.0 51.0 (10.5) 46.1 (9.1) 77.9 (12.5) 82.7 (11.4) 3.55 (0.36) 3.61 (0.38) 2.99 (8.11) 1.53 (5.50 - -

the other acoustic features are, spectral centroid (24.1%), loudness
(15.4%) and ∆F0 (20.1%), which portrays the spectral features to
be more emotion preserving than the non-spectral ones, compliant
with [23]. The ablation study (Table 2) shows that the unsupervised
loss Lembed contributes the most to emotion preservation, even
more than the direct supervision by emotion classifier Ce, this
might be attributed to Ce suffering from confirmation bias on noisy
emotion labels. Further, we observe that each individual proposed
technique preserves emotion more than the baseline.

Table 2: Ablation results. Mean and standard deviation (in brackets)
reported. Laf uses spectral kurtosis as the acoustic feature. Baseline
is trained with ‘none’ of the emotion-aware losses.

Method Accorig [%] ↑ PCC [×102] ↑ pMOS ↑ CER [%] ↓ EER [%] ↑
Baseline 20.2 78.9 (12.9) 3.68 (0.41) 3.42 (8.39) 49.63
Emo-StarGAN 72.4 84.3 (10.6) 3.72 (0.44) 2.57 (7.08) 49.64

Lembed 51.0 81.3 (12.2) 3.90 (0.40) 3.12 (7.97) 48.09
Ce 49.3 81.0 (12.3) 3.50 (0.46) 3.50 (7.76) 45.83
Laf 30.1 80.4 (11.8) 3.89 (0.37) 5.52 (11.68) 47.64

Comparison with Baseline: Our method Emo-StarGAN outper-
forms the baseline with respect to emotion preservation for all sce-
narios (Table 1), which is also statistically significant (p < 0.001 for
paired t-test on PCC and Embedding MAE columns). The subjective
evaluation (Table 3) also shows that our model is voted more emotion
preserving (72%) compared to the baseline (28%). Surprise is re-
ported as one of the most difficult emotions in speech emotion recog-
nition tasks [40]. Our method also achieves lower accuracy for ‘sur-
prise’ compared to other emotions, where Accorig scores for ESD and
RAVDESS are only 16% and 0% respectively. However, preserva-
tion seems much higher considering Accsvm scores, 97.9% ESD and
34% for RAVDESS. Our framework improves emotion preservation
significantly for the cross-corpus (RAVDESS→ESD) scenario with
respect to all metrics, especially for sad, where the emotion preserva-
tion improves from 0% to 59% (Accorig), 9% to 73% (Accsvm), 55.1
to 44.8 (Embedding MAE) and 76% to 81% (PCC). Considering
inter-accent cases, our model produces a high Accsvm score of 89.9%
for both American → British and Canadian → British conversions,
and also improves other quality metrics. For both gender conver-
sion cases, similar observations are made. Our method outperforms
the baseline mostly with respect to voice quality, intelligibility, and

anonymisation, which is further supported by the subjective results.
The code and demo audio samples can be found online2.

Table 3: Results of subjective evaluation. Mean and standard
deviation (in brackets) reported. Emo-SG denotes Emo-StarGAN.
Emotion v. column denotes the number of times a model is preferred
over the other. Higher Speaker diss. indicates better anonymisation.

Type MOS ↑ Emotion V. ↑ Speaker Diss. ↑
Baseline Emo-SG Baseline Emo-SG Baseline Emo-SG

All 4.09 (0.93) 4.20 (0.93) 327 840 2.4 (1.4) 2.6 (1.5)

Different gender 4.20 (0.94) 4.24 (0.93) 154 429 2.7 (1.4) 2.9 (1.5)
Same gender 4.05 (0.94) 4.19 (1.01) 173 411 1.9 (1.3) 2.3 (1.5)

5. Conclusions
To the best of our knowledge, we propose the first emotion-
preserving any-to-many semi-supervised voice conversion
framework Emo-StarGAN. We introduce novel unsupervised
acoustic descriptor-based and deep emotion losses, which can
be used with any other framework. Extensive experiments show
that Emo-StarGAN preserves emotion significantly better than
the state-of-the-art VC method StarGANv2-VC over seen source
speakers, cross-corpus conversions, different genders, accents and
emotions. Subjective results show that our method even achieves
higher MOS and anonymisation scores. As future work, we plan
to improve the emotion preservation for complex emotions by
incorporating losses beneficial to a specific emotion. Further, we
would like to extend the method with emotion embeddings learned
from multi-label and arousal-valence labelled datasets.

6. Acknowledgements
This research has been partly funded by the Federal Ministry of
Education and Research of Germany in the project Emonymous
(project number S21060A) and partly funded by the Volkswagen
Foundation in the project AnonymPrevent (AI-based Improvement
of Anonymity for Remote Assessment, Treatment and Prevention
against Child Sexual Abuse).

2https://github.com/suhitaghosh10/emo-stargan.git

2096



7. References
[1] C. Wienrich, C. Reitelbach, and A. Carolus, “The trustworthiness of

voice assistants in the context of healthcare investigating the effect
of perceived expertise on the trustworthiness of voice assistants,
providers, data receivers, and automatic speech recognition,” Frontiers
in Computer Science, vol. 3, p. 685250, 2021.
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