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ABSTRACT

With a rapidly increasing amount and diversity of remote
sensing (RS) data sources, there is a strong need for multi-
view learning modeling. This is a complex task when con-
sidering the differences in resolution, magnitude, and noise
of RS data. The typical approach for merging multiple RS
sources has been input-level fusion, but other - more advanced
- fusion strategies may outperform this traditional approach.
This work assesses different fusion strategies for crop clas-
sification in the CropHarvest dataset. The fusion methods
proposed in this work outperform models based on individ-
ual views and previous fusion methods. We do not find one
single fusion method that consistently outperforms all other
approaches. Instead, we present a comparison of multi-view
fusion methods for three different datasets and show that, de-
pending on the test region, different methods obtain the best
performance. Despite this, we suggest a preliminary criterion
for the selection of fusion methods.

Index Terms— Crop Classification, Remote Sensing,
Data Fusion, Multi-view Learning, Deep Learning.

1. INTRODUCTION

Many phenomena in our environment are studied through
multiple sources, e.g. a farm that could be observed by satel-
lites with different sensors. The idea is to corroborate and
complement the information between observations. Deep
learning models have been widely used to model complex re-
lationships between input data and target tasks. However, the
situation described above poses a machine learning scenario
of combining information coming from multiple sources,
named multi-view or multi-modal fusion learning. In the
context of Remote Sensing (RS), relevant challenges arise re-
garding the different types of sensor resolution. For instance,
RS views could have different spatial or temporal resolu-
tions, even different spectral bands (bandwidth or numbers of
channels), calibration, and amount of noise.
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Data View AA AUC Entropy

Kenya
DEM 48.0± 0.9 41.1± 0.9 83.1± 3.8

Weather 50.0± 0.0 37.1± 0.0 72.2± 8.7
Radar 63.0± 1.0 66.8± 2.9 69.2± 3.8

DEM 61.2± 2.6 65.0± 1.8 94.6± 1.3
Togo Weather 55.6± 3.5 59.3± 5.4 98.6± 0.7

Optical 80.0± 1.3 88.6± 0.7 62.7± 2.1

Global
DEM 64.9± 0.1 69.7± 0.1 91.1± 1.1

Weather 72.7± 0.8 81.2± 0.6 74.1± 1.4
Optical 78.7± 0.8 86.7± 0.8 59.6± 2.0

Table 1: Predictive performance of a model trained with indi-
vidual views. The view with the best individual performance
for the task is highlighted in bold.

In RS, there could be cases when a model trained with in-
dividual views (single-view model) gives predictions similar
to a random classifier. See AA scores in Tab. 1 of DEM and
Weather views for an example. We remark this as the main
difference between multi-view learning in RS [1] to conven-
tional multi-modal learning [2] (e.g. with image, text, and
audio). This suggests that individual RS views may not con-
tain enough information to achieve an optimal classification
for some tasks, and that multi-view fusion is required.

The most common approach used in the literature to
merge the information on multi-view RS is the input-level
fusion [3, 4], i.e. align the input views to the same resolu-
tion (e.g. spatial and temporal interpolation) and concatenate
them. However, some works have shown that the hetero-
geneity of RS views could be better exploited by using other
fusion approaches [3, 5]. In this work, we compare different
multi-view fusion methods for the crop classification task.
The key contributions are as follows:

• A new assessment of different fusion strategies on the
recent CropHarvest dataset [4].

• Achieve state-of-the-art results without pre-training in
the African testing regions (Kenya and Togo).

• Open-source code to ensure reproducibility of our ex-
periments and findings.1.

1https://github.com/fmenat/MultiviewCropClassification



2. CASE STUDY

For this case study, we use a recent benchmark dataset on
crop classification called CropHarvest [4]. Each sample
corresponds to a yearly time-series at the pixel-level. The
samples are labeled as positive or negative for specific crop
categories, i.e. the task corresponds to identifying whether
a pixel contains a specific (or any) growing crop during a
season. There are 5 views as input data coming from 4
RS sources: Sentinel-2, Sentinel-1, ERA5, and SRTM. The
multi-band optical view with 11 spectral channels was ob-
tained from Sentinel-2 at 10-60m/px spatial resolution and 5
days temporal resolution. The 2-band radar view (VV and
VH) was obtained from Sentinel-1 at 10m/px and a variable
revisit time. The 2-band weather view (precipitation and tem-
perature) was obtained from ERA5 at 31km/px and hourly
temporal resolution. The 1-band Normalized Difference Veg-
etation Index (NDVI) was calculated from the optical view.
The 2-band Digital Elevation Map (DEM) view (elevation
and slope) was obtained from SRTM at 30m/px and contains
topography information (static across time). The views are
aligned by monthly averaging (temporal) and 10-m interpo-
lating (spatial).

Out of the total 95186 samples in the benchmark, we only
use the 65243 samples that have all views available. The
dataset contains two geographical testing regions in Africa:
Kenya and Togo. We also include a global testing region,
which consists of all the training samples across the globe.
Tab. 2 displays the distribution of the samples per region.

Data Total Training Testing
Kenya 2217 (37.8%) 1319 (20.0%) 898 (64.0%)
Togo 1596 (51.1%) 1290 (55.0%) 306 (34.6%)

Global 65243 (66.3%) 45723 (66.4%) 19520 (66.0)

Table 2: Number of samples in each data region. The per-
centage of positive data is shown in parentheses.

3. METHODS

We compare three main fusion strategies highlighted in [1,
3, 5]: input, feature, and decision level fusion. In addition,
multiple losses model [6] and an ensemble-based aggregation
[7] are compared. An illustration of these methods is in Fig. 1.

Input: a concatenation of input views with a resolution
alignment is directly fed to a single model. Feature: it uses
view-encoder models to map each view to a new feature space
(named view-representation), followed by a merge function
and fully connected layers. We test different merge func-
tions. Simple summary functions (Feature-S) and with gated
modules (Feature-G). The gated module adaptively fuses
the view-representations through a weighted sum, where the
(attention) weights are computed for each sample [8]. The

weights could be modeled for each view or for each feature
and view combination (feature-specific weight). Decision:
it uses parallel models that process each view, outputs the
crop probability (decision), and then averages to yield the
aggregated prediction. Multi-Loss: based on the feature-
level fusion, it includes one auxiliary predictive model that
is fed with a single view representation and yields the crop
classification. For training the auxiliary model for each view,
a loss function is added to the optimization (with a weight of
0.3, [6]), so the model has to learn the task based on the indi-
vidual views in addition to the fused information. Ensemble:
similar to decision-level fusion, but on a two-step basis. The
first step corresponds to training a model for each view (with-
out fusion), while the second step aggregates (averages) the
predicted probabilities from individual models at test time.

We use a recurrent neural network with 2 GRU layers and
64 units as view-encoders. While for prediction, we stack 1
fully connected layer with 64 hidden units. We include 20%
of dropout during training and batch-normalization on all lay-
ers, as suggested [9]. The optimization is carried out with
the cross entropy loss and ADAM optimizer with a 256 batch
size. We train the models for 1000 epochs maximum with an
early stopping criterion, patience of 5, and delta loss of 0.01
on the validation set (a 10% randomly selected from training).

4. EXPERIMENTS

We use two classification metrics [4], Average Accuracy
(AA), and Area Under the Curve (AUC). We also include the
entropy of the predicted crop probability to analyze the un-
certainty of the model. Based on the variability of the weights
initialization and stochastic optimization, we repeat the ex-
periment 10 times and report the average and std. deviation.

By selecting the best combination of the merge function
and the gate type for Feature methods (see Section 4.2 for the
corresponding experiment), we compare all fusion methods in
Tab. 3. We observe that methods using multiple models often
obtain better classification performance than a single model
(Input fusion). Besides, fusions at the feature-level are always
in the top 3 best performances and have the lowest std. devi-
ation. The evidence shows the effectiveness of multi-view
fusion, since the top 3 fusion methods have better classifica-
tion performance than individual views (from Tab. 1) in all
cases. In terms of relative improvement, 100(a − b)/b, when
we compare the best fusion method (a) with the best model on
an individual view (b), a relative improvement of 6%, 5%, and
4% is obtained in AA for Kenya, Togo, and Global, respec-
tively. While comparing the best fusion (a) with the worst
individual model (b), we get a relative improvement of 39%,
37%, and 27% in AA for Kenya, Togo and Global. These
results suggest that significant improvements can be obtained
by exploring different fusion strategies.

Regarding entropy, the Feature-G method obtains the low-
est uncertainty in its classification predictions. It is possible
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Fig. 1: Fusion methods compared in this manuscript. Green arrows represent the forward pass of the models (left to right),
while red arrows represent the backward pass. VE stands for view-encoder and PM for predictive model. Images from [1].

that, by letting the model choose how it will combine the
views for each sample (i.e. the adaptive fusion in the gated
module proposal [8]), it becomes more confident in its deci-
sion. In most methods, fusing multiple views decreases the
uncertainty regarding individual views. However, with some
methods the entropy increases, e.g. with Ensemble. Interest-
ingly, when merging towards the output-level, the model in-
creases the entropy, e.g. the order of increasing entropy goes
like Input, Feature-S, and then Decision. This suggests that
the method becomes more uncertain when it has few layers to
exchange information between the views.

4.1. State-of-the-Art comparison

The Tab. 4 compares our results with the state-of-the-art in-
cluding the binary F1 score. We show that, by selecting an
appropriate model for fusion, we outperform previous work.
Indeed, the best method is different for each region and met-
ric. In Kenya, we obtain the best AUC with Feature-G, and
the best binary F1 with Feature-S, while in Togo with the En-
semble method.

4.2. Ablation

Firstly, we compare different merge functions for the feature-
level fusion with simple functions (Feature-S) in Tab. 5. The
average operation has the best classification performance
for Kenya and Togo, while the concatenation has it for the
Global region. These best performing approaches also have
the lowest entropy. In Tab. 6 we compare different gate types
in the feature-level fusion with gated modules (Feature-G).
The standard gated module [8] where the concatenation of

Data Method AA AUC Entropy
Input 61.3± 7.5 70.0± 7.2 72.9± 6.1

Feature-S 63.0± 5.1 71.6± 3.7 73.9± 4.4
Kenya Feature-G 66.5± 3.6 71.8± 3.5 71.6± 5.8

Decision 57.5± 7.6 63.2± 7.0 76.8± 7.6
Ensemble 56.0± 5.3 69.5± 1.4 83.5± 2.2

Multi-Loss 64.8± 5.2 71.6± 4.1 73.4± 4.3

Input 79.7± 1.5 89.0± 1.3 54.3± 4.2
Feature-S 79.9± 1.0 88.9± 0.8 57.6± 4.1

Togo Feature-G 78.1± 1.8 87.6± 1.2 52.1± 7.8
Decision 81.5± 1.6 89.5± 0.5 63.7± 2.5
Ensemble 84.0± 1.0 90.9± 0.5 93.5± 0.6

Multi-Loss 78.2± 6.1 88.6± 1.7 60.4± 12.2

Input 81.2± 0.9 89.7± 0.8 52.7± 2.5
Feature-S 81.3± 1.1 89.6± 1.1 53.8± 3.8

Global Feature-G 82.1± 1.4 90.6± 1.1 51.1± 4.3
Decision 79.1± 1.4 87.8± 1.3 59.4± 4.6
Ensemble 79.2± 0.8 87.5± 1.5 85.4± 0.6

Multi-Loss 81.6± 1.4 90.1± 1.1 52.3± 3.7

Table 3: Prediction performance of multi-view fusion meth-
ods. The top 3 best results for each test are underlined. The
mean and std. deviation between multiple runs is shown.

the view-representation is used to compute the weights is
Gated-C, while Gated-A uses the average. The GatedF uses
a feature-specific weight in the gated module. Similarly to
the Feature-S method, the average obtains better performance
than concatenation. Nevertheless, including the feature-
specific weight improves overall. Given that each feature
might contain different information, the method allows more
flexibility when combining the view’s information.



Data Method AUC binary F1

Kenya
Random Forest [4] 57.8± 0.6 55.9± 0.3

LSTM [4] 32.9± 1.1 78.2± 0.0
Feature-S 71.6± 3.7 79.4± 3.3
Feature-G 71.8± 3.5 77.2± 4.1

Togo
Random Forest [4] 89.2± 0.1 75.6± 0.2

LSTM [4] 86.1± 0.2 72.0± 0.5
Ensemble 90.9± 0.5 77.8± 1.3

Table 4: State-of-the-art prediction performance on the
CropHarvest dataset. The best average result is in bold.

Data Merge AA AUC Entropy

Kenya
Average 63.0± 5.1 71.6± 3.7 73.9± 4.4

Maximum 55.4± 8.0 58.9± 16.7 85.3± 7.7
Product 50.0± 0.0 45.6± 12.8 99.7± 9.9

Concatenate 64.0± 5.2 67.5± 9.8 79.8± 0.4

Togo
Average 79.9± 1.0 88.9± 0.8 57.6± 4.1

Maximum 64.7± 9.0 76.0± 7.6 86.9± 9.9
Product 50.0± 0.0 49.9± 8.0 99.5± 0.5

Concatenate 79.5± 1.9 88.5± 1.8 59.2± 3.7

Global
Average 80.5± 1.8 89.1± 1.5 54.0± 3.3

Maximum 81.1± 1.1 89.5± 1.0 53.6± 2.7
Product 79.5± 1.2 88.8± 0.9 62.9± 4.6

Concatenate 81.3± 1.1 89.6± 1.1 53.8± 3.8

Table 5: Merge function comparison in the Feature-S
method. The best average result for each test is underlined.

Data Type AA AUC Entropy

Kenya
Gated-C 57.9± 6.1 64.9± 7.2 68.0± 7.0
Gated-A 58.5± 7.5 66.4± 7.8 72.3± 6.6

GatedF-A 66.5± 3.6 71.8± 3.5 71.6± 5.8

Gated-C 75.6± 5.8 86.3± 2.4 55.7± 13.6
Togo Gated-A 77.1± 5.3 87.3± 2.4 55.0± 13.6

GatedF-A 78.1± 1.8 87.6± 1.2 52.1± 7.8

Global
Gated-C 80.3± 1.9 88.8± 1.8 53.3± 2.5
Gated-A 81.6± 0.7 90.0± 0.6 53.1± 3.5

GatedF-A 82.1± 1.4 90.6± 1.1 51.1± 4.3

Table 6: Gate types comparison in the Feature-G method.
The best average result for each test is underlined.

5. FINAL REMARKS

We present an extensive comparison of fusion methods in a
crop classification benchmark, achieving state-of-the-art per-
formance in the African testing regions without pre-training.
Even though our results are promising regarding different fu-
sion strategies, there are some approaches that decrease the
classification performance regarding individual views, while
increasing prediction uncertainty. The best performing fu-
sion methods usually depend on the region where they are
applied. However, we suggest the following preliminary cri-
terion. When testing in a region with a large positive area
(a higher percentage of positively labeled pixels in the re-

gion, e.g. Kenya/Global), the methods with feature-level ex-
change between views (Feature-G, Feature-S, Multi-Loss) are
the best. Whereas, when testing in a region with a small posi-
tive area (e.g. Togo), the methods with feature-level exchange
get worse, and exchanging at the output level becomes the
best (Ensemble, Decision). Anyhow, questions remain open
whether the same results apply to other RS applications.
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