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Abstract

In this work, a machine learning methodology is proposed for the issue of

color space Euclidization. Given a color difference formula as reference distance

law, the Euclidization task consists in finding an injective transformation from

the original color space into a real vector space and the corresponding inverse

transformation, such that the Euclidean distances in the embedded color space

align with the reference color distances. For this, artificial neural networks are

devised as function approximators for the color space transformations being

sought. Training these neural networks is accomplished through unsupervised

learning, making use of random sampling and gradient descent. As key disagree-

ment measure, either the (symmetric) relative isometric disagreement or the

standardized residual sum of squares (STRESS) index is considered at a time

and incorporated as part of the optimization criterion into the objective function.

Comparative evaluation is carried out on well-established color distance laws,

including the CIELAB-based DE2000 color difference formula. The evaluation

results indicate significant performance advantages of the proposed approach

over previous contributions.
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1 | INTRODUCTION

The derivation of perceptually uniform color spaces is
considered one of the key issues in colorimetry. Back in
1943, based on the experimental data collected by
MacAdam,1 Siberstein2 constructed a curvilinear coordi-
nate system on the CIE 1931 xy chromaticity diagram
whose coordinate curves are parallel to the principal axes
of the MacAdam ellipses. He also sketched a method for
constructing a surface embedded in three-dimensional
Euclidean space from this coordinate system, such that
perceived color distances are faithfully represented by geo-
desics (shortest paths) on the surface. A key observation

was that the resulting surface could never be flat and that
its curvature would be of quite noticeable proportion. In
the following decades, extensive research has been con-
ducted on relating human visual color perception to a
specified color coordinate system, which led to color
models such as the CIELUV and CIELAB color spaces,3 as
well as the perceptually uniform color spaces (UCS) based
on the CIECAM024 and CIECAM165 color appearance
models. Accompanying the development of such models,
refined color difference formulas were derived, augmenting
the original color space and thereby allowing for more accu-
rate predictions of visually perceived color differences. As a
well-known instance of this, a series of color difference
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formulas based on the CIELAB color space came into exis-
tence, including the CMC,6 BFD,7 CIE94,8 DIN99d,9 and
DE200010 color difference formulas, with the last one cur-
rently being recommended as standard by the International
Commission on Illumination (CIE) for small color differ-
ences below 5 CIELAB-units (cf. Reference 11). One
major concern over these performance-enhancing color
difference formulas consists in the non-Euclidean nature
of the corresponding metric spaces, which is rather unde-
sirable in practical applications. If the original color space
endowed with the considered color difference formula
(so-called color difference system) could be embedded
isometrically into a Euclidean space, a new perceptually
uniform color space would emerge. At this point, it
should be noted that, in a sense, the work by Silberstein2

already represents an early instance of an attempt at find-
ing such an isometric embedding, albeit directly using
experimental data in absence of a reference color differ-
ence formula.

In general, in order for an isometric embedding into a
Euclidean space (so-called Euclidization) to exist, the
color difference formula has to satisfy the following
conditions:

1. By definition, an isometric embedding is a map
between two metric spaces that preserves distances.
Thus, for an isometric embedding to exist, it is neces-
sary that the color difference formula satisfies the
defining properties of a metric, that is, positivity, sym-
metry in its two arguments, and the triangle inequal-
ity. (This condition is not always fulfilled for existing
color difference formulas. For instance, CMC and
CIE94 are asymmetric in their two arguments; when
being Euclidized, this may be compensated for
through symmetrization such as in Reference 12.)

2. While the original color space can always be trivially
embedded into a metric space through the identity
mapping once the underlying color difference formula
indeed defines a metric, limiting the choice of codo-
main to a Euclidean vector space adds further con-
straints on the color difference formula. When the
dimension of the codomain is not specified, these con-
straints are difficult to characterize, but in the case
where the codomain is of dimension three (i.e., of the
same dimension as that of the original color space), a
differential geometric characterization is available (cf.
Reference 13, Thm. 7.10): The original color space
endowed with the color difference formula as metric
is isometrically embeddable into the Euclidean vec-
tor space ℝ3 if and only if there exists a smooth struc-
ture13(Appendix A) and a Riemannian metric13(Ch. 2) on
the color space turning the color space into a Rie-
mannian manifold13(Ch. 2) such that

a. the given color difference formula is exactly the
Riemannian distance function (i.e., the shortest
path metric, cf. Reference 13, Thm. 2.55) of the
Riemannian manifold and

b. the Riemannian manifold has zero curvature13(Ch. 7).

Concerning condition (a), the ansatz of modeling the
space of perceived colors as a Riemannian manifold is at
least over a century old14 and many of today's color dif-
ference formulas can be seen to at least asymptotically
(i.e., as color difference tends towards zero) agree with a
Riemannian distance function. Concerning condition (b),
for the CIELAB-based color difference formulas, CMC,
CIE94, and DE2000, Urban et al.12(sec. 1.A) analyzed the
curvature of the ab-plane of CIELAB and showed that
the corresponding Riemannian metrics exhibit nonzero
Gaussian curvature, which poses an obstruction to the
existence of an isometric embedding of CIELAB into ℝ3

with respect to these color difference formulas.
In view of the above limitations while attempting to

embed a color difference system isometrically into a
Euclidean space, efforts have been made to identify
nearly-isometric embeddings. That is, given a color differ-
ence formula as reference distance law, an injective
transformation from the original color space into a
Euclidean space is being sought, such that the deviation
of the resulting Euclidean distances from their respective
reference color distances is minimized with respect to a
certain disagreement measure. Approaches to this type of
color space embedding problem include, but are not lim-
ited to: analytical methods, for example, References
15,16, and numerical methods, for example, References
12,17. Among these, the analytical approaches basically
aim at working out the antiderivative of the reference
color difference formula, which is only feasible for rather
simple color distance laws, whereas the numerical
methods mainly rely on coupled local optimizations on
meshes complemented by interpolation techniques.

This work continues the previous efforts on identifying
mathematical approximations for embedding existing non-
Euclidean color difference systems isometrically into
Euclidean ones, referred to as color space Euclidization in
the sequel. While the derivation of the color difference for-
mula ΔE itself is based on experimental visual data (i.e.,
perceived color differences ΔV ), the corresponding color
space Euclidization constitutes a theoretical approach
that is detached from actual visual experiments.
Performance-wise, the perceptual non-uniformity of the
Euclidized color difference system (i.e., deviation of
ΔEEuclidean from ΔV ) is upper-bounded by the perceptual
non-uniformity of the reference color difference formula
(i.e., deviation of ΔE from ΔV ) plus the isometric dis-
agreement arising from the color space embedding (i.e.,
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deviation of ΔEEuclidean from ΔE). Therefore, if the iso-
metric disagreement in the Euclidization step could be
minimized, the resulting new color space would largely
preserve the perceptual uniformity of the underlying
color difference formula while benefiting from the inher-
ent advantages of a vector space representation, which
constitutes the general motivation of color space Euclidi-
zation. From a practical point of view, functioning as a per-
ceptually uniform color space, the Euclidized color
difference system would offer more possibilities than the
original one endowed with non-Euclidean color difference
formula in a number of applications. For instance, the vec-
tor space representation of perceptual uniformity would
allow for linear interpolation between color coordinates
within the new space while preserving the perceived color
difference ratios, for example, the midpoint between two
points within the new vector space could be used for repre-
senting the perceived average color of the two correspond-
ing color samples. In the context of image processing, in
contrast to the color difference formula merely serving the
purpose of a metric, the invertible transformation associ-
ated with the color space Euclidization would allow for
encoding color information into a Cartesian coordinate sys-
tem to work with and decoding back into the original color
coordinate system. Typical instances benefiting from this
are represented by image quantization and lossy image
compression, where transforming the initial color space
(e.g., sRGB or CIELAB) into a linear working domain that
is arranged in a perceptually uniform manner would allow
for determining threshold values for just-noticeable or
-tolerable color distance through equal-sized l2-spheres,
based on which an efficient and perception-based infor-
mation reduction could be implemented (cf. e.g., Refer-
ence 18, sec. 1 for a more detailed discussion).

In recent years, with the rising availability of computa-
tional power, machine learning techniques have come into
use in a variety of research fields and real world applica-
tions such as image processing, biomedicine, and virtual
reality. The main aim of this work is to explore the capa-
bility of such techniques in tackling the above color space
Euclidization problem. For this, a machine learning
approach making use of artificial neural networks is pro-
posed herein. In general, neural networks are function
approximators that typically are composed of intermediate
mappings (layers), each combining an affine transforma-
tion with adjustable parameters (weights or kernels, and
bias) and a fixed nonlinear transformation (activation
function). Given an optimization criterion (loss function),
the parameters of a neural network are adjusted to best fit
all the available training examples through stochastic gra-
dient descent (training), cf. for example, Reference 19.
When applied to the present Euclidization task, the neural
network under consideration represents a continuously

differentiable color space transformation. Concerning the
optimization criterion employed during training, it is natu-
ral to define this in accordance with a pre-determined key
performance metric. In the literature, the two most consid-
ered disagreement measures in the context of color space
Euclidization are the relative isometric disagreement (cf.
e.g., References 15,17) and the standardized residual sum
of squares (STRESS) index (cf. e.g., References 12,20).
While the former is a common relative error function, the
latter is a statistical measure of absolute disagreement.
Without attempting to judge which one of these disagree-
ment indices is more appropriate for evaluating the effi-
cacy of a nearly-isometric color space embedding, in this
work, they are optimized separately through training and
the resulting neural network color space transformations
are evaluated for comparison. In this exposition of the
method, the DE2000, CMC, and CIE94 color difference
formulas are taken as example color distance laws for eval-
uation. Compared to previous contributions, the proposed
machine learning approach applies to a broader range of
settings and proves to be more powerful when evaluated
with various disagreement metrics, regardless of the choice
between the aforementioned training criteria.

In order to avoid confusion, it should be emphasized
that the approach to color space Euclidization merely
aims at achieving an alignment of the Euclidean metric
on the embedded color space with the metric induced by
the reference color distance law, which is independent of
the efficacy of the underlying color difference formula
itself in predicting actual visual differences.

The remainder of the article is organized as follows. In
Section 2, a mathematical formulation of the problem of
color space Euclidization is presented. Section 3 provides a
general machine learning methodology for the considered
Euclidization problem, including the architecture of the
employed neural networks, the random sampling proce-
dure for generating training examples, the loss functions
associated with the aforementioned disagreement mea-
sures, and the training algorithm that is based on stochastic
gradient descent and fortified with certain regularization
measures. In Section 4, a series of example scenarios
selected for training and evaluation are introduced. The lay-
out of the neural network color space transformations and
the training configurations employed for those example sce-
narios are specified in Section 5. The evaluation results are
presented in Section 6. Section 7 includes the following dis-
cussions: the computational effort required during the infer-
ence stage of the proposed neural network approach is
discussed in Section 7.1; the perceptual uniformity of the
Euclidized DE2000 color difference system is evaluated on
experimental visual data in Section 7.2; as an outlook,
potential challenges that may be encountered when carry-
ing over the present approach to the issue of color space
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modeling with experimental visual data are addressed in
Section 7.3; for expanding perspective, potential intersec-
tions of the present work with a selection of machine learn-
ing approaches to perception-based image processing issues
are discussed in Section 7.4. Section 8 concludes the article.

Throughout this work, k � k refers to the Euclidean
norm and bold symbols refer to multidimensional vectors
or tensors.

2 | PROBLEM OF COLOR SPACE
EUCLIDIZATION

Let ΔE :ℝ3�ℝ3!ℝþ be the reference color difference
formula. Let err : 0,∞ð Þ� 0,∞ð Þ!ℝþ, r,r0ð Þ 7!err r,r0ð Þ
denote the reference error function that measures the dis-
crepancy between two metrics. For a color space transfor-
mation f :ℝ3!ℝd with d≥ 3, define the isometric
disagreement function, disgfΔE :ℝ

3�ℝ3!ℝþ, associated
with the reference error function err � , �ð Þ via

disgfΔE x,yð Þ≔ err k f xð Þ� f yð Þ k,ΔE x,yð Þð Þ,

for all x,y�ℝ3 with x≠ y. Further, let R⊆ℝ3 denote the
reference region and PΔx denote the probability distribu-
tion of the test color difference vector in the original color
space. For predetermined ΔE, err, R, and PΔx, and given
the dimension of the codomain, d≥ 3, the problem of
nearly-isometric color space embedding according to the
reference distance law ΔE consists in finding an injective
transformation, f ΔE :ℝ

3!ℝd, such that

Z
R
Δx�PΔx disgf ΔEΔE x,xþΔxð Þ

� �2� �
dx¼! min, ð1Þ

where, Δx�PΔx refers to the expectation with respect to
the probability measure PΔx. Correspondingly, the
inverse mapping of f ΔE is to be approximated by a trans-
formation, ef ΔE : f ΔE ℝ3ð Þ!ℝ3, such thatZ

R
k ef ΔE ∘ f ΔE� �

xð Þ�xk2dx¼! min: ð2Þ

In this work, either of the following two types of iso-
metric disagreement function is considered at a time and
incorporated as reference disagreement measure into the
embedding problem:

• The first type is related to the symmetric relative error,
err : r,r0ð Þ 7!max r,r0f g=min r,r0f g�1. The correspond-
ing relative isometric disagreement function reads as

disgfΔE x,yð Þ≔ max k f xð Þ� f yð Þ k,ΔE x,yð Þf g
min k f xð Þ� f yð Þ k,ΔE x,yð Þf g �1, ð3Þ

for any x,y �ℝ3 with x≠ y, and f :ℝ3!ℝd. In this
case, problem (1) translates to minimizing the mean
squared relative disagreement between the Euclidean
distances in the embedded color space and the dis-
tances according to the reference color difference for-
mula. The relative isometric disagreement is a
common relative error function and has been incor-
porated as key performance measure into the objec-
tive function in various forms in previous
contributions, cf. for example, References 15,17.
Since the L2 space lies midway between the L1 and
L∞ spaces in the sense of interpolation theory (cf.
Reference 21), the squared error minimization pro-
posed herein can be considered as a compromise
between the minimizations of mean and maximum
relative isometric disagreement.

• The second type is related to the absolute error,
err : r,r0ð Þ 7! j r� r0 j. The corresponding absolute iso-
metric disagreement function reads as

disgfΔE x,yð Þ≔ jk f xð Þ� f yð Þ k�ΔE x,yð Þ j , ð4Þ

for any x,y �ℝ3, and f :ℝ3!ℝd. When taking this
function as the key disagreement measure in (1) and
approximating the double integral therein through
Monte-Carlo simulation with a finite number of ran-
dom samples (law of large numbers), the respective
optimization problem translates to minimizing the
standardized residual sum of squares (STRESS)
index20 while excluding any scale ambiguity inher-
ent in that index. More details on this equivalence
are provided in Section 3.4.2. In colorimetry, the
STRESS index is considered a statistically more reli-
able alternative to the PF/3 index22 for evaluating
the similarity between two color difference datasets
(cf. Reference 20). Apart from the correspondence
with the STRESS index, the mean squared absolute
error is a common indicator for average discrepancy
and has been employed as optimization criterion in
previous contributions to the issue of color space
Euclidization, cf. References 12,18.

Depending on the nature of the underlying color dif-
ference formula, the choice between the above reference
disagreement measures as optimization criterion may have
a notable impact on the resulting color space transforma-
tion, which will be elucidated in the evaluation section.
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The introduction of the probability measure PΔx in
(1) mainly aims at a unified description of the Euclidiza-
tion problem in terms of the reference range and weights
of color distances. Typically, the color difference vector
Δx in (1) is decomposed into its length r and direction v,
that is, Δx¼ r �v, with r and v independently distributed
according to their respective probability measures Pr and
Pv . For instance, the direction component v is usually
assumed to follow the uniform distribution on the unit
sphere S2 ⊆ℝ3; the absolute color difference r may be
uniformly distributed on an interval rmin ,rmaxð � as in Ref-
erence 12, or normally distributed as in Reference 17
where the probability density function of Pr was used as
weighting factor in the objective function.

3 | GENERAL METHODOLOGY

In this section, a general machine learning methodology
is proposed for the color space Euclidization problem.
The basic idea herein is to exploit the excellence of
artificial neural networks in the task of function approxi-
mation and training these properly so as to obtain the
desired color space transformations.

Being intended for readers who are not yet familiar
with machine learning techniques, the general approach
is presented in a self-contained manner, with most of the
recurring basic notions and terminology regarding artifi-
cial neural networks and training principles introduced
in a general fashion in Sections 3.1 and 3.2. Readers who
are familiar with machine learning techniques may skip
most parts of Sections 3.1 and 3.2, except for the thoughts
behind the somewhat unconventional use of residual
connections in-between fully connected layers in the pre-
sent application (cf. second-last paragraph of Section 3.1).
Furthermore, in order to enable the machine learning
expert to quickly skim through Sections 3.3–3.5, some
distinctive characteristics of the proposed approach
tailored to the present Euclidization issue are highlighted
as follows:

• Training relies on unsupervised learning through ran-
dom sampling, which is based on Monte-Carlo simula-
tion following the law of large numbers (cf. Section 3.3);
in particular, no external labels are required and overfit-
ting may not occur.

• In accordance with the distinction of cases in terms of
the reference isometric disagreement measure (recall
(3) and (4)), two different loss functions are employed
for the corresponding optimization problems (cf.
Section 3.4). In particular, for minimization with
respect to the relative isometric disagreement, a non-
obvious choice of loss function is made, which acts as

an infinitely differentiable proxy for the original
non-differentiable (symmetric) relative disagreement
function (cf. discussion in Section 3.4.1); for minimi-
zation with respect to the absolute isometric dis-
agreement, the inherent relationship between the
minimization of mean squared absolute disagree-
ment and that of STRESS is elaborated (cf. discus-
sion in Section 3.4.2).

• A composed training procedure is proposed where the
two central optimization problems, (1) and (2), are
considered jointly and tackled in alternation through
certain regularization measures, which aids in pre-
venting potential invertibility issues and speeding
up training (cf. Section 3.5).

3.1 | Feedforward neural network with
residual connections

In the present application, fully connected neural net-
works with feedforward architecture augmented by resid-
ual connections are employed. Subsequently, a precise
description of the related transformations is provided.

Let f NN be the output function of a neural network
and let uin �ℝI , uout �ℝJ , and ξ�ℝP denote the input
and output vectors, and the vector of all parameters of
the neural network, respectively. For a basic feedforward
fully connected neural network, the output function is of
the form

f NN :ℝI�ℝP!ℝJ

uin,ξ
� � 7!uout,

ð5Þ

with

f NN¼ f M�1ð Þ ∘ � � � ∘ f 0ð Þ, ð6Þ

where each intermediate layer, f mð Þ :ℝI mð Þ !ℝJ mð Þ
for

m¼ 0,…,M�1, is a transformation parametrized through

u mð Þ 7!u mþ1ð Þ ¼ f mð Þ
actv

XI mð Þ�1

i¼0
u mð Þ
i w mð Þ

i,j þb mð Þ
j

 !( )J mð Þ�1

j¼0
,

ð7Þ

with w mð Þ �ℝI mð Þ�J mð Þ
and b mð Þ �ℝJ mð Þ

referred to as
weight matrix and bias vector, respectively, and
f mð Þ
actv :ℝ!ℝ representing the activation function of the
layer, which is typically defined as a nonlinear almost-
everywhere differentiable function operating component-wise.

8 AHRENS ET AL.
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In particular, it holds that u 0ð Þ ¼uin, u Mð Þ ¼uout,

ξ¼ w mð Þ,b mð Þ
� �n oM�1

m¼0
, and J mð Þ ¼ I mþ1ð Þ for all

m¼ 0,…,M�2. In (7), the output dimension, J mð Þ, is also
called the size or number of channels of the layer; the
input dimension of the first layer, I, and the output
dimension of the last layer, J , are referred to as the num-
ber of input channels and number of output channels of
the neural network, respectively. A layer whose output is
not the final output of the entire neural network, that is,

f mð Þ for m<M�1 in (6), is called a hidden layer. The
total number of layers, M, is referred to as the depth of
the neural network.

For the present Euclidization task, the solutions to
the optimization problems (1) and (2) are each approxi-
mated by a feedforward neural network where the num-
bers of input and output channels of the neural network
are set to I≔ 3,J≔ dð Þ for the embedding problem (1)
and vice versa, I≔ d,J≔ 3ð Þ for the inverse problem (2).
Throughout the neural network transformation (except
for at the output layer), the hyperbolic tangent function,
tanh, is chosen as the activation function, which is
defined as

tanh xð Þ¼ ex� e�x

exþ e�x
for x �ℝ:

Compared to other common choices such as the recti-
fied linear unit (ReLU), the hyperbolic tangent is an ana-
lytic function, which implies the infinitely differentiable
nature of the resulting color space transformation, as
opposed to the piecewise-smooth transformations devised
in previous contributions.12,17

On top of the basic fully connected layers, the hidden
layers employed in the present application are endowed
with so-called residual connections. Keeping the above
notations for the parameters and layer indices and
assuming that M is an even number and the sizes of
channels satisfy I 2lþ1ð Þ ¼ J 2lþ2ð Þ for all l¼ 0,…,M=2�2,
each group of two adjacent layers is considered as a
building block, called residual layer, and the input vector
to each block, denoted by eu 2lþ1ð Þ, is additionally propa-
gated through shortcut connections within the block, as
illustrated in Figure 1A. The transformation of the resid-
ual layer indexed by 2lþ1,2lþ2½ � for each l then reads aseu 2lþ1ð Þ 7! eu 2lþ3ð Þ with

eu 2lþ3ð Þ≔ f 2lþ2ð Þ
actv eu 2lþ2ð Þ �w 2lþ2ð Þ þb 2lþ2ð Þ

� �
þ eu 2lþ1ð Þ

� �
,

where, eu 2lþ1ð Þ 7! eu 2lþ2ð Þ follows the same transformation
as in (7).

Originally, residual connections were introduced for
the purpose of improving gradient propagation within a
deep convolutional neural network, cf. Reference 23. In
the present application, on the other hand, employing
residual layers mainly aims at a relatively parsimonious
parametrization for the sake of saving computational
effort. More specifically, as illustrated through the transi-
tion from (B) to (A) in Figure 1, when inserting a small
mid-layer between two adjacent fully connected layers of
equal size, the total number of weight parameters is
reduced, as long as the in-between layer is smaller than
half the size of the outer layers. However, because of the
dimensionality reduction in the mid-layer, employing
such a layout without modification entails the so-called
bottleneck effect in general and may lead to a decline in
performance; as a countermeasure, introducing skip con-
nections between the outer layers within such an archi-
tecture aids in mitigating the bottleneck effect while
maintaining the sleekness of the original reduced-size

(A)

(B)

FIGURE 1 Comparison: residual versus densely connected

layers.
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layout, which in particular yields a residual building
block as introduced above (cf. Reference 23 for a similar
argument). Moreover, from a heuristic point of view, the
present Euclidization problem can be thought of as look-
ing for a neural network color space transformation that
comprises some linear distortions (e.g., linear embedding
or shear) and a (higher-dimensional) nonlinearly dis-
torted identity mapping, which, respectively, can be
expressed in terms of the linear parts of the input and
output layers, and the operations within a residual build-
ing block. In this sense, the aforementioned potential
bottle-neck issue mainly affects the component of non-
linear distortions within the entire color space transfor-
mation, which is not expected to cause a significant
increase in the overall isometric disagreement. In fact, as
depicted in Figure 2, experimentation in this work
reveals that, despite the concerns over its inherent spar-
sity, the proposed residual architecture even exhibits
slightly better performance and faster convergence com-
pared to its densely connected counterpart.

The neural network layout employed in the example
scenarios for evaluation is determined in consideration of
performance, computational efficiency, and training
speed, which will be presented in Section 5.1 and dis-
cussed in Section 7.1.

3.2 | Basic principles of stochastic
gradient descent

The algorithm proposed for training the neural network
color space transformations is built on stochastic gradient
descent (SGD). Basically, training with SGD requires an

almost-everywhere differentiable neural network output
function with respect to all parameters (which is fulfilled
in the architecture introduced in Section 3.1), a set of
training examples, and an almost-everywhere differentia-
ble loss function.

The set of training examples consists of pairs of input
vectors to the neural network and target values towards
which the neural network is to be trained. The total
number of available training examples may be finite, as
is the case with supervised learning where a fixed train-
ing dataset is randomly partitioned into mini-batches
during each training epoch, or infinite, as is the case
with the present approach where a mini-batch of train-
ing examples is generated through random sampling for
each parameter update (unsupervised learning). A
detailed description of the data generation procedure
will be presented in Section 3.3.

A loss function measures the distance of the neural
network output from the training target and serves as an
indicator for the current approximation error. In the con-
text of color space Euclidization, the shape of the loss
function depends on the choice of the reference disagree-
ment measure (recall (3) and (4)) as well as possible regu-
larization measures. This will be further specified in
Sections 3.4 and 3.5.

In SGD, the loss function is evaluated mini-
batch-wise and minimized iteratively by moving the
parameter vector of the neural network in the direc-
tion of the negative gradient. Let f NN � ,ξð Þ be the neural
network output function with parameter vector ξ (recall
(5)) and let f loss denote the loss function. In the update
step with index ι, given the corresponding mini-batch
of N ιð Þ-many training examples denoted by

uin,ι,n,utarget,ι,n
� �� 	N ιð Þ�1

n¼0 , the parameter vector ξ is
adjusted through

ξ ξ� γ

N ιð Þ
XN ιð Þ�1

n¼0
rξf loss f NN uin,ι,n,ξ

� �
,utarget,ι,n

� �
,

where, γ>0 is a tunable hyperparameter, referred to as
learning rate, and the gradient can be computed by
means of backpropagation which is an instance of reverse
mode automatic differentiation based on the chain rule,
cf. for example, Reference 19, Ch. 4. Throughout all
experiments in this work, the Adam algorithm is
employed, which is a refined version of SGD, incorporat-
ing an adaptive moment estimator into the update rule
(cf. Reference 24 for more details).

Following the above general principles of training
with SGD, the upcoming subsections are devoted to the
individual components of the training procedure devised
for the present Euclidization problem.

FIGURE 2 Course of mean squared relative isometric

disagreement while training embedding neural networks according

to the DE2000 color difference formula, where the hidden layers

consist of either two densely connected layers of size 45:45 or a

residual building block of size 45:15:45.
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3.3 | Generation of training examples

In the proposed machine learning approach, training
examples for both the color space embedding problem
and the corresponding inverse approximation are gener-
ated through random sampling on the original color
space.

For the color space embedding problem, random sam-
ples are generated with the aim of approximating the
double integral in (1) through Monte-Carlo simulation
(law of large numbers), which is performed as follows:

1. For each mini-batch indexed by ι, draw independently
N ιð Þ-many color centers, xι,nf gN ιð Þ�1

n¼0 , according to the
uniform probability distribution on the reference
region R⊆ℝ3.

2. For each color center xι,n �R, draw independently
K ιð Þ-many color difference vectors, Δxι,n,k

� 	K ιð Þ�1
k¼0 ,

according to the probability distribution of the test
color difference vector1 PΔx.

3. Collect the above samples for all indices n and k into
a tensor of training inputs for mini-batch ι,

uι,n,k
� 	K ιð Þ

k¼0
n oN ιð Þ�1

n¼0
, through

uι,n,k ≔ xι,nþΔxι,n,k for k<K ιð Þ
uι,n,K ιð Þ≔ xι,n

: ð8Þ

When training a neural network color space embed-
ding with respect to a given color difference formula ΔE,
in each update step ι, the samples associated with each of
the selected color centers, uι,n,k

� 	K ιð Þ
k¼0 in (8) for an index

n, are processed through the embedding neural network,
from which the Euclidean distances of the transformed
samples from the transformed color center are com-
puted. The corresponding training loss is then deter-
mined by the disagreement of these Euclidean distances
with their respective reference color distances,

ΔE uι,n,k,uι,n,K ιð Þ� �� 	K ιð Þ�1
k¼0 , where the latter serve as the

training targets associated with the color cen-

ter xι,n¼uι,n,K ιð Þ.

Similarly, for the inverse approximation, training
examples are generated through random sampling fol-
lowing Step 1 of the above procedure, so as to approxi-
mate the integral in (2) through Monte-Carlo simulation.
While being processed through the composition of the
trained embedding neural network and the current
inverse neural network, the samples drawn from the orig-
inal color space serve as the inverse training targets and
the inverse training loss is determined by the total trans-
formation error of the joint neural network compared to
the identity mapping.

3.4 | Isometric disagreement functions
for training loss

Henceforth, for a fixed reference color difference formula
ΔE, let f ΔE � ,ξð Þ and ef ΔE � ,eξ� �

denote the neural
network output functions with parameter vectors ξ
and eξ employed for solving the embedding problem (1)
and the corresponding inverse approximation (2),
respectively.

As introduced in Section 3.2, training a neural net-
work relies on the SGD algorithm, which requires pri-
marily the specification of an almost-everywhere
differentiable loss function. In general, it is reasonable
to define the loss function in accordance with the key
performance metric being included in the optimization
criterion. Based on these considerations, when training
the embedding neural network f ΔE � ,ξð Þ for solving
problem (1), either of the following isometric disagree-
ment functions is considered at a time and employed for
computing the training loss:

• When minimizing in (1) the mean squared relative
isometric disagreement associated with (3), the loga-
rithmic error function, err : r,r0ð Þ 7! j ln r=r0ð Þ j, serves
as a proxy for the original symmetric relative error
function during training. The corresponding isometric
disagreement function is defined as

disgΔE x,y,ξð Þ≔ j ln k f ΔE x,ξð Þ� f ΔE y,ξð Þ k
ΔE x,yð Þ j , ð9Þ

for any x,y �ℝ3 with x≠ y.
• When minimizing in (1) the mean squared absolute iso-

metric disagreement associated with (4), the isometric
disagreement function employed during training reads as

disgΔE x,y,ξð Þ
≔ jk f ΔE x,ξð Þ� f ΔE y,ξð Þ k�ΔE x,yð Þ j , ð10Þ

for any x,y �ℝ3.

When training the inverse neural network transfor-
mation ef ΔE � ,eξ� �

for solving problem (2), the inverse
training loss is determined by means of the total transfor-
mation error function, defined as

gdisgΔE x,ξ,eξ� �
≔ kef ΔE f ΔE x,ξð Þ,eξ� �

�x k , ð11Þ

for all x�ℝ3.
In each parameter update step during training, the

respective disagreement function introduced above is
evaluated on the current mini-batch of random color

AHRENS ET AL. 11
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coordinates generated according to Section 3.3, from
which the mean squared value is determined and
minimized as training loss through gradient descent.
The rigorous parameter update rules including possible
regularization measures will be presented shortly (in
Section 3.5). Prior to this, the following explanatory
comments are provided for justifying the choice of the
isometric disagreement functions (9) and (10) in their
respective optimization contexts:

3.4.1 | Notes on minimization of mean
squared relative disagreement

In (9), the original symmetric relative error function,
r,r0ð Þ 7!max r,r0f g=min r,r0f g�1, is replaced by the loga-
rithmic error function, r,r0ð Þ 7! j ln r=r0ð Þ j, due to the fol-
lowing consideration: The symmetry of the symmetric
relative error in its arguments relies on the distinction of
cases inherent in the min and max expressions, whereas
the logarithmic error exhibits the same type of symmetry
while having an infinitely differentiable square; employing
the latter for gradient descent aids in avoiding potential
instabilities during training. Note that both of these error
functions are directly determined by the quotient of their
arguments r=r0 (as opposed to the absolute error function)
and minimized at r¼ r0, and their values are close to one
another near their joint minimum, as illustrated in Figure 3.

3.4.2 | Notes on minimization of mean
squared absolute disagreement

When evaluated on a finite number of samples, mini-
mizing the mean squared absolute disagreement corre-
sponds to minimizing the STRESS index. To

demonstrate this correspondence, let cΔEi

n o
i � I

and
ΔEif gi � I denote the estimated and reference color differ-
ences evaluated on a dataset indexed with i� I, respec-
tively. According to one of the equivalent definitions
given in Reference 20, eq. (9), the STRESS index betweencΔEi

n o
i � I

and ΔEif gi � I reads as

STRESS cΔEi

n o
i � I

, ΔEif gi � I

� �

≔

P
i � I

F2 cΔEi

n o
i � I

, ΔEif gi � I

� � cΔEi�ΔEi

� �2
P
i � I

ΔE2
i

0BB@
1CCA

1=2

,

ð12Þ

where the scale factor F2 cΔEi

n o
i � I

, ΔEif gi � I

� �
is

defined as

F2 cΔEi

n o
i � I

, ΔEif gi � I

� �
≔

P
i � I

cΔEiΔEiP
i � I

ΔE2
i

:

It is a straightforward exercise to show that the definition

of F2 cΔEi

n o
i � I

, ΔEif gi � I

� �
is such that the associated

STRESS index becomes minimal. This is done to remove

any dependency of STRESS cΔEi

n o
i � I

, ΔEif gi � I

� �
on the

global scale of cΔEi

n o
i � I

. If F2 cΔEi

n o
i � I

, ΔEif gi � I

� �
was set to 1 instead, the denominator in Equation (12)
would reduce to the sum of squared absolute errors; in

particular, STRESS cΔEi

n o
i � I

, ΔEif gi � I

� �2
is always

bounded from above by the mean squared absolute error
scaled by the normalizing factor #I=

P
i � IΔE

2
i which

does not depend on cΔEi

n o
i � I

. In fact, minimizing the

mean squared absolute error is equivalent to minimizing

the STRESS index and scaling cΔEi

n o
i � I

such that

F2 cΔEi

n o
i � I

, ΔEif gi � I

� �
becomes 1, that is, that the

global scale of cΔEi

n o
i � I

matches that of ΔEif gi � I .

When employed as a loss function, the mean squared
absolute disagreement based on (10) is preferred over the
STRESS index, as the scale ambiguity introduced by the
normalizing scale factor F2 would lead to a subsequent
target ambiguity in the output of the neural network
transformation and thereby entails the potential to desta-
bilize training. The additional constraint on the global
scale of the color difference estimates does not introduce
a significant extra burden to the training of theFIGURE 3 Illustration of relative error functions.
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embedding neural network, as it can trivially be satisfied
by rescaling the parameters of the output layer.

3.5 | Training procedure

In the subsequent description of the algorithm, all nota-
tions are carried over from Sections 3.3 and 3.4.

Basically, the joint neural network, ef ΔE f ΔE � ,ξð Þ,eξ� �
,

can be considered as an autoencoder2 where color coordi-
nates in the original color space are encoded into their
counterparts in the embedded space through the forward
path, f ΔE � ,ξð Þ, and then to be decoded back into them-

selves through the inverse path, ef ΔE � ,eξ� �
. Due to the

consideration of potential invertibility issues, the minimi-
zation of the inverse training loss is incorporated as regu-
larization measures into the training routine for the
forward path. This can be expressed in terms of two alter-
nating subroutines that are characterized by their respec-
tive parameter update rules as follows:

R1. Adjust the parameters of the forward path,
f ΔE � ,ξð Þ, by minimizing the forward loss.
That is, for the current mini-batch indexed
by ι, update the parameter vector ξ via

ξ ξ� γ �rξloss
ι ξð Þ,

with γ>0 and

lossι ξð Þ≔ mean
n¼0,…,N ιð Þ�1
k¼0,…,K ιð Þ�1

disgΔE uι,n,k,uι,n,K ιð Þ,ξ
� �2

,

where, disgΔE refers to the isometric dis-
agreement function defined in (9) or (10),

and uι,n,k
� 	K ιð Þ

k¼0
n oN ιð Þ�1

n¼0
are the randomly

generated training samples for mini-batch
ι as specified in (8) in Section 3.3.

R2. Adjust the parameters of the inverse path,ef ΔE � ,eξ� �
, while, if applicable, regularizing

the forward path, f ΔE � ,ξð Þ. That is, for the
current mini-batch ι, minimize the inverse
loss through

eξ
ξ

 !
 

eξ
ξ

 !
�

eγ �reξglossι eξ,ξ� �
β �rξ

glossι eξ,ξ� �
0B@

1CA, ð13Þ

with eγ >0, β≥ 0, and

glossι eξ,ξ� �
≔ mean

n¼0,…,N ιð Þ�1
gdisgΔE xι,n,ξ,eξ� �2

,

where, gdisgΔE refers to the total transforma-
tion error function defined in (11) and
xι,nf gN ιð Þ�1

n¼0 ⊆R are the training samples of
mini-batch ι generated for the inverse approx-
imation (recall last paragraph of Section 3.3).

In (13), the factor β acts as a tuning
parameter that balances the proportion
between the actual training loss and the regu-
larization term.

Starting off by training the embedding neural net-
work, f ΔE � ,ξð Þ, Subroutines R1 and R2 are run block-
wise and alternately, each for a pre-determined number
of iterations within the current rotation. The update of
parameters ξ is terminated if the performance of f ΔE � ,ξð Þ
is considered satisfactory (e.g., compared to baseline
methods) or no longer exhibits significant improvement.
Subsequently, if necessary, the inverse transformationef ΔE � ,eξ� �

is further trained by only iterating Subroutine

R2 with β≔ 0 in (13), until the total transformation accu-

racy of ef ΔE f ΔE � ,ξð Þ,eξ� �
reaches a predetermined refer-

ence value. The entire training procedure is summarized
in a concise form in Algorithm 1. In the pseudo code, the
integers I, #R1 ið Þ, and #R2 ið Þ are hyperparameters that
are to be tuned for each individual setting. Note that in
the case where β≔ 0 in (13) and the “while loop” in
Algorithm 1 is only run for a single iteration with
I≔ 1, the corresponding routine translates to training the
embedding and inverse neural network transformations
separately in succession without any regularization
measures.

The introduction of the above regularization mea-
sures primarily aims to prevent the embedding neural
network from being driven towards a noninjective trans-
formation. The key idea behind this consists in taking the
performance of the potential inverse transformation,ef ΔE � ,eξ� �

, as an indicator for the regularity (in particular
the injectivity) of the embedding transformation,
f ΔE � ,ξð Þ. In fact, when looking for a nearly-isometric
color space embedding by iterating Subroutine R1 alone,
the resulting neural network f ΔE � ,ξð Þ is trained to emu-
late the potentially rather complex characteristics of the
underlying reference color difference formula ΔE, which,
with rising number of iterations, increases the difficulty
of training the corresponding inverse transformation,ef ΔE � ,eξ� �

. In the worst-case scenario, training in this
manner may lead to local irregularities in the form
of large local approximation errors or even local

AHRENS ET AL. 13
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noninjectivities. Such irregularities may occur, for
instance, when it is possible to achieve a low average
loss over the entire color space at the price of sacrific-
ing the performance of the transformation f ΔE � ,ξð Þ
within a few extremely small regions, cf. Appendix A for
an example. As a countermeasure, through the alterna-
tion with Subroutine R2 and in particular the regulariza-
tion term therein (governed by factor β), the joint
transformation ef ΔE f ΔE � ,ξð Þ,eξ� �

considered as a whole is
driven towards the identity mapping and thereby, the for-
ward path f ΔE � ,ξð Þ is more likely to remain injective. It
is worth noting that training the forward and inverse
paths of the autoencoder ef ΔE ∘ f ΔE alternately as proposed
is reminiscent of the approach with generative adversar-
ial nets (GANs)25 in the sense that the two component
neural networks, f ΔE and ef ΔE, indeed operate against
one another during training. Figure 4 illustrates the
interaction between these two neural networks during
the alternations between Subroutines R1 and R2. Each
time switching to Subroutine R1, the performance of

the inverse path degrades with the growing complexity
of the forward path; vice versa, each time switching to
Subroutine R2, the minimization of the forward loss is
temporarily halted and small adjustments of the for-
ward path in favor of the inverse training are triggered
instead.

In general, the occurrence of invertibility issues
depends on the nature of the color difference formula
and the composition of the objective function.
Appendix A provides an instance of such where impos-
ing the proposed regularization measures is essential to
the injectivity of the embedding neural network trans-
formation. In cases where the invertibility issue is not of
concern, the regularization measures are optional;
however, when configured properly, including them in
the training routine may significantly speed up the
inverse training (typically time consuming), without
compromising the performance of the embedding trans-
formation, as demonstrated in Figure 5. (Notice that in
Figure 5A, the two courses of forward training loss
hardly differ from one another, which indicates that the
imposed regularization does not have a negative impact
on the embedding neural network; on the other hand,
in Figure 5B, the inverse training loss decreases faster
through the regularization measures.) Ideally, the pro-
gress of the inverse training is spread over the course of
the forward loss minimization such that the parameter
updates of both the embedding and inverse transforma-
tions are terminated simultaneously. Similarly to GANs,
the crucial point here is to figure out an appropriate pro-
portion between the forward and inverse routines
within each rotation (i.e., #R1 ið Þ :#R2 ið Þ½ � coupled with

ALGORITHM 1 Training algorithm.

[Correction added on 11 October 2023, after first Online
publication: The formatting of Algorithm 1 has been
corrected.]

FIGURE 4 Course of forward and inverse losses while training

an embedding neural network according to the DE2000 color

difference formula; only the first 8 rotations of Algorithm 1 are

depicted in the figure, where the forward-to-inverse ratio for

regularization is set to #R1 ið Þ :#R2 ið Þ½ �≔ 4k : 16k½ � for i<8.

14 AHRENS ET AL.
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γ,eγ,βð Þ). This will be clarified for the selected example
scenarios in Section 5.2.

4 | EXAMPLE SCENARIOS FOR
TRAINING AND EVALUATION

In order to assess the efficacy of the proposed machine
learning approach, the following instances of the Euclidi-
zation problem introduced in Section 2 are considered for
training and evaluation:

As example reference color distance law, ΔE, the CIE-
LAB-based color difference formulas, DE2000,10 CMC,6

and CIE948 are considered. The default dimension of the
embedding's codomain is d≔ 3. For comparative pur-
poses and in accordance with Reference 12, the reference
region is set to R≔ 0,100½ �� �128,128½ �2 in the CIELAB
coordinate space and the probability distribution of the
test color difference vector, PΔx, is defined as that of the

random vector Δx¼ r �v where the absolute color differ-
ence r follows the uniform distribution on rmin ,rmax½ � (in
CIELAB-units) and the direction vector v follows the uni-
form distribution on the unit sphere S2 ⊆ℝ3. Since the
selected reference color difference formulas are all
recommended for predicting small color differences
and only nonzero color difference is admissible for
evaluating the (symmetric) relative isometric disagree-
ment (recall (3)), the interval rmin ,rmax½ �≔ ε,5½ � with
ε≔ 10�3 is taken as the default range of the absolute
color difference r. Scenarios associated with the above
default settings are considered as primary cases, for
which neural network color space transformations are
trained with respect to both the relative and the absolute
disagreement measures (each at a time). On top of the
primary scenarios, for experimental purposes, embedding
neural networks are also trained for color differences
within rmin ,rmax½ �≔ 5,20½ � according to the DE2000 and
CIE94 color difference formulas, despite the lack of a
definitive statement on the efficacy of these formulas in
predicting large color differences. Furthermore, as a
dimensional analysis, embeddings with codomains of
higher dimensions, d¼ 4,5,6, are explored for the DE2000
color difference formula, where only the mean squared
relative isometric disagreement is minimized through
training.

Concerning the training data generation for the
example scenarios, in accordance with the above selected
probability distribution of the test color difference vector,
PΔx, Step 2 in Section 3.3 is implemented through the fol-
lowing procedure:

i. For mini-batch ι and for each of the color centers
xι,nf gN ιð Þ�1

ι¼0 ⊆R, draw independently K ιð Þ-many

directions, vι,n,k
� 	K ιð Þ�1

k¼0 , according to the uniform

probability distribution on the unit sphere S2 ⊆ℝ3.
More specifically, for each coordinate i¼ 0,1,2, draw

independently K ιð Þ-many samples, evι,n,ki

n oK ιð Þ�1

k¼0
,

according to the standard normal distribution

N 0,1ð Þ; then, record vι,n,k ≔ evι,n,k0 ,evι,n,k1 ,evι,n,k2

� �
= k

evι,n,k0 ,evι,n,k1 ,evι,n,k2

� �
k for k¼ 0,…,K ιð Þ�1 (cf. Refer-

ence 26 for a derivation of this method).

ii. For each direction vι,n,k � S2 around each color cen-
ter xι,n, draw a random number, rι,n,k, according to
the uniform probability distribution on the interval
rmin ,rmax½ � and record Δxι,n,k ≔ rι,n,k �vι,n,k.

The mini-batch sizes determined by N ιð Þ and K ιð Þ are
hyperparameters for training and will be specified in
Section 5.2.

(A)

(B)

z

z

regularization
regularization

regularization
regularization

z

FIGURE 5 Comparison: including versus omitting the

proposed regularization measures while training the embedding

and inverse color space transformations according to the DE2000

color difference formula.
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Similarly to the training data generation, as in Ref-
erence 12, 4 million test samples (i.e., 2 million color
pairs) are drawn randomly from the CIELAB color
space for evaluation, which is performed through
Step 1 in Section 3.3 complemented by the above pro-
cedure, with N ιð Þ≔ 2 �106 and K ιð Þ≔ 1 for ι≔ 0 fixed.
Among the generated test samples, the color centers
are also used for evaluating the inverse approximation.
In total, there are two test datasets, each containing 2
million color pairs generated as above, one for example
scenarios associated with small color differences from
the range rmin ,rmax½ �≔ 10�3,5½ �, one for those associated
with large color differences from the range
rmin ,rmax½ �≔ 5,20½ � (all in CIELAB-units). Note that as
mentioned at the beginning of Section 3, the unsuper-
vised approach to training through random sampling
eliminates the danger of overfitting. This contrasts
with most other machine learning problems where
training data may inadvertently introduce bias in the
resulting neural network. In the present case, how-
ever, the law of large numbers ensures that the objec-
tive functions in (1) and (2) will be approached
arbitrarily closely as the number of random samples
drawn for approximating the expectation and integrals
therein tends to infinity. In particular, as random
training examples keep being generated over the
course of the entire training procedure, the training
data do not introduce bias. For this reason, it is legiti-
mate to indeed generate the test dataset according to
the same procedure as the training data.

5 | NEURAL NETWORK LAYOUT
AND TRAINING CONFIGURATION
FOR EXAMPLE SCENARIOS

In this section, the layout of the neural network color
space transformations and the hyperparameters of the
training algorithm are specified for the example sce-
narios introduced in Section 4. In general, the optimal
configuration may not be unique. The tuning work
herein merely aims at finding one configuration per
example that exhibits decent performance, so as to
demonstrate the efficacy of the proposed approach. As
a guideline, the neural network layout and the hyper-
parameter choice for all selected example scenarios are
determined through minor adjustment of the configu-
ration for the default setting associated with the most
recognized and most complex color difference formula,
DE2000. All neural networks and training routines are
implemented using the PyTorch machine learning
framework.27

5.1 | Layout of neural network color
space transformations

For the sake of comparative evaluation and in accordance
with previous contributions,12,17 the L-coordinate and the
ab-plane of the CIELAB color space are treated indepen-
dently and processed through two separate (sub-)neural net-
works with the same architecture.3 Moreover, since the
standard methods for initializing the neural network param-
eters rely on the assumption that the magnitudes of the
entries of the input vector are not much larger than 1, as a
normalization step, the input to each neural network
color space transformation is divided by 100 and, corre-
spondingly, the output is multiplied by 100 (coordi-
nate-wise).

The (sub-)neural network for embedding the ab-plane of
the CIELAB color space into ℝd�1 employs a single resid-
ual hidden layer of size 45 : 15 : 45, as presented in Table 1.
The corresponding inverse neural network transformation
uses the same layout, apart from flipped numbers of input
and output channels. Analogously, the embedding and
inverse transformations associated with the L-coordinate of
the CIELAB color space employ the same layouts as those
for the ab-plane, except that the numbers of input and out-
put channels are all set to 1.4 The embedding and inverse
neural network transformations in case of d¼ 3 are visu-
alized in Figure 6, with thin arrows passing scalar values
and thick arrows passing vectors.5

5.2 | Training configuration

The mini-batch size for running Subroutine R1 in
Section 3.5 is determined through the total number of
color centers sampled from the reference region R per
mini-batch times the total number of directions sampled
from S2 ⊆ℝ3 per color center (recall training data genera-
tion steps in Sections 3.3 and 4), which are set to
N ιð Þ≔ 1000, K ιð Þ≔ 100. For running Subroutine R2 in
Section 3.5, the mini-batch size is the total number of
color samples generated on R per mini-batch, which is
set to N ιð Þ≔ 100000.

TABLE 1 Neural network layout for embedding ab-plane of

CIELAB into ℝd�1 according to DE2000, CMC, or CIE94.

Index Layer type Shape Activation

0 Input I¼ I 0ð Þ ¼ 2, J 0ð Þ ¼ 45 tanh

1,2½ � Residual I 1ð Þ ¼ J 2ð Þ ¼ 45

I 2ð Þ ¼ J 1ð Þ ¼ 15

tanh

3 Output I 3ð Þ ¼ 45, J ¼ J 3ð Þ ¼ d�1 id

16 AHRENS ET AL.
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Among the considered example scenarios, the ones
with d≔ 3 and rmin ,rmax½ �≔ 10�3,5½ � are the most rele-
vant, for which the embedding and inverse neural net-
work transformations are jointly trained using the
proposed regularization measures. As a preliminary
step for tuning the hyperparameters γ,eγ,βð Þ, #R1 ið Þ,
and #R2 ið Þ in Algorithm 1, the embedding neural net-
work is first trained with Subroutine R1 alone, so as to
set a target performance and roughly estimate the total
number of forward iterations,

P
i#R1 ið Þ, needed over the

entire training course with regularization. As a candidate
for the forward-to-inverse ratio, #R1 ið Þ : #R2 ið Þ½ �, a base
number of rotations per training block, I, a fixed number
of forward iterations per rotation, #R1 ið Þ, and a block-
wise linearly increasing number of inverse iterations
#R2 ið Þ are chosen. Here, the linear increase aims to com-
pensate for the typically convex decreasing trend of the
inverse training loss. In total, 15 training blocks of I≔ 10
rotations, with rotation lengths #R1 ið Þ≔ 4000, #R2 ið Þ≔ð
16000 1þ i=10b cð ÞÞ for i<150, are executed at learning
rates γ≔eγ≔ 10�5,β≔ 10�8ð Þ for determining an embed-
ding color space transformation in each setting. As accu-
racy requirement for the inverse transformation, the total
transformation accuracy evaluated on the DE2000 color
difference formula in Reference 12 is taken as baseline.6

In 5 of the 6 considered primary scenarios, this accuracy
of the inverse transformation is achieved while terminating
the last training block, with the only exception being the
scenario where the mean squared relative isometric
disagreement with the CMC color difference formula is
minimized, for which a follow-up inverse training with Sub-
routine R2 (where β≔ 0) at a learning rate of eγ≔ 10�5 is
run until the stop criterion is fulfilled. To give an impres-
sion of the actual duration of the training process: on a
single NVIDIA Quadro RTX 5000 graphics processing
unit (GPU), the time required for running 150 training
blocks for the DE2000 color difference formula with
respect to the relative isometric disagreement amounts to
about 61.5 h in total, with about 1 h and 43min spent on
the forward training and slightly under 60 h spent on the
inverse training. In particular, the most expensive part is
the training of the inverse transformation, which reflects
the training schedule introduced above (recall the config-
ured forward-inverse-ratio #R1 ið Þ :#R2 ið Þ½ � for i<150).

Since the inverse training is extremely time-
consuming, for the remaining supplementary example
scenarios where rmin ,rmax½ �≔ 5,20½ � or d¼ 4,5,6, only the
embedding neural network is trained and all regulariza-
tion measures are omitted (visual inspection of injectivity
indicates no invertibility issue). Since those scenarios are
considered for rather experimental purposes, no extra
tuning is performed therefor and Subroutine R1 with a
learning rate of γ≔ 10�5 is simply run for 600000 or
2400000 iterations in case of rmin ,rmax½ �≔ 5,20½ � or
d¼ 4,5,6, respectively.

6 | EVALUATION RESULTS

In this section, the proposed machine learning method for
color space Euclidization is evaluated on the example sce-
narios introduced in Section 4 and compared to previous
contributions. In each example scenario, 2 million ran-
domly generated test color pairs are used for evaluation
(recall generation procedure described in Section 4). The
performance metrics considered while evaluating the
embedding transformations are the STRESS index (recall
(12)) and the (symmetric) relative isometric disagreement
(recall (3)) evaluated statistically in its mean, maximum,
and standard deviation. To assess the accuracy of the corre-
sponding inverse approximations, the point-wise Euclidean
distances between the identity mapping and the composi-
tion of the embedding and inverse neural network transfor-
mations are evaluated statistically in the mean, maximum,
and standard deviation; as noted in Section 5.2, implied by
the stop criterion for the inverse training, these indices are
below 0:0221, 0:3939, and 0:0176, respectively, and will
not be further specified in the sequel.

6.1 | Results for DE2000 color difference
formula

The DE2000 color difference formula is implemented
according to Reference 28 where kL ≔ kC ≔ kH ≔ 1. The
reference methods considered for comparative evaluation
on this formula are the multigrid optimization method12

and the multidimensional scaling techniques,17 referred

FIGURE 6 Embedding and

inverse neural network

transformations for CIELAB-

based examples in case of d¼ 3.
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to as Multigrid and MDS, respectively. The neural net-
work color space embeddings trained for minimizing
either the mean squared relative isometric disagreement
or the mean squared absolute isometric disagreement are
referred to as NN mrd or NN mse, respectively.

6.1.1 | Comparative evaluation on small
color differences

The results of the comparative evaluation for small color
differences are presented in Table 2. Compared to the
multigrid optimization method (Multigrid) which is
based on minimization of the mean squared absolute iso-
metric disagreement, the neural network transformation
trained with the same optimization criterion (NN mse)
exhibits a 44% reduction in the STRESS index (recall
correspondence elaborated in Section 3.4.2). Com-
pared to the multidimensional scaling techniques
(MDS) which employ the (asymmetric) relative iso-
metric disagreement as key disagreement measure for
optimization, the embedding neural network trained
with a similar criterion, NN mrd, performs better in
the mean and standard deviation of the relative iso-
metric disagreement, with the corresponding second
moment (i.e., mean2þσ2) being more than halved, but
almost doubles the maximum relative isometric disagree-
ment. The excellence of the MDS method in lowering the
maximum relative isometric disagreement relies in part
on this metric being included in the objective function
and minimized directly through the optimization algo-
rithm therein. More generally, both of the reference
methods (Multigrid and MDS) rely on local optimization
while looping through meshes defined on the original
color space, which implies a greater potential for produc-
ing better local approximation results. In contrast, the
present machine learning method is based on minimiza-
tion of average loss over the entire color space and
thereby has less control over local features of the result-
ing color space transformation. In fact, except for the

maximum relative isometric disagreement, all considered
performance metrics are average-based disagreement
measures, in respect of which the proposed approach
turns out to be more effective than the reference
methods, regardless of the choice between the relative
and absolute disagreement measures being employed in
the training criterion.

Among the proposed embedding neural network
transformations, NN mrd and NN mse, the former is
superior to the latter in the second moment of the rela-
tive isometric disagreement (i.e., mean2þσ2), and vice
versa in the STRESS index, where the respective perfor-
mance advantages amount to 35% and 20%. Figure 7 dis-
plays the images of a (rectangular) grid in the ab-plane of
CIELAB under the respective neural network transfor-
mations; here and in the sequel, the colored region in the
plot is the image of the intersection between the corre-
sponding region in CIELAB and the sRGB gamut for con-
stant lightness of L� ¼ 50.7,8 Comparing both plots, the
geometry of the two transformations differs visibly; in
particular, the transformation optimized with respect to
the mean squared relative disagreement (NN mrd)
exhibits a stronger shearing effect at the center of the
ab-plane. Figure 8 shows the local maximum relative iso-
metric disagreement of the embedding neural networks
evaluated on the ab-plane of CIELAB; in the images,
each pixel corresponds to a color center and the local
maximum relative isometric disagreement is evaluated
on color difference vectors around this center.9 From
Figure 8A, in the optimization with respect to the mean
squared relative disagreement (NN mrd), the highest rel-
ative disagreement values are located near the gray axis
on the one hand and in the region between hue angles
270� and 295� on the other. From Figure 8B, in the
optimization with respect to the mean squared absolute
disagreement (NN mse), the local maximum relative dis-
agreement is particularly large around hue angle 275�,
which is consistent with the results in Reference 12 and
the discussion on (approximate) Gaussian curvature pro-
vided therein. The spatial distribution of the isometric
disagreement is further illustrated through the unity
color difference ellipses in the transformed ab-plane as
depicted in Figure 9, where some skew is still present in
the Euclidized coordinates and the largest distortions of
the unity circle are located in accordance with the high-
est isometric disagreement values.

6.1.2 | Comparative evaluation on small
color differences

For experimental purposes, color differences in the range
of 5 to 20 CIELAB-units are also considered for

TABLE 2 Performance comparison when embedding CIELAB

into ℝ3 w.r.t. DE2000 for small color differences.

Method STRESS

Relative isometric disagreement

Mean Max σ

Multigrid 0.0326 0.0274 1.7280 0.0488

MDS 0.0295 0.0235 0.2627 0.0307

NN mrd 0.0225 0.0116 0.4421 0.0199

NN mse 0.0181 0.0137 0.8779 0.0251

Note: Bold values are the minima of the corresponding columns.
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evaluation. The main aim here is to explore the feasibility
of the present approach for Euclidization with respect to
large color differences. The reason for the DE2000 color
difference formula being taken as reference law for such
experimentation is the comparability of the outcome with
the preceding results for small color differences, even

though the efficacy of this formula in predicting a higher
range of visual differences is yet to be verified. After the
first 600000 iterations of training with respect to either
the relative or the absolute disagreement measure, the
resulting neural network color space transformation
delivers a STRESS index of 0:0231 or 0:0189, respectively,

(A) (B)

FIGURE 7 Images of a rectangular grid in the ab-plane of CIELAB under neural network color space transformations trained according

to the DE2000 color difference formula.

(A) (B)Optimization Optimization

FIGURE 8 Local maximum relative isometric disagreement of neural network color space embeddings w.r.t. DE2000, evaluated on the

ab-plane of CIELAB.
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and the mean, maximum, and standard deviation of the
relative isometric disagreement amount to
0:0122,0:4127,0:0197ð Þ or 0:0144,0:8329,0:0248ð Þ, respec-
tively. These disagreement values are similar to the pre-
ceding ones in Table 2 evaluated on small color
differences, with no significant decline of performance
being identified in any of the considered metrics. This in
particular demonstrates that the proposed machine learn-
ing method is able to handle color differences that are
significantly away from zero, as opposed to the other two
numerical methods in References 12,17 for which a direct
adaptation to large color differences is nonobvious.

6.1.3 | Dimensional analysis

Another advantage of employing artificial neural net-
works for approximating color space transformations is
the possibility of a straightforward alteration in the
dimension of the input and output vectors. Making use of
this feature, embeddings with higher-dimensional codo-
main for d¼ 4,5,6 are explored where the corresponding
neural networks are endowed with the respective num-
bers of output channels (recall Table 1). Actually, com-
pared to the case of d¼ 3, the higher-dimensional
embedding problem is more complex in terms of degrees
of freedom being required; for d≥ 4, deeper neural net-
works, for instance, those endowed with 4 residual

hidden layers, exhibit better performance and faster con-
vergence during experimentation. However, for the sake
of comparability with the preceding results for d¼ 3, the
same inner layout of the embedding neural network is
kept through all considered dimensions and, as a com-
pensation for the lower capacity, the total number of
training iterations for d≥ 4 is set to be four times as large
as that for d¼ 3.

The evaluation results of the dimensional analysis are
provided in Table 3. Similarly to the results in Reference
17, when including one more dimension in the codomain
of the embedding, that is, transitioning from d¼ 3 to
d¼ 4, the performance of the resulting color space trans-
formation is improved significantly in all considered dis-
agreement metrics. This effect diminishes when further
increasing the output dimension to d¼ 5, and there is

(A) (B)Optimization Optimization

FIGURE 9 Unity color difference ellipses in the embedded ab-plane associated with neural network color space transformations trained

for the DE2000 color difference formula.

TABLE 3 Evaluation results for embedding CIELAB into ℝd

w.r.t. DE2000, where d¼ 3,4,5,6.

d STRESS

Relative isometric disagreement

Mean Max σ

3 0.0225 0.0116 0.4421 0.0199

4 0.0032 0.0009 0.1351 0.0021

5 0.0023 0.0006 0.0978 0.0014

6 0.0019 0.0005 0.0614 0.0012

20 AHRENS ET AL.
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only marginal performance improvement when transi-
tioning from d¼ 5 to d¼ 6. Compared to the evaluation
results for d¼ 4 in Reference 17, tab. 1, the neural net-
work color space transformation exhibits significantly
better performance than the transformation obtained
through the multidimensional scaling techniques. As
visualized in Figure 10 and in comparison with Refer-
ence 17, fig. 3, the present higher-dimensional embed-
ding transformation exhibits a smoother appearance
with less folding of the embedded surface. This results
from the infinitely differentiable nature of the neural
network transformation as well as the fewer degrees of
freedom inherent in the present global optimization
approach (i.e., minimization of average loss over the
entire color space) compared to the local optimization
method in Reference 17.

6.2 | Results for CMC color difference
formula

The implementation of the CMC(l:c) color difference for-
mula is based on Reference 6 with l≔ c≔ 1. For the sake
of symmetry in the sense of the defining properties of a
metric and as previously also implemented in Reference
12, the weights SL, SC , and SH appearing in the formula
are computed with respect to the mean coordinates of
each color pair. The reference method considered in the
comparative evaluation for this formula is the multigrid
optimization method12 (Multigrid). The neural network

color space transformations trained with respect to the
mean squared relative or absolute isometric disagreement
are again referred to as NN mrd or NN mse, respectively.

The evaluation results are presented in Table 4. In all
considered performance metrics, both of the proposed
neural network color space embeddings exhibit signifi-
cant performance advantages compared to the reference
method, with most of the reference disagreement values
being more than halved. It should be noted that the exact
manner in which the symmetrization of the CMC color
difference formula is implemented may affect the final
results; to the best of the authors' knowledge, this is not
explicitly specified in any standards or reference imple-
mentation. In the present work, the arithmetic means of
the lightness, chroma, and hue coordinates of each color
pair are computed as in the implementation of the
DE2000 formula detailed in Reference 28, which in par-
ticular includes an ambiguity resolution method for the
hue angles and the hue angle difference. Table 5 demon-
strates the effect of the symmetrization, where the neural
network transformations associated with the two consid-
ered optimization criteria, NN mse and NN mrd, are
trained with either the symmetrized or the original
(asymmetric) CMC color difference formula as ground
truth and then cross-evaluated on the symmetrized or the
original (asymmetric) formula through the STRESS
index. Overall, the performance of the neural network
transformations degrades by a factor of about 2:5 when
evaluated against the asymmetric CMC formula (last line
vs. second-last line of table). In fact, without prior sym-
metrization, the asymmetry of the original CMC formula
severely conflicts with the inherently symmetric nature
of the Euclidean distances resulting from the neural net-
work color space transformations, which leads to large
increase in the STRESS indices that overshadows the
more subtle differences resulting from the distinction
between the two training loss functions. On the other
hand, comparing the third column with the second col-
umn, or the fifth column with the fourth column of the
table, training the neural networks with the original
asymmetric CMC formula instead of the symmetrized
version leads to hardly any performance improvement

FIGURE 10 Image of a rectangular grid in the ab-plane of

CIELAB embedded into ℝ3 via a neural network color space

transformation trained according to the DE2000 color difference

formula.

TABLE 4 Performance comparison when embedding CIELAB

into ℝ3 w.r.t. CMC for small color differences.

Method STRESS

Relative isometric disagreement

Mean Max σ

Multigrid 0.0239 0.0210 0.4395 0.0311

NN mrd 0.0108 0.0062 0.2469 0.0097

NN mse 0.0098 0.0071 0.1831 0.0106

Note: Bold values are the minima of the corresponding columns.
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(or even performance decline) when evaluated on the
original asymmetric formula, but significantly increases
the isometric disagreement when evaluated on the sym-
metrized formula. From the above considerations and in
view of the practical advantages of using a symmetric
description of color differences, the symmetrized version
of the CMC color difference formula is preferred over the
original asymmetric one while training the corresponding
neural network color space embeddings.

When comparing the proposed neural network color
space transformations NN mrd and NN mse among one
another, the former exhibits a 19% lower second moment
of the relative disagreement (i.e., mean2þσ2) and the lat-
ter produces a 9% lower STRESS index. Compared to the
preceding results for the DE2000 color difference for-
mula, smaller performance differences between the two
neural network transformations are observed across all
considered metrics, which may be attributed to the
lower complexity of the CMC color difference formula

expressed in terms of its deviation from the distance
function of a Riemannian manifold with zero curvature.
The diminished dependency on the optimization crite-
rion is also reflected in the geometry of the respective
transformations, as depicted in Figure 11,10 where only
a slightly larger magnification of the center area in the
transformation optimized with respect to the mean
squared absolute disagreement (NN mse) is noticeable.
The impact of the optimization criterion is more visible
in the spatial distribution of the disagreement values
within the ab-plane of CIELAB displayed in Figure 12.
Similarly to the Euclidization according to the DE2000
color difference formula, optimization with respect to
the mean squared relative isometric disagreement (NN
mrd) results in larger relative disagreement values being
more concentrated near the gray axis. In contrast, in the
optimization with respect to the mean squared absolute
isometric disagreement (NN mse), the local maximum
relative disagreement becomes slightly more uniformly

TABLE 5 Effect of symmetrizing

the CMC color difference formula.
STRESS indices

Method NN mse NN mrd

ΔE during training Symm. Asymm. Symm. Asymm.

Tested on symmetrized ΔE 0.0098 0.0109 0.0108 0.0119

Tested on asymmetric ΔE 0.0263 0.0261 0.0266 0.0267

(A) (B)Optimization Optimization

FIGURE 11 Images of a rectangular grid in the ab-plane of CIELAB under neural network color space transformations trained

according to the CMC color difference formula.
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distributed and the area with higher disagreement
values around the center is slightly further spread out in
the ab-plane. On top of the region near the gray axis,
both optimizations also exhibit larger relative disagree-
ment around hue angle 45�, which is consistent with the

results in Reference 12. As shown in Figure 13, the unity
color difference ellipses in both of the transformed ab-
planes appear very uniform with little skew, where the
few ellipses exhibiting visible eccentricity are located in
the regions of the largest isometric disagreement values.

(A) (B)Optimization Optimization

FIGURE 12 Local maximum relative isometric disagreement of neural network color space embeddings w.r.t. CMC, evaluated on the

ab-plane of CIELAB.

(A) (B)Optimization Optimization

FIGURE 13 Unity color difference ellipses in the embedded ab-plane associated with neural network color space transformations

trained for the CMC color difference formula.
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6.3 | Results for CIE94 color difference
formula

The implementation of the CIE94 color difference for-
mula is based on Reference 8 with kL ≔ kC ≔ kH ≔ 1,
K1 ≔ 0:045, and K2 ≔ 0:015. Again, for the sake of sym-
metry in the sense of the defining properties of a metric,
the weights SC and SH in the formula are determined
through the arithmetic mean of the chroma coordinates
of each color pair. For this color difference formula, the
reference methods evaluated for comparison are the mul-
tigrid optimization method12 (Multigrid) and the analyti-
cal method in Reference 15. For comparative purposes,
the original (follow-up) convex optimization for minimiz-
ing the maximum relative isometric disagreement in
Reference 15 is adapted to the present setting by minimiz-
ing instead the mean squared relative or absolute isometric
disagreement in accordance with Section 3.4 through
gradient descent, and the resulting embedding transforma-
tions (determined by the correspondingly adjusted con-
stants P and Q in Reference 15) are referred to as
Analytic mrd or Analytic mse, respectively. Note that this
adaptation of the method does not lead to a degradation
of the overall performance, but on the contrary, except
for the maximum relative disagreement of Analytic mrd,
all considered performance metrics are improved in the
present evaluation. Again, the neural network color space
transformations optimized with respect to the mean
squared relative or absolute isometric disagreement are
referred to as NN mrd or NN mse, respectively.

6.3.1 | Comparative evaluation on small
color differences

The evaluation results for small color differences are sum-
marized in Table 6. Compared to the multigrid optimization
method (Multigrid) which is based on minimizing the mean
squared absolute isometric disagreement, the embedding

neural network trained with the same optimization crite-
rion (NN mse) delivers a 39% lower STRESS index. Com-
pared to the analytical method, the neural network color
space transformations optimized with respect to the rela-
tive or absolute disagreement measure (NN mrd/mse)
slightly outperform their respective analytical counter-
parts (Analytic mrd/mse) in the corresponding reference
indices (by about 10%). Interestingly, in contrast to the
preceding results for the DE2000 color difference for-
mula, changing from the absolute to the relative disagree-
ment measure in the objective function seems to cause
an increase in the maximum relative isometric disagree-
ment, which is observed for both the machine learning
and the analytical approaches. Overall, the neural net-
work color space embeddings again exhibit lower average
isometric disagreement than the transformations of the
reference methods, which is reflected in their correspond-
ing STRESS indices and means and standard deviations
of the relative isometric disagreement, irrespective of the
optimization criterion being employed during training. In
addition, Table 7 provides the evaluation of the
symmetrization effect with respect to the CIE94 color dif-
ference formula, where the neural network embeddings
associated with the absolute or relative disagreement mea-
sure, NN mse and NN mrd, are trained with either the
symmetrized or the original asymmetric version of the for-
mula as ground truth and subsequently cross-evaluated on
these two formulas through the STRESS index. As
expected, evaluating the nearly isometric embeddings on
the original asymmetric formula degrades the performance
in general (last line vs. second-last line). However, the
effect is much less noticeable compared to the case of
CMC, showing a performance decline of at most 20%.
Moreover, training with the original asymmetric formula
instead of the symmetrized version makes hardly any dif-
ference in performance, no matter which version of the
formula is taken as reference for evaluation (compare the
second with the third column, or the fourth with the fifth
column of the table).

With CIE94 being the simplest among all considered
color difference formulas, the lowest isometric disagree-
ment values are observed for this formula and the perfor-
mance variation across the neural network color space
transformations trained with different optimization cri-
teria dilutes further in value (with less than 7% difference
in all average-based indices). As illustrated in Figure 14,11

the dependency of the embedding transformations on the
choice of optimization criterion is hardly discernible in
respect of their geometry; when comparing the two
images very closely, a slightly more stretched central area
is identified in the transformation minimizing the mean
squared relative disagreement (NN mrd). The difference
becomes more distinct when comparing the respective

TABLE 6 Performance comparison when embedding CIELAB

into ℝ3 w.r.t. CIE94 for small color differences.

Method STRESS

Relative isometric disagreement

Mean Max σ

Multigrid 0.0113 0.0077 0.1447 0.0126

Analytic mrd 0.0083 0.0043 0.1276 0.0074

Analytic mse 0.0076 0.0058 0.0890 0.0077

NN mrd 0.0074 0.0040 0.1185 0.0069

NN mse 0.0069 0.0043 0.0872 0.0073

Note: Bold values are the minima of the corresponding columns.
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local maximum relative disagreement displayed in
Figure 15, where the optimization with respect to the
mean squared absolute disagreement (NN mse) spreads
the highest local maximum disagreement values across a
larger area around the gray axis, leading to a slightly

lower global maximum value compared to the alternative
(NN mrd). As expected, for both embedding neural net-
works, the rotational symmetry of the CIE94 color differ-
ence formula translates to a high degree of rotational
symmetry in both the geometry of the transformation

TABLE 7 Effect of symmetrizing

the CIE94 color difference formula.
STRESS indices

Method NN mse NN mrd

ΔE during training Symm. Asymm. Symm. Asymm.

Tested on symmetrized ΔE 0.0069 0.0070 0.0074 0.0074

Tested on asymmetric ΔE 0.0083 0.0083 0.0087 0.0087

(A) (B)Optimization Optimization

FIGURE 14 Images of a

rectangular grid in the ab-plane

of CIELAB under neural

network color space

transformations trained

according to the CIE94 color

difference formula.

(A) (B)Optimization Optimization

FIGURE 15 Local maximum relative isometric disagreement of neural network color space embeddings w.r.t. CIE94, evaluated on the

ab-plane of CIELAB.
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and the spatial distribution of the relative isometric dis-
agreement. The unity color difference ellipses in both of
the transformed ab-planes presented in Figure 16 appear
nearly perfectly circular, which indicates a high agree-
ment of the Euclidean metric on the transformed spaces
with the underlying color difference formula.

6.3.2 | Evaluation on large color differences

Since the CIE94 color difference formula exhibits to a
certain extent improvement over the Euclidean metric in
CIELAB space (CIE76) in predicting large-scale visual
differences (as opposed to the CMC formula, cf. Refer-
ence 29), as one more example for demonstrating the
broad applicability of the proposed machine learning
method, Euclidization with respect to color differences
from 5 to 20 CIELAB-units is also evaluated on this for-
mula. After the first 600 000 iterations of training with
respect to the mean squared relative or absolute isometric
disagreement, the STRESS index and the mean, maximum,
and standard deviation of the relative isometric disagree-
ment of the resulting neural network color space transfor-
mations amount to 0:0074, 0:0039,0:1203,0:0070ð Þ or
0:0070, 0:0043,0:1048,0:0074ð Þ, respectively. As with the
preceding evaluation on the DE2000 color difference
formula, the results for small and large color differences
herein are similar (compare Table 6); in particular, no
significant deterioration in any of the considered

disagreement indices is identified in the evaluation
results for large color differences. This again verifies that
the proposed approach is not limited to small color
differences.

7 | DISCUSSION

Subsequently, four subjects are discussed: the computa-
tional effort required during the inference stage of the
proposed neural network approach (cf. Section 7.1), the
total performance of Euclidized color difference systems
in terms of their perceptual uniformity evaluated on
experimental visual data (cf. Section 7.2), the feasibility
of adapting the present method to the task of color space
modeling with experimental visual data (cf. Section 7.3),
and comparison as well as potential intersections between
the present work and a selection of machine learning
approaches to perception-based image processing issues
(cf. Section 7.4).

7.1 | Computational effort

A typical issue with machine learning based methods is
the relatively large amount of computational resources
required to perform the necessary computations. In the
present work, particular care is taken to devise efficient
neural networks, so as to avoid using an excessive

(A) (B)Optimization Optimization

FIGURE 16 Unity color difference ellipses in the embedded ab-plane associated with neural network color space transformations

trained for the CIE94 color difference formula.
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amount of operations (recall discussion on residual layers
in Section 3.1).

According to the layout presented in Section 5.1
(Table 1 and Figure 6), in case of d¼ 3, transforming a
single point in the original color space into its coordi-
nates in the embedded color space through the proposed
neural network color space transformation implies a
computational burden of 2970 multiplications, 3060 addi-
tions, and 210 evaluations of the hyperbolic tangent acti-
vation function. Here, one third of the multiplications
associated with the densely connected alternative are
saved through the architecture with residual connections.
While this transformation is still computationally more
expensive than traditional color space conversions, it is
not prohibitively costly when performed on modern
graphics processing hardware. In this context, it should
also be noted that the computational effort of the neural
network color space transformations herein is much
lower than that of some modern image enhancement
algorithms such as machine learning based super resolu-
tion methods (cf. e.g., Reference 30). For reference, when
performed on the same hardware as employed for train-
ing the neural network transformations (NVIDIA Quadro
RTX 5000 GPU), the time for converting the color coordi-
nates of an image in four common resolutions amounts
to 5:4ms for an image in VGA resolution, 16:2ms for an
HD (720 p) image, 36:8ms for a Full HD (1080 p) image,
and 149:3ms for a 4K UHD image. It should be noted
that, at this stage, no attempt at optimizing the algorithm
for reduced conversion time (e.g., through the use of
lookup tables or quantization) has been made.

In total, the neural network employed in this exposi-
tion of the method is parametrized with 3183 free floating
point parameters (for d¼ 3). The amount of memory
required for storing these parameters is less than that
required for the storage of the look-up table employed in
Reference 12 or the pairs of grid points defining the
transformation developed in Reference 17.

Depending on the color difference formula as well
as other factors such as requirements on accuracy or
training speed, a modification of the neural network
layout decreasing the computational effort and mem-
ory requirements may be feasible. In fact, embedding
the original color space into ℝ3 is a much easier task
compared to the corresponding inverse approximation or
the problem of higher-dimensional embedding for d≥ 4
in terms of network capacity being required; the layout
in Table 1 is chosen mainly in consideration of the speed
and stability of the inverse training and is therefore
rather generous in size in respect of the actual Euclidiza-
tion problem. For instance, experimentation reveals that,
if a 5% higher mean squared relative isometric disagree-
ment with the DE2000 color difference formula is

acceptable, it suffices to endow the corresponding embed-
ding neural network with only one third of the existing
neurons, which then requires about 20% of the original
computational effort. Further reduction of both the com-
putational effort and the size of the parameter storage
may be achieved through quantization and the use of
fixed point arithmetic.

7.2 | Perceptual uniformity of Euclidized
color difference system

As noted in the introduction Section 1, functioning as a
new color space, the Euclidized color difference system
endowed with the Euclidean metric is expected to exhibit
similar perceptual uniformity to that of the underlying ref-
erence color difference formula, as long as the isometric
disagreement in the Euclidization step is insignificant. To
demonstrate this, the currently CIE-recommended DE2000
color difference formula is taken as reference and the four
original experimental visual datasets employed for its deri-
vation, BFD-P,31 Leeds,32 RIT-DuPont,33 and Witt,34 are
considered for evaluation12 of the corresponding two
Euclidean spaces resulting from the neural network
nearly-isometric embeddings, referred to as NNmrd
[DE2000] and NNmse[DE2000] in the sequel (recall
Section 6.1 for analogous notations). In accordance with
Reference 35, the STRESS between the visual and mea-
sured color differences (ΔVi vs. ΔEi) is employed as per-
formance metric for assessing the perceptual uniformity
of each color difference system and the statistical signifi-
cance of the performance deviation from the reference
color difference formula is evaluated through the two-
tailed F-test (i.e., the F-statistic is determined through the
ratio of two squared STRESS indices, cf. Reference 20 for
more details). The evaluated STRESS indices and F-
statistics are given in Table 8 where values associated
with the reference color difference formula, DE2000, are
highlighted in bold. From the STRESS evaluation (upper
half of table), the performance of both Euclidized color
difference systems, NNmrd[DE2000] and NNmse
[DE2000], is close to that of the DE2000 color difference
formula. Across various datasets, the STRESS values of
both embedded spaces fluctuate slightly around the ref-
erence values associated with DE2000, with the maxi-
mum relative performance gain below 9% identified in
the RIT-DuPont dataset and the maximum relative per-
formance decline below 3% identified in the Leeds data-
set. According to the results of the F-test (lower half of
table), all evaluated F-statistics fall within the mid-range
of the corresponding 95%-confidence intervals, which
indicates that there is no statistically significant differ-
ence between the perceptual uniformity of NNmrd
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[DE2000] or NNmse[DE2000] and that of the original
DE2000 color difference system. For an extensive perfor-
mance comparison across various color difference systems
as well as an indepth discussion on proper statistical evalu-
ation of performance discrepancy in respect of perceptual
uniformity, the reader is referred to Reference 35 (note
that the STRESS values therein are all upscaled by a factor
of 100).

Again, it is noted that the Euclidization task only
focuses on minimizing the isometric disagreement
between the metric defined by a given reference color dif-
ference formula and the Euclidean metric on the corre-
sponding embedded color space, which constitutes a
theoretical function approximation problem detached
from experimental visual data. Accordingly, evaluating
the resulting Euclidean color space on experimental
visual data as above is only meant to provide additional
information on the performance variation of the considered
color difference system prior to and after Euclidization,
which cannot replace the rigorous efficacy assessment of
the proposed Euclidization approach presented in Section 6,
nor should this be confused with the quality assessment of
existing color difference formulas.

7.3 | Outlook on color space modeling
with visual data

Considering the promising Euclidization results of the
proposed neural network color space transformations,
it is natural to discuss the feasibility of carrying over
the present machine learning approach to the task of
modeling a perceptually uniform color space by means
of data from visual experiments, similarly to the devel-
opment of the various performance-enhancing color
difference formulas based on the CIELAB color space.
First of all, it should be emphasized that the present
approach to color space Euclidization relies on unsu-
pervised learning with randomly generated color dif-
ference vectors as training examples, which in

particular excludes the issue of overfitting. In contrast,
when employed for approximating a perceptually uni-
form color space according to experimental visual
data, the neural network would be trained in a super-
vised manner and the performance of the resulting
color model would depend on the extent and distribu-
tion of the underlying training data. Ideally, the
labeled data in such a context, that is, example color
pairs labeled with their perceived visual differences
(ΔVi), should be uniformly distributed across the original
color space so as to prevent local distortions in the result-
ing color model, and the amount of them should be pro-
portional to the size of the neural network so as to prevent
overfitting. Under this consideration, existing experimen-
tal visual datasets, such as those employed for deriving the
DE2000 color difference formula (cf. BFD-P,31 Leeds,32

RIT-DuPont,33 and Witt34), may need further enhance-
ment to support a highly accurate neural network approxi-
mator for a perceptually uniform color space. As a
solution, more extensive training data may be obtained,
for instance, by conducting supplementary visual experi-
ments with particular attention payed to the above aspects,
or by augmenting existing experimental visual data with
artificial training data, for example, through interpolation
techniques, noise injection,36 or GANs.25 More study on
this topic is left to future work.

7.4 | Some notes regarding further
related works

In view of the plethora of vision-related machine learning
efforts, it is reasonable to address how the present article
relates to those works. The subsequent discussion
includes a small selection of references on adjacent
issues, which serve as representatives for drawing
comparison with and expanding perspective.

From an interdisciplinary point of view, machine
learning methodology and color-related issues based on
human visual perception are both strongly represented in

TABLE 8 Perceptual uniformity of the Euclidean color spaces resulting from the neural network embeddings w.r.t. the DE2000 color

difference formula evaluated on experimental visual data.

BFD-P Leeds RIT-DuPont Witt

STRESS [DE2000] 0:2955 0:1925 0:1947 0:3022

STRESS [NNmrd[DE2000]] 0:2948 0:1975 0:1774 0:3020

STRESS [NNmse[DE2000]] 0:2938 0:1971 0:1850 0:3049

95%-confidence interval for F-statistic w.r.t.
DE2000

0:937,1:067½ � 0:799,1:252½ � 0:729,1:372½ � 0:825,1:212½ �

F-statistic [NNmrd[DE2000]] 0:9976 1:0260 0:9110 0:9994

F-statistic [NNmse[DE2000]] 0:9941 1:0238 0:9501 1:0088
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image processing and computer vision. A typical class of
instances is represented by deep learning approaches to
perceptual-quality-based image compression, for exam-
ple, Reference 37, and tone mapping of high dynamic
range (HDR) scenes, for example, References 38,39,
where multiscale decompositions based on Laplacian/
Gaussian pyramid40 or/and bilateral filtering41 are
encapsulated in various forms in the early layers of
deep convolutional neural networks (CNNs) for encod-
ing visual information within an image (also compare
Reference 42 for a typical deep CNN architecture
(U-net) for hierarchical multiscale encoding and
decoding). It is worth noting that those multiscale
decompositions on the input side of CNNs resemble
the early stages of human visual response in the sense
that they reflect the bandpass/lowpass nature of
human contrast sensitivity functions (CSFs) in the spa-
tial frequency domain. Recently, Akbarinia et al.43

investigated CSFs within pretrained task-dependent
deep neural networks (mostly CNNs) through feature
extraction and transfer learning, which revealed that
human-like CSFs can be recognized with various
degrees of similarity at different layers within a neural
network and across different neural networks, depend-
ing on the considered image processing task.

The unifying feature of the works mentioned so far is
that they are all in one way or another concerned with
image processing by means of deep neural networks, that
is, a two-dimensional image signal is processed through a
neural network, for which building blocks that excel in
analyzing information within a spatial context are
employed, such as by exploiting the translation invari-
ance of two-dimensional convolutional layers and pool-
ing layers. In the present work, on the other hand, the
color information is present in its pure form as a color
coordinate triple, and accordingly, the neural network
employed for processing this information falls within the
category of fully connected architectures and need not
even be deep. In particular, for tackling the present Eucli-
dization problem, there are no spatial patterns to be ana-
lyzed, and deep CNNs that are so ubiquitously being
exploited in other vision-related works are not well suited
in this context. Actually, the same applies to modeling
perceptual uniformity in general: in CIE colorimetry,
color difference modeling is based on psychophysical
experiments where the difference between two plain
color patches on a uniform background is identified at a
time (cf. e.g., References 22,31,33); in particular, no com-
plex patterns are considered and deep CNNs that may aid
in modeling spatial visual response would not be useful
in deriving a perceptually uniform color space from exist-
ing experimental visual data (also recall discussion in
Section 7.3).

However, it may be beneficial in general to explore the
impact of taking a perceptually uniform color space as
working domain on the performance of the aforementioned
machine learning approaches in perception-based image
processing contexts. For instance, the neural network color
space transformations derived in the present work may be
employed as color space pre- or post-transformations at the
input or output layers of existing image processing neural
network architectures. The research in Reference 44 on
color conversion in variational autoencoders suggests that
this type of pre- or post-coding may indeed affect the perfor-
mance of the original neural networks.

8 | CONCLUSION

In this work, a general methodology making use of
machine learning techniques is proposed for the issue of
color space Euclidization. A parsimonious neural network
architecture is employed herein and training is conducted
in an unsupervised manner based on random sampling.
The impact of the key disagreement measure on the color
space embedding is elucidated through a distinction of cases
where either the relative or the absolute isometric disagree-
ment forms the basis of the objective function. Evaluation
on well-established color difference formulas demonstrates
that the proposed approach is able to deliver powerful
approximators for the desired color space transformations
and outperforms previous contributions in respect of com-
monly used average disagreement measures.
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for verifying the tables and figures in this article are
available in the following Git repository: https://github.
com/julian-ahrens-dfki/mlacse. Therein, only the six pri-
mary scenarios introduced in Section 4 are included.
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ENDNOTES
1 The probability distribution of the test color difference vector PΔx

and the corresponding sampling procedure for the color differ-
ence vector Δx will be specified for each of the considered exam-
ple scenarios in Section 4.

2 In this context, the isometric disagreement loss term takes the
role of a sparsity penalty. The joint neural network can therefore
be regarded as a variant of a sparse autoencoder (cf. Reference
19, sec. 14.2.1).

3 Recall that in References 12,17, the reason for separating the
L-coordinate from the ab-plane of CIELAB is that the lightness
difference is calculated independently from chroma and hue in
all considered color difference formulas, DE2000, CMC, and
CIE94. Of course, it is possible to employ a neural network archi-
tecture without this type of channel separation, which indeed
exhibited no significant performance difference during experi-
mentation. However, since the absence of cross-contamination
between lightness and chroma (as is the case with CIELAB) is a
desirable feature in practical applications such as image proces-
sing tasks, a separation of the L-channel from channels associ-
ated with the ab-plane is also imposed in the present neural
network transformations.

4 Here, the case of embedding the lightness coordinate according
to CIE94 is an exception, as the corresponding optimal transfor-
mations are by definition the trivial identity mapping and
thereby do not require any approximation.

5 In case of CIE94, the transformations associated with the
L-coordinate in the upper half of Figure 6 are replaced by the
trivial identity mappings (recall Footnote 4).

6 In the present approach, since unlimited training examples can be
generated through random sampling, overfitting may not occur, so
that the training result may be improved indefinitely. However, the
inverse training typically progresses very slowly; in order to limit
training time, a baseline value that is accurate enough in practice is
taken here as stop criterion for the inverse approximation.

7 Recall that for all three considered example color difference for-
mulas, the L-coordinate is processed independently from the ab-
plane of CIELAB (cf. Section 5.1, in particular Figure 6 and Foot-
note 3). Therefore, the transformation of the ab-plane is invariant
under changes of L�, which applies to all upcoming figures,
Figures 7–16. (In those figures, the only part that depends on L�

is the auxiliary sRGB gamut plotted on the background.)
8 In order to maximize the similarity of the transformed ab-plane
with the familiar ab-plane of the CIELAB color space, in these
plots, the transformed ab-plane is first translated so that the
white point again resides at coordinates 0,0ð Þ and then rotated
and, if necessary, mirrored so that the average squared difference
between the CIELAB color coordinates and the coordinates in

the transformed ab-plane is minimized. Note that all perfor-
mance metrics considered in the evaluation are based on the
Euclidean distance and thus invariant under translations, rota-
tions, and reflections of the transformed color space.

9 In order to avoid artifacts caused by sampling the color differ-
ence vectors randomly, a deterministic procedure is used herein.
This procedure consists in generating a regular grid within a
cube around the color center with an edge length of 2 �5¼ 10
CIELAB-units and then selecting from this grid only the points
that have a distance of at most 5 CIELAB-units from the center.

10 Here and in the sequel, Figures 11–13 are generated analogously
to Figures 7–9, respectively; for more details on the generation
procedure for those figures, the reader is referred to the last para-
graph of Section 6.1.1, in particular Footnotes 7–9.

11 Again, Figures 14–16 are generated analogously to Figures 7–9,
respectively; for more details on the generation procedure for
those figures, the reader is referred to the last paragraph of Sec-
tion 6.1.1, in particular Footnotes 7–9.

12 In this evaluation, the four separate datasets are preferred over
the weighted combined dataset, COM-Weighted,10 for excluding
ambiguity in terms of the degrees of freedom required in the sub-
sequent F-test. A detailed discussion on this can be found in Ref-
erence 35.
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APPENDIX A

The subsequent (counter-)example aims to demonstrate
that, depending on the color difference formula and the
composition of the objective function, local noninjectiv-
ities in the neural network color space transformation
may indeed be a valid concern, which in turn can be
resolved by imposing the proposed regularization mea-
sures during training.

As a basis, consider the following example scenario
introduced in Section 4: ΔE≔DE2000, d≔ 3,
rmin ,rmaxð �≔ 0,5ð �, and the mean squared absolute iso-
metric disagreement is to be minimized through training.
Now, as a modification of the above setting, alter the
probability distribution of the test color difference vector,
PΔx, by defining it as the probability distribution of the
random vector Δx≔ r

J
v where v again follows the uni-

form probability distribution on the unit sphere S2 ⊆ℝ3,J
denotes the Hadamard product, and r≔ r0,r1,r2ð Þ is a

random vector with independent components, r0,r1,r2,
each following the uniform probability distribution on
the interval rmin ,rmaxð �. Accordingly, for the training data
generation, adapt Step (ii) in Section 4 to the modified
setting by replacing the random numbers rι,n,k therein
with random vectors rι,n,k and recording
Δxι,n,k ≔ rι,n,k

J
vι,n,k. In fact, the modification from

Δx≔ r �v into Δx≔ r
J

v alters the probability distribu-
tion of both the magnitude and the direction of the color
difference vector Δx; the above distribution of the vector
r¼ r0,r1,r2ð Þ favors the absolute distances midway in
between rmin ,rmaxð � and the directions near the coordi-
nate axes.

In the above modified setting, iterating Subroutine R1 in
Section 3.5 alone leads to a noninjective color space transfor-
mation, as displayed in Figure A1A. Notice how the image
of the ab-plane under the embedding transformation folds in

(A) (B)

FIGURE A1 Images of a rectangular grid in the ab-plane of CIELAB under neural network color space transformations trained

according to the objective function given in the modified setting associated with the DE2000 color difference formula, with proposed

regularization measures being omitted or included.
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on itself (region marked with red rectangle). In contrast,
when including the proposed regularization measures in the
training routine as presented in Algorithm 1, with hyper-
parameters #R1 ið Þ :#R2 ið Þ½ �≔ 2000 : 8000 1þ i=5b cð Þ½ � and
γ≔eγ≔ 10�5,β≔ 10�8ð Þ, the resulting neural network
color space transformation does not suffer from any local
noninvertibility issues, with the corresponding ab-plane
transformation visualized in Figure A1B. Figure A2 pro-
vides a comparison of the respective training course
while including or omitting the proposed regularization
measures. On the one hand, in the lower half of
Figure A2, the two courses of training loss hardly differ
from one another, which indicates that imposing the reg-
ularization term in (13) with a small factor β does not
have a negative impact on the performance of the embed-
ding transformation. On the other hand, as illustrated in
the upper half of Figure A2, while the maximum relative
isometric disagreement begins to explode after running
Subroutine R1 for about 400k iterations continuously,
this metric is kept low at a level around 1 through the
alternation with Subroutine R2 in between the training
iterations, which demonstrates the damping effect of the
regularization measures on the local approximation error
of the neural network color space transformation.

FIGURE A2 Course of forward loss (i.e., STRESS2) and

maximum relative isometric disagreement while training an

embedding neural network with respect to the objective function

given in the modified setting associated with the DE2000 color

difference formula, with versus without regularization measures.
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