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Abstract

Continual Learning aims to learn a single model on a
sequence of tasks without having access to data from pre-
vious tasks. The biggest challenge in the domain still re-
mains catastrophic forgetting: a loss in performance on
seen classes of earlier tasks. Some existing methods rely
on an expensive replay buffer to store a chunk of data from
previous tasks. This, while promising, becomes expensive
when the number of tasks becomes large or data can not be
stored for privacy reasons. As an alternative, prompt-based
methods have been proposed that store the task information
in a learnable prompt pool. This prompt pool instructs a
frozen image encoder on how to solve each task. While the
model faces a disjoint set of classes in each task in this set-
ting, we argue that these classes can be encoded to the same
embedding space of a pre-trained language encoder. In this
work, we propose Language Guidance for Prompt-based
Continual Learning (LGCL) as a plug-in for prompt-based
methods. LGCL is model agnostic and introduces language
guidance at the task level in the prompt pool and at the class
level on the output feature of the vision encoder. We show
with extensive experimentation that LGCL consistently im-
proves the performance of prompt-based continual learning
methods to set a new state-of-the art. LGCL achieves these
performance improvements without needing any additional
learnable parameters.

1. Introduction
In Class Incremental Continual Learning, we task a model

to learn a sequence of non-overlapping tasks consisting of
new classes being introduced at each task. This presents a
challenge different from the common supervised learning
setting as the data distribution is continuously changing, and
the independent and identically distributed (i.i.d.) data as-
sumption does not hold. As a result, a model trained with our
usual training recipe of optimising a loss function on incom-
ing data leads to catastrophic forgetting [33] i.e., the model
forgets the previously seen classes since the loss only incen-
tivises performance on the current task. There have been
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Figure 1: In Computer Vision, Continual Learning in the
class incremental setting aims to learn a single model on
a sequence of tasks where each task consists of disjoint
classes. While each task represents a disjoint set of classes,
we argue that they can be mapped to the same semantic space
of a pretrained language encoder. Based on this principle,
we propose to introduce language guidance in a continual
learner to mitigate catastrophic forgetting.

several attempts to address this challenge. One popular line
of works aims to identify model parameters most important
for performance on each task and prevent them from chang-
ing too much through subsequent tasks [19, 65, 25, 1]. These
regularization-based methods, however, achieve sub-optimal
performance as we move to very complex tasks where the
model needs to share parameters between different tasks to
learn a robust representation.

Another line of work takes a very simple but effective ap-
proach of storing a chunk of training data. Rehearsal-based
methods [7, 8, 12] maintain a rehearsal buffer which is a
finite set of training data stored across each task. The key in-
tuition is that to prevent forgetting on previously seen classes,
the model simply uses the examples in the rehearsal buffer
when optimising for new tasks. However, these methods
require large buffer sizes as the number of tasks increases



and hence become expensive. Moreover, they have been
criticised for being impractical in real-world settings where
privacy concerns prevent storing data. Architecture-based
methods [49, 64, 23, 28, 46, 66] take an orthogonal approach
where these works reserve specialised parts of the network
for each task and take an approach similar to multi-task
learning. However, this can bring a significant increase in
the number of learnable parameters. Moreover, this requires
knowing the task identity at test time to select the relevant
network module for each task which is not a realistic setting.

Recently, Learning to Prompt (L2P)[59] has proposed
an exciting new direction for continual learning. Instead
of learning the parameters of the model for each new task,
the authors propose to use a pre-trained vision encoder and
learn the prompts that can instruct this pre-trained model
to solve new tasks. This technique is called Prompt Tun-
ing and is popularized by its success in Natural Language
Processing (NLP). A learned prompt instructs the model on
how to solve a new task using the wide set of knowledge it
has stored during pre-training. These methods have shown
incredible performance boosts at a fraction of learnable pa-
rameters. L2P initialises a learnable prompt pool where each
prompt is attached with a learnable key. The authors propose
to use the CLS feature from the pre-trained vision encoder
to perform a lookup with this learnable pool. The selected
prompts are then appended with the patchwise embeddings
of the image into the pre-trained model, and the output rep-
resentations of the selected prompt tokens are used to learn
a linear classification layer. This surprisingly simple formu-
lation has brought impressive performance gains without the
need to store any data in a rehearsal buffer.

While the sequence of data from each task in contin-
ual learning has a changing distribution, we argue that the
classes of each task can be mapped to the same semantic
space. In this work, we argue that language represents such
a robust representation space where all tasks can be suffi-
ciently mapped to. Hence if we encode the features of the
continual learner to map to a semantic space of language,
this can present an avenue to mitigate catastrophic forgetting
and result in a more robust continual learner. We use this
insight to develop a novel method Language Guidance for
Prompt-based Continual Learning (LGCL) that can in-
troduce language guidance into any prompt-based continual
learning method. We achieve this by introducing language
guidance at two levels. First, we introduce the task-level
language guidance by incentivising the model to map the
learnable keys of the prompt pool into a shared language
representation of all classes in the task. Secondly, we in-
centivise the model to map the output features of the visual
encoder after prompting it to align with the language repre-
sentation of its respective class. The model learns a robust
representation of all tasks by aligning these representations
with a pre-trained semantic space of language.

Our contributions are as follows: 1) We present a novel
perspective that entails introducing language guidance in
continual learning to mitigate catastrophic forgetting. 2) We
propose Language Guidance for Prompt-based Continual
Learning (LGCL), a novel method that introduces language
guidance in prompt-based continual learning methods. 3)
Without any additional learnable parameters or extra memory
requirements at inference, LGCL improves the performance
of prompt-based continual learning methods and achieves
state-of-the-art performance on two challenging continual
learning benchmarks.

2. Related Work

Continual Learning tasks a model to learn a sequence of
tasks while mitigating catastrophic forgetting [33]. Meth-
ods in continual learning have traditionally been divided
into three categories, namely regularization-based methods,
rehearsal-based methods, and architecture-based methods.
Regularization-based methods [19, 65, 25, 1] aim to find
important parameters for each task and limit their plasticity
in future tasks by adjusting the learning rate. These methods
work without storing any labelled examples; however, they
are unable to achieve satisfactory performance in challenging
and complex datasets [30, 47, 61].

Rehearsal-based methods [7, 8, 12] maintain a buffer to
save data from older tasks and use it for training while fu-
ture tasks become available. Several works improve upon it
with training tricks like knowledge distillation [47, 61, 6, 3]
and self-supervised learning [5, 40]. Rehearsal-based meth-
ods address catastrophic forgetting by simply retraining on
stored data from all tasks the model has seen at any given
stage. Although conceptually very simple, these methods
have been very competitive and consistently rank among
state-of-the-art [37, 30]. However, these methods suffer from
performance degradation as the replay buffer gets smaller
or the number of classes increases significantly. Moreover,
these methods can not be used when data privacy is a con-
cern [51].

Architecture-based methods aim to specialize parts of
the model for each task. These modules are added as ad-
ditional blocks [49, 64, 23, 28, 46, 66], or specialising task
specific sub-networks [31, 50, 56, 16]. Since these mod-
els specialise parts of the model for each task, they often
require the task identity as an input to the model at test
time which limits their use in realistic class-incremental and
task-agnostic settings. Some methods infer task identity
from the data [60], while others infer it using a rehearsal
buffer [63, 40]. However, these methods require significantly
more learnable parameters, often as many as the core model.
Prompt-based methods [59, 57] have recently emerged as a
new exciting fourth direction in continual learning. These
methods use a pre-trained feature extractor and learn each
task as a set of prompts that specialise the pre-trained model



for the task. These methods are highly parameter efficient
as prompts are small sequences of learnable tokens. These
methods achieve this by encoding the task information in
the learnable prompts rather than storing input data. More-
over, these methods do not require the task identity as input,
thanks to a clever lookup formulation conditioned on the
input to select the prompt.
Prompt Learning has emerged as a popular transfer learn-
ing technique in Natural Language Processing (NLP). In-
stead of retraining the model, prompt learning learns a set
of prompts that instructs the pre-trained model to process
the new task. To this end, several works introduce prompts
as learnable tokens achieving impressive performance on
transfer learning [22, 24]. These methods are incredibly
efficient with respect to learnable parameters compared to
competitors [53, 39, 14].
Language Guidance has been extensively explored in var-
ious vision tasks, including open set learning [43, 11, 55],
zero-shot learning [36, 34, 35, 17], and metric learning [48].
Methods in open set learning [43, 11] learn a vision encoder
that can map to the same embedding space as language. The
model can then generalise to new classes by generating the
embeddings of the class names without requiring labelled
visual data. Methods in zero-shot learning use word em-
beddings from pre-trained language models [62, 38, 52] and
knowledge graphs [54, 15, 2, 35, 32] to encode semantic sim-
ilarities between seen and unseen classes. Unseen classes
can then be inferred by measuring a distance metric between
a vision encoding and a language feature from a pre-trained
model. Integrating language supervision in vision models
allows the model to adapt to new classes efficiently, as these
classes lie in the same semantic space as previously seen
classes.

Our method lies at the intersection of prompt-based con-
tinual learning and language guidance. To the best of our
knowledge, we provide the first method for integrating lan-
guage guidance in prompt-based continual learning methods
for challenging class-incremental continual learning.

3. Background

Notations.
Continual Learning aims to train a Machine Learning

model on a stream of data from a sequence of tasks. We de-
note the sequence of tasks as D = {D1,D2, ...,DT} where
each task consists of tuples of input data (xt

i, y
t
i) where

xt
i ∈ X represents the input image in an RGB color space

and yti ∈ Y represents the corresponding label for the task t.
In line with previous works, the tasks are non-overlapping,
i.e. images and labels are not repeated in subsequent tasks,
and the model does not have access to the training data from
the previous tasks. We focus on class incremental setting in
which task identity is unknown at test time. Moreover, we

assume that a pre-trained feature extractor F is available for
images and is kept frozen throughout the training [57, 59].
Similarly, we assume that a pre-trained feature extractor is
available for language and is kept frozen throughout the
training [43]. To be consistent with previous works, vi-
sion and language feature encoders are each independently
trained. We consider the class incremental setting in which
task boundaries are defined clearly, and task identity is un-
known during test time [41].

3.1. Prompt-based Continual Learning

Since our method aims to improve prompt-based contin-
ual learning methods, we provide an overview in this section.
The vast majority of continual learning works maintain a
Replay Buffer consisting of labelled samples of previous
tasks. This buffer is used to avoid catastrophic forgetting by
continuously training on previous tasks. However, rehearsal
buffers are expensive to store and do not scale well to large
dataset or a large number of tasks. Recently, prompt tuning
has emerged as an alternative to rehearsal buffers. Methods
in this direction [57, 59] use a pre-trained vision encoder and
rely on prompt learning to learn the tasks continually, instead
of replaying samples from previous tasks. This is achieved
by storing the knowledge of each task in a learnable pool of
prompts without explicitly defining a pool for each task.

Given a pre-trained image feature extractor F , an image
transformer, these methods aim to learn prompts that can be
used to instruct the pre-trained model to solve the encoded
task. Given an image x, they do a forward pass to extract the
CLS token corresponding to the global feature of the image.
This feature is used to look up the relevant prompt from the
prompt pool, which we introduce in the next section.
Introducing a learnable Prompt Pool. Prompt learning has
emerged as a powerful technique in NLP to use a general pre-
trained language model and re-purpose it for a downstream
task by introducing a set of learnable tokens without chang-
ing the parameters of the pre-trained model. Prompt Tun-
ing [22] introduces a set of learnable tokens for a pre-trained
language model like T5 [44] to condition the pre-trained
model to solve a new task. These tokens encode the task
instructions and instruct the pre-trained model to solve the
NLP task at hand [26]. On the other hand, another form of
utilizing learnable prompts is prefix tuning. In prefix tuning,
the learnable prompt is appended to the keys and values of
attention blocks [57].

Introducing Prompting for Continual Learning involves
some clever design choices. We want to utilize the prompt
to fine-tune the internal representations of the vision trans-
former for our task-specific distribution without tuning the
model parameters. The simplest approach is to learn one set
of prompt tokens for each task capturing the task-specific
information in its tokens. However, this has a significant
limitation in that the model needs the task id as an input to
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Figure 2: Our novel Language Guidance for Prompt-based Continual Learning (LGCL) introduces Language Guidance
in prompt-based continual learning methods. We introduce language guidance at two levels. At task level, we encode the
language feature corresponding to the classes the model will encounter in the selected keys from the prompt pool. At class
level, we encode the language feature corresponding the the ground truth class in the output feature of the vision transformer.
Together the two modules improve the baseline prompt-based continual learning method and bring performance improvements
without introducing additional learnable parameters.

select the correct prompt. Moreover, this does not allow the
model to create a joint representation that can share similar
information between tasks. Learning to Prompt (L2P) [59]
instead cleverly introduces a pool of prompts where each
prompt can encode knowledge without explicitly attaching
it to a task. The prompt pool is defined as:

P = {P1, P2, · · · , PM}, M = total # of prompts, (1)

where Pj ∈ RLp×E is a single prompt with token length
Lp and the same embedding size E as xp. Each prompt
is attached to a learnable key kj . Given the CLS feature
corresponding to an input image x as a query, the model
can look up the relevant prompt encoding the knowledge for
its task by a key query look up. Learning to Prompt [59]
uses top N prompts corresponding to the lookup as the se-
lected prompts for tuning. The selected prompts are used
as additional input to the pre-trained Vision Transformer,
along with patch embeddings. Dual Prompt[57] instead
uses prefix-tuning and directly injects these prompts in the
Multi-headed attention layers of the Vision Transformer by
prepending the learnable prompt with keys and values of
the Multi-Head Attention layer. We name the pre-trained
frozen vision transformer prompted with learnable prompts
the Prompting Vision Transformer.
Encoding task information in the selected prompts. We
define xo as the output feature of the Vision Transformer
to be used for classification. In Dual Prompt[57] this cor-
responds to the CLS feature of the Vision transformer after
injecting the selected prompts. In L2P[59] this refers to the
average pooled output of the tokens corresponding to the
selected prompts. This feature is trained for classification

with a supervised loss like Cross-Entropy for classification
tasks. The training loss incentivises the model to store task-
specific features in the prompt pool. Moreover, since the
prompt selection is dependent on the input image and not
the task, the task representations are shared in the pool and
evolve over the training period to encode the different tasks.
Dual Prompt [57] improves upon L2P [59] by additionally
introducing a global learnable prompt which learns a shared
representation across all tasks. This global prompt is used
with the prompts as input to the Vision Transformer.

4. Language Guidance for Prompt-based Con-
tinual Learning (LGCL).

Continual Learning addresses the task of learning a chang-
ing distribution of data coming from different tasks. While
the visual data of these tasks changes, their task definition or
classification targets can lie in the same space of language.
Language consists of a compact representation of the world
and storing language cues like class names is available to
a model for free as it has access to them from the current
and previous tasks. We propose to integrate this language
guidance into the prompt-based continual learning methods
to further mitigate catastrophic forgetting. More specifically,
we propose to use a text encoder T from a pre-trained model
to encode the task knowledge and class knowledge into the
prompt pool and learned features of the continual learner.
LGCL is a generic framework that can be incorporated into
any prompt-based method for continual learning without
requiring any additional learnable parameters. We give an
overview of our method in Figure 2.



4.1. Introducing Task Level Language Guidance

Given the t−th task, we denote the class names of classes
represented in this task with the set Yt. The task t involves
correctly classifying the classes contained in Yt. Therefore,
we propose to represent the language representation of the
task as a prompt of class names as follows.

“A photo of {class 1} or {class 2} · · · or {class n}”

where {class 1},· · · , {class n} are replaced with the class
names of the task. The prompt is input to the pre-trained text
encoder to extract the feature corresponding to the output
token to represent Lt ∈ RE , the language representation
of the task t with embedding dimension E. Since prompt-
based continual learning methods learn the lookup operation
for selecting the prompts against learnable keys, we aim
to encode the task definition in these keys. Given Ps =
{Ps1 ; · · · ;PsN } are the N prompts selected for the task
t, with learnable keys Ks = {ks1 ; · · · ; ksN }, we aim to
encode the Lt in these learnable keys. For each key k ∈ RE

in Ks, we compute the cosine similarity between the key
and the language encoded task feature Lt as follows:

S(k, Lt) =
k · Lt

|k||Lt|
(2)

We optimise the cosine similarity with a triplet loss to in-
centivise the model to align the selected keys close to the
language representation of their respective task and away
from the language representation of other tasks. Given the
task t, the model only has access to the task definitions of
the current task and the tasks before t. Therefore, when
optimising the loss for the current task t, Ltp denotes the
language feature of the task t as the positive and the language
features of the previous tasks are randomly sampled as the
negative Ltn in each optimisation step. For a selected key k,
we optimise the following loss:

Ltask(k, Ltp, Ltn) = 1− S(k, Ltp) + S(k, Ltn) (3)

By aligning the lookup keys with the language feature of
the task, the model learns a feature representation of keys
that comes from the same distribution of language and is
less likely to diverge between tasks while training. Since the
performance of prompt-based continual learning methods
depends on the correctness of the selected prompts, learning
better keys can allow for better performance.

4.2. Introducing Class Level Language Supervision.

The prompt pool represents the task-level knowledge for
the model. We further want to guide the class-level feature of
the image with language. For a given training sample (x, y)
consisting of image x with label y, we take the class name
for y and represent it in language as the following prompt:

“A photo of {class name}”

Similar to the last module, the prompt is input to the pre-
trained text encoder to extract the feature corresponding to
the output token to represent Lc ∈ RE , the language repre-
sentation of class y with embedding dimension E. We want
to encode this language representation in the output feature
xo ∈ RE of the vision transformer used for classification.
This feature aims to represent the class-level information
of the task. We introduce language guidance in this feature
representation through a cosine triplet loss similar to the
last module. Our positive example consists of the language-
encoded feature of class y as Lcp. For the negative example,
we randomly sample a class from the classes of the previ-
ous tasks as Lcn for each optimization step. We optimise
the following loss for introducing language guidance in our
continual learner:

Lclass(xo, Lcp, Lcn) = 1− S(xo, Lcp) + S(xo, Lcn) (4)

By aligning output image features to the classwise language
representation, we incentivise the model to map to the same
semantic space of the pre-trained language encoder across
each task. We keep all other aspects of the baseline methods
the same from their respective authors.
Inference. The model does not require language guidance
at inference, and the baseline prompt-based methods can be
used with their original formulation. The xo features are
extracted and classified with a linear layer.

5. Experiments

Experiment Protocol. Consistent with previous works[59,
40], we used ViT B/16[10] pre-trained on ImageNet 1k as
our Image feature extractor. This is kept frozen during train-
ing. On the language side, we use the text transformer of
CLIP L/14[43] for our main experiments. We use the Adam
optimizer [18] with β1 = 0.9 and β2 = 0.999. We set the
batch size to 24 for Dual Prompt [57] and 16 for L2P [59].
We train on one A100-40GB GPU with the code released
by the authors of each method. Input images are resized to
224× 224 and normalized to the range of [0,1]. We follow
[4, 59, 57] and train for multiple epochs. For L2P [59]
Split CIFAR-100 [20], we train 5 epochs, for L2P [59]
Split ImageNet-R [57] we train 50 epochs. We train Dual
Prompt [57] for 20 epochs on Split CIFAR-100 [20] and
for 50 epochs on Split ImageNet-R [57]. For comparison
with state-of-the-art, we use the widely adopted Average
accuracy (higher is better) and Forgetting (lower is better)
to compare model performance [29, 7, 30]. Since prompt-
based continual learning is a very recent development, we
use the two most recent baselines Learning to Prompt[59]
and Dual Prompt[57] and incorporate LGCL in training. To
make the comparison fair, we use the same hyperparameters



Method Buffer size Split CIFAR-100 Buffer size Split ImageNet-R
Avg. Acc (↑) Forgetting (↓) Avg. Acc (↑) Forgetting (↓)

ER [8]

1000

67.87±0.57 33.33±1.28

1000

55.13±1.29 35.38±0.52

BiC [61] 66.11±1.76 35.24±1.64 52.14±1.08 36.70±1.05

GDumb [42] 67.14±0.37 - 38.32±0.55 -
DER++ [3] 61.06±0.87 39.87±0.99 55.47±1.31 34.64±1.50

Co2L [5] 72.15±1.32 28.55±1.56 53.45±1.55 37.30±1.81

ER [8]

5000

82.53±0.17 16.46±0.25

5000

65.18±0.40 23.31±0.89

BiC [61] 81.42±0.85 17.31±1.02 64.63±1.27 22.25±1.73

GDumb [42] 81.67±0.02 - 65.90±0.28 -
DER++ [3] 83.94±0.34 14.55±0.73 66.73±0.87 20.67±1.24

Co2L [5] 82.49±0.89 17.48±1.80 65.90±0.14 23.36±0.71

FT-seq 33.61±0.85 86.87±0.20

0

28.87±1.36 63.80±1.50

EWC [19] 47.01±0.29 33.27±1.17 35.00±0.43 56.16±0.88

LwF [25] 0 60.69±0.63 27.77±2.17 38.54±1.23 52.37±0.64

L2P [58] 83.86±0.28 7.35±0.38 61.57±0.66 9.73±0.47

L2P + LGCL (Ours) 0 84.33±0.06 5.83±0.23 0 62.51±0.05 8.9±0.17

DualPrompt 86.51±0.33 5.16±0.09 68.13±0.49 4.68±0.20

DualPrompt + LGCL (Ours) 0 87.23±0.21 5.10±0.15 0 69.46±0.04 4.2±0.06

Upper-bound - 90.85±0.12 - - 79.13±0.18 -

Table 1: Results on class incremental learning. We compare LGCL with baseline and previous methods. Following
[57], we group methods by buffer size. Our method is proposed for prompt-based methods like [57, 59] and therefore,
require no rehearsal buffer. We observe LGCL outperforms previous baseline methods in Split-ImageNet-R [57] and Split
CIFAR-100 [20] consistently.

for L2P [59] and Dual Prompt [57] as provided in their code
repositories and paper. We do not perform any hyperpa-
rameter optimisation for LGCL. Since our Ltask and Lclass

require negatives from previous tasks, they are used once
the first task is learned. We compare with regularization and
rehearsal-based methods in Table 1 as these can be trained
with the same transformer-based visual encoder. We fur-
ther compare with architecture-based methods in Table 2.
Since these models are trained with different visual encoders,
we compare performance against them as a difference from
supervised performance.

5.1. Datasets

Split Imagenet-R. The split ImageNet-R [57] is built on
ImageNet-R [13]. It contains 200 classes that are split into
10 disjoint tasks, with each task containing 20 classes. The
dataset is divided into 24,000 training images and 6000 test
images. Split ImageNet-R [57] has more diversity in the
images and is closer to the complicated real-world images.

Split CIFAR-100. Split CIFAR-100 is a widely used dataset
for continual learning. Split CIFAR-100 is made of 10 dis-
joint tasks with 10 classes per task taken from the original
CIFAR-100 [20]. Compared to Split ImageNet-R, it is a
simpler dataset for classification, however, it is sufficient
to expose the large forgetting rate of CL methods in class-
incremental learning [57].

5.2. Comparison with State-of-the Art

We compare with various regularization-based, rehearsal
based and prompt-based methods for continual learning in
Table 1. We observe that Dual Prompt[57] paired with our
model LGCL achieves the best results and sets a new state-
of-the-art. We further observe that prompt-based methods
significantly outperform regularization-based and rehearsal-
based methods on both datasets.

As we compare Dual Prompt with LGCL + Dual
Prompt[57], we see that the introduction of language guid-
ance brings a decent improvement. On Split CIFAR-100,
LGCL improves Dual Prompt by 0.72% on average accuracy,
the measure of average performance across all tasks. Sim-
ilarly, on Split ImageNet-R, LGCL improves Dual Prompt
by an impressive 1.33%.

As we compare the second best method L2P[59], we see
that the introduction of LGCL brings similar performance
improvements. On Split CIFAR-100, the method sees an
improvement of 0.47% in average accuracy and an impres-
sive 1.52% on the forgetting metric. Similarly, on Split
ImageNet-R, the method sees an improvement of 0.94% in
average accuracy and 0.83% in forgetting. This validates our
hypothesis that the introduction of language guidance with
LGCL improves model performance without requiring any
additional learnable parameters.

We compare the performance of LGCL and prompt-based



Method Backbone Avg. Acc (↑) Diff (↓) Buffer size Additional Parameters
MB %

Upper-bound

ResNet18

80.41† - - - -
SupSup [60] 28.34±2.45‡ 52.07 0 3.0 6.5%
DualNet [40] 40.14±1.64‡ 40.27 1000 5.04 10.9%
RPSNet [45] 68.60† 11.81 2000 181 404%
DynaER [63] 74.64† 5.77 2000 19.8 43.8%

Upper-bound
ResNet152

88.54† - - - -
DynaER [63] 71.01±0.58‡ 17.53 2000 159 68.5%

Upper-bound

ViT-B/16

90.85±0.12‡ - - - -
L2P [58] 83.86±0.28‡ 6.99 0 1.94 0.56%
L2P + LGCL (Ours) 84.33±0.06 6.52 0 1.94 0.56%
DualPrompt 86.51±0.33‡ 4.34 0 1.90 0.55%
DualPrompt + LGCL (Ours) 87.23±0.21 3.45 0 1.90 0.55%

†Reported by the original papers. ‡ Reproduced using their original codebases.

Table 2: Comparison with Architecture Based methods on Split-CIFAR-100. The Upper-Bound denotes the model
performance when trained in a fully supervised, non-continual setting, i.e., with access to all tasks at the same time. Following
[57], we use Diff = Upper-Bound Acc - Method Acc (lower is better). This measures how close the model is
to the supervised performance across different model backbones. We observe LGCL outperforms baseline methods and
consistently improves the performance of prompt-based continual learning methods.

methods with architecture-based methods in Table 2. These
methods are trained on different backbones. To be consistent
with previous works[57, 59], we report the difference be-
tween supervised performance and the model performance
as the metric. We observe from the Table 2 that LGCL again
sets a new state-of-the-art in this setting too. LGCL con-
sistently outperforms methods with big buffer sizes. As we
compare the performance of Dual Prompt with and without
LGCL, we again notice an improvement. LGCL further
pushes Dual Prompt towards the upper bound supervised
performance with a difference of only 3.45% from the super-
vised performance.

5.3. Ablation on the components of LGCL.

We test each component of our model LGCL on the chal-
lenging Split Imagenet-R dataset and report the results in
Table 3 for both L2P [59] and Dual Prompt [57]. Com-
paring rows a) and b), the introduction of Ltask leads to a
slight improvement in both L2P and Dual Prompt. Compar-
ing rows a) and c), we see a similar conclusion where the
introduction of class-level language loss leads to a decent
improvement in both datasets. Comparing rows b) and c),
we observe that class-level language guidance leads to a
bigger improvement than only task-level language guidance.
Finally, as we observe from row d), our full model LGCL
uses both task-level and class-level language supervision in
training and achieves more than a full point improvement
on both baseline methods indicating the effectiveness of
both modules of our model. We, therefore, conclude that
the introduction of both task-level and class-level language
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Figure 3: Comparison of average accuracy at each task of
L2P [59] + LGCL. We observe that LGCL on average pre-
vents a drop in performance across tasks.
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Figure 4: Comparison of average accuracy at each task of
Dual Prompt [57] + LGCL. We observe that LGCL on
average prevents a drop in performance across tasks.

guidance is complementary and consistently improves the
prompt-based continual learning methods. We once again
want to emphasise that this improvement is achieved without
introducing any additional learnable parameters.



Components L2P Dual Prompt
Ltask Lclass Acc Forg Acc Forg

a) 61.57 9.73 68.13 4.68
b) ✓ 61.77 10.03 69.43 4.26
c) ✓ 62.36 8.53 69.02 4.7
d) ✓ ✓ 62.51 4.2 69.46 4.2

Table 3: Ablating over LGCL on the challenging Split
Imagenet-R dataset, we confirm the importance of each com-
ponent of our model. We conclude that our method benefits
from the introduction of language guidance at both the task
level and at the class level. This performance improvement
is achieved without introducing any additional learning pa-
rameters.

Text Encoder Avg. Accuracy Forgetting
RoBERTa [27] 87.04 5.4
BERT [21] 87.11 4.90
CLIP [43] 87.23 5.10

Table 4: Ablation over different text encoders. We
test our proposed method with CLIP [43], BERT [9] and
RoBERTa [27] text encoders. All experiments in this table
are conducted on Dual Prompt [57] + LGCL. We observe
that CLIP [43] demonstrates the highest performance.

Keys Avg. Accuracy Forgetting
a) Frozen CLIP Keys 86.15 3.93
b) Learnable Keys 87.23 5.10

Table 5: Ablation over different keys Ks. We replace the
keys with CLIP [43] CLS tokens and use our loss function.

5.4. Per task performance improvement.

We plot the Average Accuracy of the model through the
ten tasks in Figure 3 for L2P and Figure 4 for Dual Prompt
on Split CIFAR-100 dataset. As we compare the model
performance with and without LGCL on L2P in Figure 3,
we see that the model with language guidance is slow in
dropping accuracy as each additional task is introduced. We
see that performance improvement of introducing language
can be observed at each training stage. We similarly compare
the performance of Dual Prompt with and without LGCL in
Figure 4 and see a similar trend where the introduction of
language guidance results in smaller drops in performance
as the model is trained for more tasks. This again validates
our hypothesis that the introduction of language guidance
can mitigate catastrophic forgetting without including any
additional trainable parameters.

5.5. Ablation on Text Transformer.

In previous experiments, we use the text transformer from
a pre-trained CLIP model. CLIP was pre-trained on images

and their captions from the internet and therefore learns
image-informed text embeddings. In Table 4, we additionally
ablate over text transformers from pre-trained language-only
models, namely BERT [21] and RoBERTa [27]. We perform
this ablation with Dual Prompt + LGCL on Split CIFAR-100.
We observe from the table that the CLIP Text Transformer
achieves the best result in Average Accuracy since it is pre-
trained with both image and text data. However, we see
a reasonable performance gain with Language Only pre-
trained Text Encoders RoBERTa and BERT. This validates
that LGCL is fairly robust to the choice of text encoder.

5.6. Ablation on Keys of the Prompt Pool.

We ablate over the design choice for the keys of the
prompt pool in Table 5. We ablate using the Split CIFAR-100
dataset with Dual Prompt + LGCL. The keys of the prompt
pool are learnable and responsible for selecting the most rele-
vant prompt(s) for the task with a query key lookup from the
CLS feature of the Image Transformer. Therefore improv-
ing the keys can result in performance improvement. We
test two different strategies here. In row a), we replace the
keys with the CLS tokens from the CLIP Text Transformer
and keep them frozen. These keys represent the targets we
optimise with our Ltask. We observe that this, while compet-
itive, does not reflect the performance gains of LGCL over
Dual Prompt. In row b) we notice that the learnable keys
with our Ltask achieve the best performance indicating the
effectiveness of our formulation.

6. Conclusion.

We introduce a novel perspective of introducing language
guidance in prompt-based continual learning in this work.
The key intuition behind our approach is that even though
the task distributions change between tasks, their label space
can be mapped to the same language space. A model that
can learn to map to this space can mitigate catastrophic
forgetting, leading to performance improvement. We intro-
duce language guidance at two levels; namely task-level and
class-level. At task-level, we introduce language guidance
for prompt pool, where the model needs to select relevant
prompts for class conditioning of a pre-trained vision trans-
former. By improving the key lookup of the prompt pool,
we allow the model to be more robust across different tasks.
To this end, we encourage the model to map the keys to its
respective task-level language representation. Secondly, we
introduce language guidance at the class-level in the output
feature of the vision transformer. At this stage, we incen-
tivise the model to map the output feature to the class level
language representation. Without any additional learning
parameters, our method improves the performance of base-
line prompt-based continual learning methods to set a new
state-of-the-art.
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