
Expanding Synthetic Real-World Degradations for Blind Video Super Resolution
–Supplementary Material–

Mehran Jeelani1,2,*, Sadbhawna4,*, Noshaba Cheema2,3,5, Klaus Illgner-Fehns1,
Philipp Slusallek2,5, and Sunil Jaiswal1,†

1 K|Lens GmbH, Germany, 2 Saarland Informatics Campus, Germany, 3 MPI Informatics, Germany
4 IIT Jammu, India, 5 German Research Center for Artificial Intelligence (DFKI), Germany

1. Blur Kernel Pool (Breal):

Recall that the proposed algorithm creates a blur kernel
pool from real-world images. We propose to use Kernel-
GAN [2] for this purpose and create a kernel pool of ap-
proximately 5000 kernels from a dataset of 5000 images.
These 5000 images are collected from DF2K [8], K|Lens
datasets [1, 4]. DF2K is an image dataset, whereas K|Lens
datasets consist of videos.

Please note that in the training of our algorithm, for cre-
ating an LR-HR pair, we randomly selected one blur kernel
out of these 5000 blur kernels, in addition to isotropic and
anisotropic blur kernels for simulation.

2. Proposed K|Lens Dataset:

The unique optical lens developed by K|Lens [1, 4] en-
ables any camera with exchangeable lenses to capture mul-
tiple perspectives of a scene with a single exposure as regu-
lar color images on the camera sensor. More specifically, it
captures nine different perspectives of the same scene and
also it can record videos. Please refer to [1, 4] for more
details.

3. Quality Assessment Metrics:

We have used two no-reference quality assessment met-
rics for quantitative comparison in the paper, i.e., NRQM
[5], and BRISQUE [6]. BRISQUE is a widely used met-
rics originally proposed for the quality evaluation of natural
images. These methods rely upon natural scene statistical
(NSS) features extracted from local image patches to cal-
culate the quality of the distorted image. The BRISQUE is
trained on features obtained from natural and distorted im-
ages and human judgments.
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NRQM [5] is specifically designed to predict the quality
scores of super-resolved images. They proposed to use three
types of low-level statistical features in both spatial and fre-
quency domains. These features are learned using a two-
stage regression model to predict the quality scores of the
super-resolved image without referring to ground-truth im-
ages. Extensive experimental analysis has been done in the
[5] to compare NRQM with the existing no-reference IQA
metrics, including BRISQUE metric. In terms of Spearman
Rank Correlation Coefficient (SRCC), [7], the NRQM met-
ric is better than all the compared metrics, as suggested in
the [5]. Recall that we extensively compared different VSR
algorithms in Tables 1, 2 and 3 of the manuscript, and we
can observe that the proposed SRWD-VSR outperforms all
the compared models in terms of NRQM.

4. Pre-trained weights of RealBasicVSR [3]

Recall that in the simulation results and experiments (Ta-
ble 3 of the main paper), we have not shown the results [3]
for 2 × scaling as we do not have the pre-trained weights.
This is why visual results in Figure 8 of the main paper are
only based on 4 × scaling.
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