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Abstract

Reducing the data footprint of visual content via image
compression is essential to reduce storage requirements, but
also to reduce the bandwidth and latency requirements for
transmission. In particular, the use of compressed images
allows for faster transfer of data, and faster response times
for visual recognition in edge devices that rely on cloud-
based services. In this paper, we first analyze the impact
of image compression using traditional codecs, as well as
recent state-of-the-art neural compression approaches, on
three visual recognition tasks: image classification, object
detection, and semantic segmentation. We consider a wide
range of compression levels, ranging from 0.1 to 2 bits-per-
pixel (bpp). We find that for all three tasks, the recognition
ability is significantly impacted when using strong compres-
sion. For example, for segmentation mIoU is reduced from
44.5 to 30.5 mIoU when compressing to 0.1 bpp using the
best compression model we evaluated. Second, we test to
what extent this performance drop can be ascribed to a loss
of relevant information in the compressed image, or to a
lack of generalization of visual recognition models to im-
ages with compression artefacts. We find that to a large
extent the performance loss is due to the latter: by finetun-
ing the recognition models on compressed training images,
most of the performance loss is recovered. For example,
bringing segmentation accuracy back up to 42 mIoU, i.e.
recovering 82% of the original drop in accuracy.

1. Introduction
Mobile devices with high resolution vision sensors, but

limited storage and compute capabilities, are ubiquitous: in-
cluding smartphones, watches, and AR/VR devices. Im-
age compression is critical to facilitate storage of the cap-
tured data on-device, and to reduce the required channel
bandwidth and latency for remote storage. State-of-the-
art recognition models that enable analysis of visual data,
rather than just storing it, are currently without exception
based on deep learning. They impose heavy memory and
compute requirements, despite significant efforts to reduce
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FINETUNING

Figure 1. Illustration of the three scenarios we consider. In A, the
recognition model is trained and evaluated on the original dataset
images: this is our reference baseline. In B, we use the model
from A, but evaluate its performance on compressed images. In
C, the recognition model is finetuned on compressed images, and
then tested the same way as option B.

inference cost, e.g. using efficient architectures [22, 23, 33],
weight compression [30, 40], quantization [19, 24, 27], and
network pruning [20, 25, 26, 41]. The use of state-of-the-
art vision models for low-latency applications, therefore,
requires transmission of the data to compute servers in com-
pressed format, and recognition models should be robust to
artefacts that may be introduced by compression.

Prior works have focused on faster and more efficient
processing, by learning vision recognition decoders directly
on compressed features [36,43]. Another focus has been on
faster transfer of data, through split computation with com-
pressed data [12, 34]. The aforementioned works require
architectural changes to the networks, and novel methods.
Moreover, previous work mostly considers a single com-
pression algorithm, JPEG in [36], HEVC [39] in [12], and
VQ-VAE in [43]. To the best of our knowledge, the impact
of image compression on visual recognition has not been
systematically studied.

In this work, we evaluate to what extent state-of-the-art
visual recognition models are robust to compression of the
input images across three tasks: image classification, object
detection and semantic segmentation, on ImageNet [16],
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COCO [8] and ADE20K [45], respectively. We explore
both neural compression methods, as well as traditional
hand-engineered codecs. We consider bitrates from 2 bits-
per-pixel (bpp) down to 0.1 bpp, ranging from high-quality
compression to an extreme compression regime where visi-
ble artefacts are introduced.

We find that for all tested codecs, image compression
leads to a degradation of visual recognition performance,
in particular at low bitrates. A-priori, it is not clear what
is causing the degradation: compression can lead to a loss
of detail which makes the recognition tasks intrinsically
harder, or the recognition models do not generalize well
to compressed images due to a lack of robustness to the
domain shift introduced by the compression artefacts. By
finetuning the recognition models on compressed images
we can mitigate the domain shift, and test what causes the
observed performance degradation. We find that most of the
performance loss can be recovered using the finetuned mod-
els, suggesting that the performance reduction can be at-
tributed to the models’ inability to generalize to images with
compression artefacts, rather than the presence of compres-
sion artefacts increasing the difficulty of recognition. The
experimental setup that we used to conduct our evaluations
is illustrated in Fig. 1.

To summarize, we make the following contributions:

• We evaluate the impact on image classification, object
detection and semantic segmentation accuracy, when
compressing images with state-of-the-art traditional as
well as learned neural codecs.

• We observe significant degradations in recognition ac-
curacy in the very low bitrate regime of 0.1 bpp, and
find that this is mostly caused by the inability of recog-
nition models to generalize to images with compres-
sion artefacts.

• We show that most of the accuracy loss can be recov-
ered by finetuning recognition models on compressed
images, in particular when using neural compression.
For detection and segmentation with finetuning, the
mAP and mIoU obtained using original images can be
approximated up to 0.5 points with images compressed
to 0.4 bpp, reducing the image data size by a factor 4
and 12 for segmentation and detection, respectively.

2. Related work

Neural compression methods. Most neural image com-
pression methods follow an autoencoder architecture as a
way to achieve a good reconstruction from a small latent
representation space, see e.g. [5, 18, 31, 38, 43]. An entropy
model is employed to estimate the probability distribution
of the quantized latent representation, which is in turn used
by an entropy coder —typically an arithmetic coder— to

compress the latent representation in a lossless manner into
a bit stream, see e.g. [29].
Vision tasks from compressed latent space. Several prior
works have explored learning visual recognition models
from compressed latent representations [36, 42, 43]. For
example, [36] trains a ViT [17] directly on JPEG coeffi-
cients, and expresses common data augmentations in the
same space. They evaluate on ImageNet classification [16],
and achieve similar performance to the RGB model. On
the other hand, [42] instead trains a CNN on the frequency-
domain features, and assesses its performance in object de-
tection and image classification tasks. For video, [43] uses a
VQ-VAE autoencoder [35,37] at the frame level, and learns
video classification models on the bottleneck representa-
tion. This reduces memory and compute requirements, al-
lowing processing of minute to hour long videos.
Split computing with compression. The computation of
a model can be divided between the user’s device and the
cloud. Several works make use of image/feature compres-
sion for faster data transfers [12, 13, 34]. In [12] an ob-
ject detection model is trained to compensate for the lossy
feature compression artefacts. Transmission of an image
compressed at different bitrates until the desired recogni-
tion quality is achieved is explored in [34].

All the aforementioned works focus on a single com-
pression method, and develop new techniques for a single
task. Meanwhile, our focus is not to create a new method,
but rather to systematically evaluate existing compression
methods for several representative recognition tasks.

3. Experimental setup
This section covers the compression methods employed

in this study, the recognition tasks used to evaluate their
effectiveness, as well as their training and testing setup.

3.1. Image compression codecs

We use four state-of-the-art compression codecs: two
traditional compression codecs, BPG [7] and WebP [4], and
two neural compression methods based on the hyperprior
model [5]. In particular, we use the Mean and Scale (M&S)
hyperprior model [32], and the Gaussian Mixture Model
(GMM) hyperprior [11]. M&S combined a mean and scale
hyperprior with an autoregressive context model, for better
rate-distortion trade-offs. GMM improves over M&S by re-
placing the Gaussian likelihood model over the latents by
a Gaussian mixture model, which better captures the con-
ditional distributions given the hyperlatents. In Fig. 2, we
present an image compressed at three different rates by BPG
and GMM hyperprior, to illustrate the image quality and
artefacts at the bitrates conside 0red in our experiments. We
utilize the PIL library [3] for WebP, Bellard’s implementa-
tion for BPG [7], and the CompressAI library [6] library for
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GMM hyperprior - 0.313 bpp

BPG - 0.321 bpp BPG - 0.501 bpp

GMM hyperprior - 0.523 bpp

BPG - 0.850 bpp

GMM hyperprior - 0.886 bpp

Figure 2. Image compressed at three different bitrates using BPG and GMM hyperprior. Black suqare provides a zoom of the central area.

the neural codecs. To compute the image sizes in bit-per-
pixel (bpp), we use the CompressAI library for the neural
codecs and WebP, while for BPG we divide the image file
size by the number of pixels. For the original images in the
datasets, we compute the bpp based on the JPEG filesizes.

3.2. Visual recognition tasks

We consider image classification, object detection and
semantic segmentation as representative recognition tasks.
For classification and segmentation, we use a Swin-T back-
bone [28], combined with an MLP head for classification,
and an UPerNet head [44] for segmentation. For detec-
tion, the backbone is a ResNet-50 [21], with a Disentan-
gled Dense Object Detector (DDOD) head [10]. We use
implementations of the MMClassification [15], MMDetec-
tion [9], and MMSegmentation [14] libraries. We evaluate
the models on ImageNet [16] for classification, COCO [8]
for detection, and ADE20K [45] for segmentation. For each
task we use the standard evaluation metrics: accuracy for
classification, mean average precision (mAP) for detection,
and mean intersection-over-union (mIoU) for segmentation.

In our experiments we evaluate the public checkpoints
released for the different models in the corresponding li-
braries, which are trained on the original images in the
datasets. We experimentally observe that the recognition
accuracy of these models deteriorates when evaluated on
compressed images. This could be due to a loss of detail
when compressing, which makes the recognition tasks in-
trinsically harder, or because the recognition models lack
robustness and do not generalize well to compressed im-
ages. To investigate how these factors contribute, we fine-
tune the models using compressed versions of the training
images, so that the models adapt to compression artefacts,
and the original domain shift in the input data is eliminated.

In practice, we use the same amount of finetuning itera-
tions as were originally used to adapt the pre-trained back-

bones to the different tasks. For classification the model
finetuned for 30 epochs, for detection 12 epochs, and for
segmentation 160k iterations. We finetune models sepa-
rately for each compression level.

To factor out the influence of additional training, we also
finetune the baseline models on the original datasets, for the
same amount of additional epochs. We select the best scor-
ing model, original or finetuned, as the baseline. For classi-
fication and segmentation, finetuning the original model did
not improve accuracy, while for detection finetuning did im-
prove the original model.

4. Experimental results

We present our main experimental results in Fig. 3, and
discuss and interpret the results below.

Classification. When using the baseline model trained
on the original images for classification (dashed curves in
Fig. 3a), we found that compressing images with BPG
has the least impact on recognition accuracy, followed by
WebP and GMM hyperprior which yield comparable im-
pacts. Finetuning the model on compressed images (solid
curves) yields a significant improvement in results. For ex-
ample, improving accuracy from 59.5% to 73% for BPG
compression at 0.1 bpp, relative to baseline accuracy of
81% on the original images (5.2 bpp). This shows that,
to a large extent, the accuracy drop observed when testing
on compressed images, is due to the lack of generalization
of the original model to images with compression artefacts.
After finetuning, at 1 bpp the accuracy is around 79% for all
compression methods; a 3% loss w.r.t. the baseline model
while reducing the bitrate by a factor five.

Object detection. Interestingly, the results for object de-
tection on COCO in Fig. 3b, show a different ordering of
results w.r.t. the different compression codecs. Here, the
traditional codecs BPG and WebP lead to bigger drops in
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(a) Results for image classification on ImageNet.
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(b) Results for object detection on COCO.
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(c) Results for semantic segmentation on ADE20K.

Figure 3. Visual recognition results with compressed images. The
horizontal dashed black line is the baseline result obtained using
the original images. Other curves evaluate models trained on orig-
inal images (original, dashed), and model finetuned using com-
pressed images (finetuned, solid), test images are compressed us-
ing WebP, BPG, M&S and GMM hyperprior codecs.

accuracy than the neural compression models. In fact, even
when finetuning on compressed images the results for BPG
(solid blue) are worse than using the original model on im-
ages compressed using the neural codecs (dashed green and
red). Similar to the classification experiment, the drop in
object detection accuracy can to a large extent be recovered
by finetuning the model on compressed images. For exam-
ple, for the neural codecs at 0.1 bpp, the initial drop of 10
points or more in mAP is reduced to under 5 points. At 0.4
bpp, after finetuning the GMM hyperprior model is able to
reduce the bit rate by more than a factor 10, while reducing
the mAP by only 0.5 (from 42.5 to 42.0) w.r.t. the baseline
model on the original images.

Semantic segmentation. For semantic segmentation we
observe similar trends as for detection: BPG compression
hurts accuracy most, and GMM hyperprior compression has
least impact. When compressing images with the GMM hy-
perprior codec to 0.1 bpp, an mIoU of 31% is obtained us-
ing the baseline model, while the finetuned model obtains
42%. In comparison, the baseline model on the original im-
ages (1.44 bpp) obtains 44.5%. At 0.6 bpp the mIoU of
the finetuned model on GMM hyperprior compressed im-
ages matches the performance of the baseline model on the
original images.

5. Conclusion

We investigated the impact of image compression on vi-
sual recognition, using both traditional codecs and recent
neural compression methods for compression levels rang-
ing from moderate (2 bpp) to very strong compression (0.1
bpp). We find that strong compression has a big negative
impact on the accuracy for tasks such as image classifica-
tion, object detection and semantic segmentation. Our ex-
periments show that this is to a large extent due to the lack of
generalization of these models to images with compression
artefacts. By finetuning the recognition models on com-
pressed images, we find that most of the loss in accuracy on
compressed images can be recovered.

Our findings can contribute to deploy visual recognition
for users in resource and bandwidth limited settings. In fu-
ture work we want to explore to what extent our findings
can be used to reduce I/O bound latency when training vi-
sual recognition models on internet-scale datasets. In par-
ticular, it is interesting to explore training recognition mod-
els directly on the latent compressed image representations,
rather than passing through the usual RGB representation.

Photo credits. Figure 1 main photo by Ajay Suresh, under
CC License 2.0 [1]. Figure 1 small photo by Zhaoshan75,
under CC License 4.0 [2]. Figure 2 by Deensel, under CC
License 2.0 [1].
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