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Abstract—RISC-V has generated a lot of interest in academia
and industry alike due to the open source, modular, and
royalty-free design of the Instruction Set Architecture (ISA).
With its modular extensibility and the ability to customize the
ISA to meet application-specific needs, new challenges arise in
terms of verification. Various approaches have been proposed to
overcome these challenges, including traditional simulation-based
verification and formal verification. While formal verification is
considered thorough, its quality heavily depends on the properties
and assumptions of the proofs meeting the exact specification.

In this paper, we propose a structured and mutation-based
approach for qualifying formal verification techniques related
to the RISC-V ISA. Specifically, we identify rules and mutation
classes that can be used to derive a set of mutations to test the
capabilities of formal verification tools. We evaluate our approach
through a case study, applying a set of mutations to an open-
source RISC-V processor, which we verify using the riscv-formal
formal verification framework. Our results identify verification
gaps uncovered through the generated mutations. We discuss the
impact of these identified gaps and how they can be assessed
within the context of formal verification.

I. INTRODUCTION

RISC-V [1], [2] is a modern, open source and royalty-
free Instruction Set Architecture (ISA) that gained significant
momentum in academia and industry. Besides its free and open
nature, a key feature that enabled the ongoing success story
of RISC-V is the highly modular design with a broad range
of configuration options. The foundation of RISC-V is the
mandatory base integer instruction set which is available with
different register widths, including 32 and 64 bit architectures.
On top of that, a set of optional standard instruction set
extensions, such as multiplication and division, are provided.
Moreover, custom instruction set extensions can be integrated
to build highly application specific solutions.

While the extensive modularity brings many benefits in
building an efficient processor design, from the verification
perspective new challenges arise and more effort is required.
Beside verification of the instruction set extensions, it is also
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important to verify that the behavior of the base integer instruc-
tion set still behaves correctly in combination with new exten-
sions. Different approaches have been developed to address
the verification problem, the official directed test suites being
the first to mention. This includes the RISC-V unit tests from
the University of Berkeley [3] and the RISC-V architectural
tests developed by a dedicated RISC-V task group [4]. For a
more comprehensive functional verification, a set of RISC-V
assembly test generation techniques have been investigated.
They leverage predefined templates with randomization [5],
fuzzing-based techniques [6] as well as specification-driven
generation [7]. A modern and generic framework in this regard
is the RISC-V DV [8] verification framework from Google.
It utilizes a constraint-based test generation approach and
provides generic interfaces to integrate a high-level functional
reference simulator in combination with the RTL processor
under test.

Although, due to their ease of use and scalability, such
simulation-based test generation techniques are an important
part of the overall verification effort, they are necessarily
incomplete with regard to the verification coverage. Thus, for-
mal verification techniques have been developed for RISC-V.
A popular and freely available formal verification tool for
RISC-V is the riscv-formal [9] framework. It leverages model
checking techniques and reasons about the processor behav-
ior by means of assumptions and assertions. The processor
behavior is observed through a dedicated RISC-V Formal
Interface (RVFI), which is a requirement to apply riscv-formal.
The RVFI has already been implemented by several RISC-V
processors, such as PicoRV32 [10] and VexRiscv [11]. Based
on riscv-formal several intricate bugs have been found such as
erroneously not identifying reserved compressed instructions
as being illegal or an incorrect processing of a jump bit
mask [12].

While the found bugs already demonstrate the effectiveness
in bug hunting, further analysis is required in order to reason
about the comprehensiveness of the formal verification tool.
A common approach is to utilize a mutation-based evaluation.
Each mutant represents a defect in the processor under test.
A mutant is said to be killed, if it is detected by the verifica-
tion tool. However, a mutation-based evaluation requires the



availability of a strong set of mutants.
For a set of mutations targeting formal methods, the assess-

ment of both the strength and the completeness needs to differ
significantly from the corresponding assessment for traditional
simulation-based testing strategies. The biggest difference is
that if a formal tool detects a certain type of error, it is
likely to detect all other similar errors as well. As a result,
any kind of simulation-based coverage metrics cannot be
applied in this case. Instead, the evaluation needs to focus on
whether the formal tool actually covers all aspects of the given
specification, for which an adapted mutation-based approach
is highly suitable.

Contribution: Therefore, in this paper we propose a dedi-
cated methodology to identify a strong set of mutation-classes
at the ISA-level tailored for RISC-V and designed specifically
for formal verification approaches. Each mutation-class covers
a different aspect of the ISA specification and represents a
set of related mutants. We consider positive (the expected
results are provided) as well as negative (nothing beyond that
happens) aspects. Negative aspects are in particular important
to check that the formal verification tool does not miss
important use-cases in its property set. In our methodology we
propose a structured approach that relies on a set of dedicated
rules to derive the mutation-classes by manual inspection of
the RISC-V ISA. We focus on identification of corner case
scenarios, since basic sanity and functional checks are already
well covered through existing test generation techniques. For
example, due to the extensive modularity of the RISC-V
ISA corner cases in the specification arise at the intersection
points of the different RISC-V instruction sets. Based on the
identified mutation-classes, we derive a set of representative
ISA-level mutants that cover the mutation-classes, and are
designed to assess the capabilities of formal verification to
avoid unintentional gaps in the verification effort. For eval-
uation purposes we leverage the RISC-V processor of the
open source MicroRV32 platform [13] which already provides
the respective RVFI interface required by riscv-formal and is
available at GitHub. We integrate each mutant, one after an-
other, in the RTL description of the MicroRV32 processor and
check if riscv-formal is able to kill the mutant. Our evaluation
revealed several holes in riscv-formal which demonstrate the
effectiveness of our approach in identifying strong ISA-level
mutation-classes tailored for RISC-V. Moreover, our results
enable to strengthen the freely available riscv-formal tool to
contribute towards building a complete formal verification
solution for RISC-V.

II. RELATED WORK

In addition to the already covered RISC-V test generation
techniques, we briefly review formal verification techniques
alongside the already introduced riscv-formal. One approach
is pursued by OneSpin 360 DV for RISC-V [14], which
enables model checking techniques to obtain a complete proof
and also covers security aspects. Another formal verification
tool for RISC-V is provided by Axiomize [15], [16], which
also relies on formal property sets. Both tools show very

strong results but are proprietary. Besides model checking, an
alternative approach for RISC-V formal verification relies on
theorem proving techniques by formalizing the RISC-V ISA in
Kami [17]. Recently, a research approach for the verification
of pipelined micro-architectures has been presented, which
leverages symbolic QED techniques tailored for RISC-V,
called C-S2QED [18]. We decided to use riscv-formal for our
evaluation since it is a very mature and freely available formal
verification tool. It has already been integrated with several
popular RISC-V processors, further underlining its importance
in the RISC-V community.

Mutation-based testing, in general, has a long history in the
verification domain, going back to the software domain and
expanding into a broad range of different applications [19].
This includes applications at the system-level using virtual
prototypes and embedded systems software [20], as well
as the hardware level using fault-injections at the register-
transfer level [21]. Mutation-based testing principles have also
found their way into commercial tools such as Certitude from
Synopsys, which goes back to [22]. The principle has also
been applied to guide simulation-based processor verification
as a quality metric [23].

Specifically in the RISC-V context, we are aware of two
recent mutation-based approaches for evaluating test case
coverage. The first approach evaluates the effectiveness of the
RISC-V compliance test suite [24], while the second one
evaluates a new concept of metamorphic testing (i.e., testing
without using an explicit reference model) for finding bugs in
an instruction set simulator [25]. Both approaches use stan-
dard mutation classes inspired by the software domain (like
replacing one register with another or switching immediates),
which enables the production of a large set of mutations in an
automated way. However, we focus on corner case scenarios
at the ISA level instead and aim to evaluate RISC-V formal
verification techniques, resulting in a significantly different
methodology and obtained mutation classes.

III. PRELIMINARIES

A. RISC-V

At its core, the ISA features a base integer instruction set
with either 32, 64, or 128 bits as its standard bit width.
Denoted as RV32I, RV64I, and RV128I respectively, optional
instruction set extensions such as the M- (multiplication and
division), A- (atomics), and C- (compressed) extensions are
defined. Furthermore, RISC-Vdefines 32 general-purpose reg-
isters x0 to x31 (with x0 being hardwired to constant 0).
The bit width of these registers depends on the variant of the
base integer instruction set in place (e.g., RV32I uses 32-bit-
wide registers). One of the optional instruction set extensions
includes Control and Status Registers (CSRs), which are
added to the base set of general-purpose registers (GPRs)
offer control and status registers for hardware timers, meta-
information and enables extended processing features such as
interrupts, user-modes, and performance counters.

More information on the RISC-V ISA instruction set, to-
gether with its extensions and on the privilege architecture



specification, including CSRs, can be found in Volume I [1]
and Volume II [2] of the specification, respectively.

B. RISC-V Formal Verification Framework riscv-formal

The RISC-V Formal Verification Framework riscv-formal
[9] is a microarchitecture independent set of formal tests
(bounded model checks) for RISC-V ISA processors provided
and maintained by YosysHQ. As a backend, riscv-formal
uses SymbiYosys1, which is a front-end driver for Yosys-
based formal verification of safety, liveness, and reachability
properties formulated via assertions, assumptions, and cover
statements. It utilizes SMT solver engines to perform either
bounded model checks or k-induction. Within riscv-formal,
each instruction is covered with its own formal testbench
and additional formal tests are available for the liveness
of the processor and consistency checks. To automate the
verification flow, riscv-formal is accompanied by scripts and is
configurable to work independently of the specific processor
implementation, as long as the RVFI is implemented and
connected to the provided wrapper within riscv-formal. The
list of bugs and errors that riscv-formal aims to find includes,
but is not limited to, incorrect instruction semantics, incorrect
bypassing/forwarding, and errors in the memory interface for
STORE and LOAD instructions.

IV. DIFFERENCE IN CHALLENGES BETWEEN FORMAL AND
NON-FORMAL VERIFICATION APPROACHES

Verification has become an essential and well-integrated
part of modern circuit design processes. The ultimate goal
is to ensure the complete compliance of a design with its
specification.

However, due to the increasing complexity of modern de-
signs, this goal often needs to be adjusted to provide a certain
level of confidence assurance. This adjustment is necessary
because the number of tested input stimuli is restricted to
achieve realistic execution times.

The most commonly used approach seems to be the sim-
ulation based verification. Coverage metrics/strategies and
mutation-based evaluation are employed to optimize the com-
promise between feasibility and completeness of coverage.
However, formal methods approach verification from a dif-
ferent perspective. In the case of bounded model checking,
the design under test and the given specification/property are
transformed into a boolean equation, which is then computed
by a solver engine. This means that the coverage is always
complete in relation to the formulated specification, at least
up to a certain depth. Therefore, the question of completeness
applies to the formulated specification itself, rather than the
exhaustiveness of the considered test vectors or other metrics
used in simulation-based approaches.

As design complexity and the comprehensiveness of prop-
erties increase, the complexity of the boolean equation to be
solved also rises, resulting in exponentially growing solver
times. To make the formal proof of a certain specification

1See https://github.com/YosysHQ/sby for more information.

Fig. 1. Abstract model for the processor behavior

feasible, it becomes necessary to make certain abstractions, as-
sumptions, and restrictions. In the case of verifying a RISC-V
CPU, such an abstraction can be made by reducing its correct
functional behavior to its original purpose of sequentially
executing instructions with a determinable result (for out-
of-order execution, this holds at least for certain sequences
of instructions). Regardless of microarchitectural details like
pipelining or specific timing aspects, a correctly implemented
CPU will always start in a certain state and, depending on
the next fetched instructions and other inputs, will reach
a specific target state after executing the instruction. The
RISC-V Formal Verification Framework is based on such a
behavioral abstraction, which is depicted in Fig. 1.

The state consists of the Program Counter, the standard
Register File, and all registers needed for the CSR-extension,
the Floating Point extension, or other extensions that add
registers. The inputs and outputs encompass the interaction
with memory buses, as well as other possible signals like
external interrupts, exceptions, or halt signals.

The problem lies in the fact that certain erroneous or missing
behavior may only be active or visible under certain circum-
stances, which can be systematically (unknowingly) prevented
through the abstractions and assumptions made to facilitate the
proof. As a result, a formal proof may pass without detecting
the error or missing behavior. Thus, a design may pass a
formal proof completely, but the proof itself may not fully
comply with the given specification. The authors of [26] refer
to this as vacuous satisfaction and suggest that special sanity
checks and different coverage metrics are required to address
this increasingly common type of verification gap in formal
verification. They propose checking for the completeness of
the implemented specification instead.

When considering a mutation-based evaluation of formal
verification approaches, it is therefore necessary to include
a set of mutation classes that address the abstractions made,
as well as the specific challenges and pitfalls of the formal
domain. In conclusion, formal verification methods offer a
different type of challenge than simulation-based verification
methods do, regarding the specification to be checked against.
When considering a mutation-based evaluation of formal ver-
ification approaches, it is therefore necessary to include a set
of mutation classes that address the abstractions made, as well
as the specific challenges and pitfalls of the formal domain.

https://github.com/YosysHQ/sby


V. ISA-LEVEL MUTATION-CLASSES FOR QUALIFICATION
OF RISC-V FORMAL VERIFICATION

In this section, we present our proposed approach for
identifying ISA-level mutation classes tailored for the qual-
ification of RISC-V verification methodologies. We start with
an overview (Section V-A), then describe in more detail the
rules we use to identify mutation classes (Section V-B) and
finally present our obtained mutation classes (Section V-C).

A. Overview

Fig. 2 shows an overview of our approach. It is separated
into two subsequent phases: 1) Preparation (top of Fig. 2) and
2) Evaluation (bottom of Fig. 2).

In the first phase, we apply a structured approach that relies
on a set of dedicated rules to derive the mutation classes
through manual inspection of the RISC-V ISA. Our approach
incorporates expert knowledge and takes the requirements of
formal verification into account. Furthermore, we focus on
identifying corner case scenarios that might be accidentally
overlooked by the formal tool. We provide a more detailed
description of our rule-based strategy to identify the mutation
classes in the next section (Section V-B). Based on the
mutation classes, we sample a single representative mutant
from each class. This sample set of mutants effectively covers
the mutation classes and enables a more efficient evaluation.

The second phase is the evaluation. Each representative mu-
tant is integrated into the RISC-V processor of the MicroRV32
platform, with modifications made to the processor behavior
to exhibit the defect described by the mutant. It is important
to note that the mutants pertain to the ISA-level, while the
processor itself is implemented at the microarchitecture-level.
Therefore, there can be different possible ways to integrate a
mutant into the processor’s microarchitecture. This observation
is particularly important when considering negative testing,
which we will discuss further in the subsequent sections.
Subsequently, we employ a formal verification approach (in
this case riscv-formal) to check if the mutant is ”killed,”
meaning that the integrated defect in the MicroRV32 processor
is detected. Based on the evaluation results, we can assess
the effectiveness of the formal verification tool in identifying
the mutants and evaluate its completeness in the verification
process.

In the following sections, we provide a more detailed
description of our structured approach to identify the RISC-V
ISA-level mutation classes.

B. Identifying Mutation-Classes

As already explained in Section IV, a formal tool will
find every fault it observes. The question is if it actually
observes every aspect of the given specification. To identify
mutation classes in a structured methodology based on this
observability, there are three aspects to consider:

1) What faulty behavior does a mutation introduce?
2) Where is this faulty behavior observable?
3) Does the faulty behavior only occur under certain cir-

cumstances or conditions?

When applying this to the ISA-Level CPU abstraction
(Fig. 1), every violation the RISC-V ISA would be a possible
faulty behavior introduced by a mutation. However, a faulty
behavior in relation to a certain input can only be observed
in either the state (e.g., PC or general-purpose registers) or in
the generated output signals (e.g., memory address or fetch
commands). Additionally, a faulty behavior could only occur
under certain conditions (e.g., specific input values or counter
overflows, etc.).

A basic template for this two-dimensional observability
space, in which any ISA violation can be placed, is shown in
Table I. This classification can be gradually divided into finer
subclasses, which we will demonstrate in Section VI. For ex-
ample, the state faults can be split into several register groups
or even the individual registers. The same goes for the output
faults and the different conditions under which a fault would
appear, creating more and more cells. Certain mutations will
fit into multiple cells. To guarantee that a formal tool observes
every kind of fault, it is advised to find a set of mutations that
addresses every cell individually. For example, if a formal tool
only ever observes the register values, it will not find any faulty
bus behavior. If a mutation introduces faulty PC behavior, it
will show in the PC register and in the generated fetch-bus
command. However, such a mutation would not uncover the
verification gap concerning bus interactions. This opens up
the possibility to introduce certain completeness metrics for
a set of mutations, based on how finely the two-dimensional
observability classification space is chosen and how well the
individual cells are addressed.

As for the faulty behavior introduced by the mutations,
every ISA violation would be suitable. However, from the
perspective of observability, complemented by a special focus
on formal verification and the RISC-V ISA, the choice of
mutations can be guided by a few rules, grouping them into
sensible categories:

1) ISA path coverage analysis that covers different logical
paths according to the specification.

2) Difference-based analysis focusing on intersection points
between different instruction sets.

3) Special pitfalls regarding formal verification, covering
unintended behavior or side effects.

4) ISA corner cases specific to the RISC-V specification that
are not covered by the first three rules.

Each rule is designed to cover specific aspects of the
functional specification including corner cases, which might
be accidentally incorrectly implemented or not considered by
the formal verification tool.

The first rule is intuitive as it represents different logical
cases in the specification in a general sense. This covers the
correct implementation of all instructions. Additionally, more
special paths are of interest, such as the handling of illegal
instructions and the corresponding traps/exceptions thrown.

As an example of the second rule, consider the RISC-V
ADDI instruction. It has a slightly different specification for
the 32-bit and 64-bit ISA, resulting in different behavior. A
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Fig. 2. Overview on our proposed methodology.

64-bit implementation applies sign-extension to the immedi-
ate and the 32-bit result (to cover a 64-bit register range).
However, when designing a RISC-V processor that supports
both the 32-bit and 64-bit instruction set, it can easily be
forgotten to implement the necessary differentiation. Such
small mistakes could go unnoticed because an application does
not generate the respective code, but in other cases, this would
lead to wrong results. Based on this observation, problematic
and easily overlooked ISA differences can be identified, and
particular instructions can be used as representative mutants.

The third rule is a bit more elaborate and designed specifi-
cally with formal verification and its possible pitfalls in mind.
The idea is to ensure that no additional side effects occur,
like generating faulty bus signals in addition to the correct
update of the destination register. By considering such cases,
we can formulate respective mutation classes to cover these
scenarios. Please note that the idea in this context is not to
ensure that the verification tool finds that specific mutation,
but in a more general sense, it is able to handle this class of
errors. Such an error can also manifest itself based on intricate
microarchitectural pipeline bugs, which the formal tool should
find as well if it has been designed to observe every important
aspect of the design under test. Hence, this negative testing
rule can be considered to perform sanity checks regarding the
completeness of the formal verification tool.

As an example, riscv-formal is a bounded model check
based on a special interface that feeds information from a
RISC-V CPU to both the formal tool and a reference RISC-
V instruction simulator. The tool then compares the results
of instructions executed by the device under test with the
reference simulation. In this case, there are obvious limitations
to this verification approach. One limitation is the presence of
faulty behaviors that occur outside the chosen boundary of
the model check. Another limitation is cases in which a faulty
behavior somehow produces faulty signals on the mentioned
interface, causing the reference to base its results on faulty

TABLE I
BASIC ISA-LEVEL MUTATION CLASSES

unconditional conditional
state fault ISA violation? ISA violation?
output fault ISA violation? ISA violation?

inputs.
For the fourth and last rule, we have thoroughly searched

the RISC-V ISA for specific peculiarities that can easily be
overlooked in the design process of both a CPU design and
a corresponding formal verification framework. Such corner
cases should, therefore, be included in every set of mutations.
One example would be the division by zero, which is handled
in a specific way in RISC-V, or the handling of conditional
branches.

C. Identified Mutation-Classes

In this section, we describe the identified mutation classes
based on the four strategies mentioned in Section V-B. The
abstract CPU model (Fig. 1) is taken into account, and the
mutation classes applied to the two-dimensional observability
categories described in Section IV are intended to system-
atically guide the verification engineers, forming a set of
mutations.

I. ISA path coverage analysis, that covers different log-
ical paths according to the specification This strategy
focuses on general mistakes and errors during transla-
tion/implementation of the ISA into a microarchitecture.
In principle, this includes corner cases while the intent is
to focus on more general ISA-paths and sanity checks.

a) Mutations altering the result of an instruction.
b) Mutations altering the bus interaction.
c) Mutations that alter the correct pc-behavior.
d) Mutations that alter the correct behavior concerning

traps/interrupts and exceptions.



II. Difference based analysis, focusing on intersection
points between different instruction sets This strategy
is meant to ensure strict distinction between specifications
of different RISC-V ISA-extensions.

a) Differences in instructions
b) Additional/missing instructions
c) Architectural differences

III. Special pitfalls regarding formal verification, covering
unintended behavior or side effects This strategy is
based on expert knowledge and experience regarding
formal verification. The specific details of the following
subclasses are outlined in Section IV.

a) Vacuous Satisfaction
b) Unintended behavior
c) Faulty proof-assumptions and preconditions

IV. Other RISC-V specific corner cases that are not
covered by the first three strategies The RISC-V ISA
contains several design decisions, that lead to certain
RISC-V specific corner cases. Especially some non-
trivial corner cases are hidden in the details of the ISA
specification and should not be neglected. For example:
• No integer computational instructions cause arithmetic

exceptions.
• Conditional branch instructions only throw exceptions

on a taken branch.
• Loads with a destination of x0 must still raise any

exceptions and cause any other side effects even though
the load value is discarded.

• Register x0 is hardwired to zero.

VI. EVALUATION

In this section we describe our samples of mutations to
conduct an exemplary qualification of the riscv-formal verifi-
cation framework. The set of mutations is then generated using
the RISC-V processor of the MicroRV32 platform, which
implements the necessary interface and the respective results
are discussed afterwards. The experiment was executed with
Ubuntu 20.04 LTS on an Intel Xeon Gold 6240 CPU clocked
at 2.60 GHz and with 383 GB of system memory.

A. Mutations

In addition to the unchanged version of the MicroRV32
processor, serving as a reference, we chose ten different
mutations. We derived each of the mutations from one of the
subclasses discussed in Section V-C, only neglecting those,
which would require further discussions and overly compli-
cated manipulations to the core. Many of these mutations could
arguably be assigned to multiple mutation classes at once. For
each mutation, we also cross-reference the respective mutation
class it was derived from.

1) The ALU is manipulated, such that the ADD Instruction
subtracts instead. (I.a)

2) The PC now is always incremented by 8 instead of 4.
(I.c)

3) The zero instruction is now handled as a RI format
instruction, instead of being illegal. (I.d)

4) The shift instruction is decoded as specified in the 64I
ISA instead of 32I ISA. (II.a)

5) The LWU instruction from the 64I ISA is now legal,
working exactly like the LW instruction. (II.b)

6) The decoder is manipulated to leave out the evaluation
of the func3 value for all store instructions. (III.a)

7) The instruction results are also written to another prede-
fined register apart from the destination register. (III.b)

8) The x0 register can now be written to. (IV.)
9) Conditional branches will raise an instruction-address-

misaligned exception, even on a branch not taken. (IV.)
10) After a certain amount of cycles, the load values will

always be incorrect. (I.b + III.c)
With regard to the observability aspects discussed in Sec-

tion V-B, this first exemplary set of mutations has also been
allocated to the respective cells of Table II. It is an expansion
of the basic template shown in Table I, better suited to the
chosen set of mutations. The state has been split into the
program counter (PC), the general-purpose registers, and the
control-and-status registers, with the latter mainly showing
thrown exceptions. For the generated output signals, a dif-
ferentiation has been made between the instruction bus and
the memory bus. Furthermore, the conditional faults have
been separated into state-dependent and input-dependent ones.
Mutations marked with ’*’ indicate that they will only be
observable in the PC or the generated instruction bus outputs
if an exception causes the CPU to jump to a trap handler. The
table shows that every cell but one is addressed, although most
of them not individually, which will be discussed in relation
to the results.

B. Results

The results produced by formally verifying the exemplary
set of mutations are shown in Table III. The left side of the
table shows an identifier of our mutation sample (referring
to our list in Section VI-A and the mutation-classes from
Section V-C) and a short description of the behavior of the
mutation. The right side shows the evaluation result for each
mutation and a summary of whether the mutation is killed
(found by riscv-formal) or not. Once at least one test of riscv-
formal fails, the mutation is considered killed. For reference,
we include an unaltered version of the MicroRV32 CPU that
passes all the riscv-formal tests.

The results show that while some of the mutations are found
by riscv-formal, there are still verification gaps uncovered
through our systematic approach of generating mutants. We
will discuss some of the results and their respective details
further in this section.

The manipulated ADD instruction was realized by making
the ALU subtract instead of add for the ADD instruction.
This mutant was killed by riscv-formal. Apart from dedicated
checks for the PC, each instruction check verifies the PC value.
Therefore, the second mutation (I.c) is also killed. Handling
the all-zero instruction as an RI-format instruction (I.d) does



TABLE II
SPECIFIC ISA-LEVEL MUTATION CLASSES

unconditional conditional
state-dependent input-dependent

state fault
PC 2), 3), 4)*, 5)* 9)* 4)*, 9)*
GPRs 1), 5), 7) 8) 4), 8)
CSRs 3), 5), 6) 9) 4), 9)

output fault IBus-interaction 2), 3), 5)*, 6)* 9)* 4)*, 9)*
MBus-interaction 5), 6) 10) -

TABLE III
RESULTS OF THE MUTATION-BASED EVALUATION

Mutation Mutation Class Description # PASS # FAIL Found mutant?
- Unmodified (reference) 43 0 -

1) I.a ALU subtracts on ADD instruction 31 12 3

2) I.c Program counter increments by 8 6 37 3

3) I.d Decode defined illegal instruction (all zeroes) as legal 43 0 7

4) II.a Decode shift instruction as RV64I shift instruction instead RV32I variant 43 0 7

5) II.b Decode LWU instruction from RV64I when only RV32I is allowed 43 0 7

6) III.a Ignore funct3 field on STORE instructions at decoding 43 0 7

7) III.b Write to register x30 as well, whenever any register is written 43 0 7

8) IV. Make register x0 writable 5 38 3

9) IV. Raise trap on misaligned branch target on branch not taken 37 6 3

10.1) I.b + III.c Manipulate loaded values after 100 and 600 loads respectively 43 0 7

not effectively lead to a different result. However, according
to the RISC-V ISA specification, this instruction should be
illegal, and the core should raise an exception. The survival
of this mutation shows that there are details of the decoding
process that are not considered by riscv-formal. This is further
underlined by the fact that the mutant for decoding the SHIFT
instructions (II.a) is not killed. Tolerating the LWU instruction
(II.b) and the missing evaluation of the funct3 field for the
STORE instruction (III.a) all survive the set of formal checks.

The mutation altering the behavior of the register file (III.b)
is not killed. That is explainable by the fact, that exact
register changes are not actually verified by riscv-formal.
Only the interactions between the core and the register file
are covered by the formal properties. This helps reduce the
complexity of the formal proof but is also a good example
for assumptions/abstractions, leading to a verification gap.
The mutation of the x0 register is killed (IV.) because it
shows when evaluating the correct results of multiple executed
instructions. The corner case regarding the exception handling
of conditional branches is correctly implemented by riscv-
formal, and the corresponding (IV.) mutant is killed.

The last mutations (I.b and III.c), which we included with
two different timing variations, are not killed. This is explained
by the fact that riscv-formal mainly applies bounded model
checking and can only identify such misbehavior up to a
certain unrolling depth. We still included this mutation to
highlight these kinds of limitations in such an approach.

VII. DISCUSSION

Examining the results, several mutations survive the formal
verification process. One could argue that some of the chosen

mutants are very specific and unlikely to appear in a real
design. But, as previously discussed, these mutations each
represent a whole category of possible design flaws and
therefore contribute to a certain aspect of the verification
process. If one of these mutations survives the verification
process, it suggests that the latter is incomplete in certain areas.
Especially in the context of formal verification, this leads to
the conclusion that not only a certain corner case got past the
test suite, but a whole category of ISA violations might remain
unchecked.

Of course, a verification approach should always be eval-
uated in the context of its natural limitations. The register
file could easily be verified in a separate and less complex
proof, and the timing-based mutation might simply be out of
scope for a bounded model check as used within riscv-formal.
On the other hand, inaccuracies within the decoder should
not slip through a formal verification approach. Decoding
instructions is a crucial part of the processor design, and
thus false trust in its correctness could leave opportunities for
design vulnerabilities like hardware trojans.

Regarding the completeness of the mutation-based evalua-
tion, the exemplary set of mutations is quite small. Table II
displays how thoroughly the observability aspects are checked
by the chosen set. Although almost every cell is addressed,
only a few mutants address any cell individually. Nevertheless,
the mutations were selected considering basic knowledge
about the functionality of the riscv-formal framework and
demonstrate how effective such a small set of mutations can
uncover verification gaps. This leads to the question of what
results a more extensive evaluation would produce.



Therefore, we suggest achieving full coverage of the rules
and the observability space described in Section Section V-B.
This would effectively result in a set of mutations that includes
every basic ISA path violation, along with other more specific
points of interest, applied to each cell of the corresponding
observability table individually. Although beyond the scope
of this first demonstration, this approach seems feasible.

In general, our systematic mutation-based approach for
qualifying formal verification tools for RISC-V and their
properties covers a broad range of property types. While all in-
structions can be checked for their expected functionality, our
approach also covers instruction semantics and decoding that
should not be executed and instead should cause an exception.
As the ISA-Level covers the instruction’s semantics and their
decoding in terms of an abstracted CPU model (see Fig. 1),
microarchitectural details and possible design optimizations
require an extended methodology. This is acceptable since
black box and gray box formal verification frameworks like
riscv-formal are agnostic to microarchitectural details. If mi-
croarchitectural details and design optimizations are checked
through formal properties, our methodology can be expanded
and concretized to guide verification engineers in finding
mutations that target such designs. At least the preservation of
the core functionality specified by the ISA after an optimiza-
tion is automatically addressed without any further adaptions.
Through certain mutations, we demonstrated that timing issues
and similar non-functional bugs can be introduced and found
to be undetectable by the formal verification tool. Generally,
bugs related to aspects like liveness or deadlocks do not
exist at the ISA-Level and depend on the microarchitecture,
thus requiring additional knowledge of the hardware imple-
mentation. We believe our approach covers a broad range of
possible formal properties that can be checked by leveraging
the existing ISA-Level abstraction to systematically generate
mutations for qualifying formal verification.

VIII. CONCLUSION AND FUTURE WORK

In this work we proposed a mutation based qualification
approach for formal verification methods for the RISC-V
ISA. Specifically, we provide a structured approach relying
on a set of dedicated rules and mutation classes to obtain
feasible mutations. We evaluate the approach by using a
set of representative mutations to check against the riscv-
formal framework. By applying the ISA-level mutations to the
RISC-V processor of the MicroRV32 platform and checking
the mutated processor with riscv-formal, we were able to
identify gaps in the verification approach of riscv-formal. The
identified gaps of riscv-formal can be considered severe as they
relate to core capabilities of processing units (e.g., instruction
decoding). Through the help of our qualification approach,
such verification gaps can be found and addressed to increase
the quality of the verification suite. To further extend our
approach we plan to:

• Investigate the possibility of ISA-level coverage metrics
in order to assess the completeness of our method.

• Consider automatic/semi-automatic generation of muta-
tion samples through the formalization of our mutation
classes in connection with the formal ISA specification.
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