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ABSTRACT 
More than 50 years after the last human set foot on the Moon during 
the Apollo 17 mission, humans aim to return to the Moon in this 
decade. This time, humanity plans to establish lunar habitats for a 
sustainable longer presence. An integrated part of these lunar 
habitats will be planetary surface greenhouses. These greenhouses 
will produce food, process air, recycle water, and improve the 
psychological well-being of humans. Past research has shown that 
a large amount of crew time, a scarce and valuable resource in 
spaceflight, is needed for maintenance and repairs in a planetary 
surface greenhouse, leaving less time for crop cultivation and 
science activities. In this paper, we present the concept of an 
augmented reality interface named ARCHIE² to reduce crew time 
and the workload of astronauts and remote support teams on Earth 
to operate a planetary surface greenhouse. ARCHIE² allows users 
to visualize status information on plants, technical systems, and 
environmental parameters in the greenhouse or other features 
supporting the greenhouse operations using an augmented reality 
headset. In particular, we report on the implementation and 
performance of the ARCHIE² plant detection module that runs 
locally on the augmented reality headset. Using images with a 
resolution of 320x192 pixels, arugula selvatica plants were detected 
using an artificial neural network (based on a YOLOv5s model) 
from a horizontal distance up to 50 cm with an average inference 
time of 602 ms and an average of 48 FPS. Based on that, the plants 
were augmented with labels to visualize relevant plant-specific 
information supporting astronauts in the maintenance of the plants. 
 
Keywords: EDEN ISS, Augmented reality, ARCHIE², 
Greenhouse, Space analog, Operations, Crew time, Workload. 

Index Terms: J.2 [Physical Sciences and Engineering]: Aerospace; 
C.1.3 [Processor Architectures]: Other Architecture Styles — 
Neural nets; H.5.1 [Information Interfaces and Presentation]: 
Multimedia Information Systems — Artificial, augmented, and 
virtual realities. 

1 INTRODUCTION AND MOTIVATION 
In the Global Exploration Roadmap [1], 14 space agencies 
expressed a common interest in expanding human presence into the 
solar system to reach Mars. As preparation for a crewed mission to 
Mars, humans are planning to revisit the lunar surface by the end 
of this decade and establish sustained research infrastructures [2]. 
From the mid-2030s onwards, long-duration lunar habitats will be 
established on the Moon [2]. Planetary surface greenhouses to 

produce plants will be an integral part of these habitats to reduce 
the number of expensive transport flights needed for food resupply 
from Earth and achieve higher independence from Earth. In 
addition, plants in such greenhouses will be used to produce food, 
process air, recycle water [3] and increase the astronauts' 
psychological well-being [4]. 

In early 2018, the space analog EDEN ISS greenhouse was 
established in Antarctica near the polar research station Neumayer 
Station III operated by the Alfred Wegener Institute (AWI) as part 
of the EDEN ISS project. The EDEN ISS project aimed to 
investigate key technologies for planetary surface greenhouses 
under Moon/Mars analog conditions [5]. Studies such as these are 
needed as baseline work for operating planetary surface 
greenhouses on the Moon and Mars. During the four one-year 
analog missions in Antarctica, numerous studies have been 
conducted on food quality and safety, microbiology monitoring, 
plant health monitoring techniques, human factors, horticultural 
sciences, as well as resource consumption and waste production 
analysis. In addition to these investigations, a significant focus was 
put on examining crew time, workload, and interaction between the 
on-site operation team and the remote support teams on Earth. 

In space missions, crew time is a valuable and limited resource 
[6] and needs to be optimized as best as possible [7]. Repairs and 
maintenance activities account for a substantial portion of the 
overall crew time required for a space mission [8]. To have more 
time for scientific activities, the crew's time for repairs and 
maintenance activities has to be reduced [6]. This has also been 
confirmed by experience from the space analog EDEN ISS 
missions [9]. These missions have shown that the required crew 
time and the specific workload demand for operating a planetary 
surface greenhouse by on-site operators (astronauts) and remote 
support teams on Earth must be reduced for future space missions 
[10]. 

By augmenting the field of vision of the user with interactive 
virtual elements, augmented reality (AR) applications, in general, 
could increase compliance with procedures [11] and reduce errors 
in the execution of operational activities, resulting in fewer failures 
and delays [11, 12]. This in turn could increase the user's efficiency 
[13], and increase the accuracy of executed tasks [11, 13], resulting 
in reduced overall crew time [11–13] and workload for the user 
[12]. In addition, the virtual interaction with input and output 
options of the interface could result in an abandonment of keyboard 
entries or paper documents while working on a task enabling hands-
free operations [11, 13, 14].  

All these benefits as mentioned earlier of AR technology could 
also apply to the use of AR in the operations of a planetary surface 
greenhouse. However, using AR applications in such a system can 
reduce not only crew time and workload of the on-site operators 
(astronauts), but also for remote support teams on Earth, while 
increasing the safety of on-site operators and plants. Moreover, 
using AR could lead to facilitated training processes, reduced 
training needs [11] for new operations in such a greenhouse or as 
needed, resulting in increased autonomy [11] of the on-site 
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operators from Earth support and facilitated integration processes 
of untrained personnel into planetary surface greenhouse 
operations [10]. Increased autonomy is particularly important for 
missions beyond low Earth orbit (LEO), as remote support can be 
reduced due to cost and communication delay [15], especially in 
the case of Mars, with a delay of up to 22.2 minutes one way [10]. 
Also, the loss of knowledge due to the substantial time gap of more 
than 18 months [16] between the actual space mission and the 
astronaut training completed on Earth can be countered by using 
AR during the mission. 

Therefore, in this paper, we present the concept of an AR 
interface (Figure 2) called "ARCHIE²" (Augmented Reality 
Computer-Human Interface for grEEnhouses). ARCHIE² is 
designed to facilitate the operation of future planetary surface 
greenhouses by visualizing status information on plants, technical 
systems, and environmental parameters in the greenhouse on an AR 
headset. Furthermore, schedules, procedures, various planning 
tools, or an integrated remote assistance tool can be displayed. [17, 
18] 

The key contribution of this paper is the concept of an AR 
interface supporting the operations in a planetary surface 
greenhouse and the implementation of its plant detection module 
running locally on the AR headset. We provide details on the 
implementation as well as the performance of the plant detection 
and augmentation process. The research presented in this paper 
could serve as a proof of concept that plant detection can be 
achieved with an application running directly on an AR headset, 
and the results could serve as a benchmark for future studies in this 
area. 

2 RELATED WORK 
AR use can be spread widely in various fields of application due to 
individual adaptability. Some examples for use on Earth are the use 
in medicine [19], textile industry [20], aerospace industry [21], 
water management [22], navigation/tourism [19, 21], urban 
planning [19], livestock farming [23], gaming industry [19] or 
education/training [19]. A growing number of AR applications also 
exist in the agriculture or space sector.  

Some agricultural and space applications, which share 
similarities to the operations of planetary surface greenhouses, are 
presented in the following. 

2.1 AR Applications for the Terrestrial Agricultural 
Sector 

Katsaros and Keramopoulos [24] developed a prototype application 
named "FarmAR". The application identifies plants and displays 
plant-specific information on a mobile device, such as their 
common name, scientific name, and notes about their cultivation. 
This information is used to augment the reality of the live camera 
view. In addition, information about common diseases and 
environmental parameters are visualized. [24, 25] 

Neto and Cardoso [26] developed an AR prototype, which can 
be used on smartphones as an early warning system for a potential 
fungal infestation in tomato plants with Botrytis cinerea. 
Furthermore, crop-related information such as crop type or sowing 
date, environmental conditions and the irrigation schedule can be 
visualized. [26] 

Another prototype application in the agricultural sector was 
developed by Nigam et al. [27]. It aims to support farmers with 
little knowledge in entomology using an Android application on 
their mobile devices to precisely define the infestation of insects on 
their crops and identify possible countermeasures. [27] 

Shaleendra et al. [28] designed an Android-based AR prototype 
called "AR-Glasshouse" that allows greenhouse operators to 

visualize how their greenhouse could be automated and the 
potential benefits of automation. [28] 

Bekiaris et al. [29] developed an application called "Greta" that 
can be used to monitor and control intelligent greenhouses. It has 
an AR application part, which can be used on handheld devices to 
display greenhouse status information such as grown plants, their 
condition, and environmental conditions. Moreover, hardware in 
the greenhouse can be controlled via controls visualized in AR. [29] 

All mentioned applications are still individual pioneers and not 
yet broadly used in the agricultural sector. Additional examples of 
applications in the agricultural context can be found in the literature 
review conducted by Hurst et al. [30]. 

2.2 AR Applications for Space 
AR can also be used in various space application areas. For 
example, it could be used to artificially augment the constrained 
habitat volume [31, 32], support early design phases for space 
hardware [33–37], support planetary research [38, 39], support 
space hardware assembly, integration and testing activities [40–42]   
or support astronaut training on Earth [43–46]. It can even be used 
for surgical training or medical emergencies during long term space 
missions to provide medical instructions and guidance to astronauts 
with only basic medical training [40, 47]. 

The more detailed examples below share similarities to the 
activities in a planetary surface greenhouse. 

2.2.1 Astronaut Support in Space 
Additionally, AR can be used to support astronauts on space 
stations such as the International Space Station (ISS) during their 
daily work to reduce crew time, increase astronaut efficiency [48] 
and enable hands-free operations [14, 49].  

In 1998, Agan et al. [49] published a paper in which the function 
of a wearable computer coupled to a head-mounted display (HMD) 
with AR functions was presented. The so-called "WARP" 
(Wireless Augmented Reality Prototype) system of NASA, 
intended for use on space stations, is designed to enable the display 
of text and images as well as measured biosensor data by the system 
and real-time audio/video communication via the HMD. [49] [50]  

The "WEAR" (Wearable Augmented Reality) project funded by 
ESA investigated how location and context-sensitive information 
can be visualized and managed on an AR system. Astronauts could 
look at checklists, execute procedures and get additional 
information when needed. [14, 51]  

Another assistance tool funded by ESA, which was already tested 
on the ISS in 2015 is the "mobiPV" (mobile Procedure Viewer). 
The main task of this system was to display procedures to the 
astronauts and support them during the task execution. [13, 15, 41] 

In a follow-up project funded by ESA called "EdcAR" 
(Engineering data in cross-platform AR), the data provided by the 
"mobiPV" system was visualized in AR using the EPSON Moverio 
Pro BT2000. [52] 

Markov-Vetter [46] also investigated how AR-based assistance 
systems should be designed to support and simplify the work of 
astronauts onboard the ISS, for example when working with 
payloads. For this purpose the "MARSOP" (Mobile AR for Space 
Operations) system was developed and field tested. [46] 

Building on the experience gained during NASA's "Sidekick" 
project [53, 54], with the goal of using Microsoft HoloLens to 
virtually assist astronauts onboard the ISS in performing 
procedures and enabling remote support from Earth, NASA's "T2 
Augmented Reality" (T2AR) project [55, 56] demonstrated the use 
of Microsoft HoloLens for maintenance and inspection of science 
and training equipment without support from Earth during ISS 
Expeditions 64 and 65.  
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Another topic studied is how AR can be used in future planetary 
missions, such as on the Moon (e.g., as part of the Artemis 
program). For example, Ahsan et al. [57] developed the "ARGOS" 
(Augmented Reality Guidance and Operations System) system 
using it for future training or in operational environments to make 
EVAs safer, more effective and more efficient. [57] 

2.2.2 Greenhouses in Space 
Since plant cultivation will be an integral part of future space 
missions, Bhardwaj et al. [58] presented an idea at a very basic 
theoretical level to use multiple robots to interact with plants and 
maintain bioregenerative life support (e.g., harvesting) in a sealed 
and controlled part of a spacecraft to reduce the exchange of 
pathogenic microorganisms between plants and astronauts. For this 
purpose, the cultivation area is projected into AR. The astronaut's 
hand gestures are tracked and replicated to control robotic 
manipulators in the sealed cultivation chamber. However, the main 
focus of this study was on the design of the spacecraft. [58] 

The literature review in this paper has shown that AR 
applications, despite their multiple potential uses and far-reaching 
benefits in supporting work processes, have very limited and non-
standardized prototypical applications in the greenhouse context on 
Earth. Xi et al. [59] and Hurst et al. [30] also confirm that despite 
the widespread use of AR, there is still a huge need for research on 
AR in the agricultural sector, also evidenced by the low number of 
publications in this research area especially with respect to AR in 
greenhouses.  

When considering the general use of AR during space missions, 
it should be noted that some of the prototypes mentioned have 
already been tested in space missions, but none of them are 
standardized. With respect to the use of AR to support the plant 
growth under space conditions, it was shown that apart from the 
publication of Bhardwaj et al. [58], we are not aware of any other 
studies on the use of AR or even the practical implementation of 
AR applications in space greenhouses.  

Therefore, a reliable comparison of new AR applications for 
lunar surface greenhouses with existing once is hardly possible. It 
remains an immense need for research to evaluate whether the use 
of AR in the context of plant cultivation in space is beneficial and 
could help astronauts in their operations of greenhouses during 

future space missions to reduce their crew time and workload and 
that of the remote support teams on Earth.  

2.3 Agricultural Plant Object Detection 
The deep learning algorithm YOLO [60] is used for object 
recognition in various domains. YOLO based detectors with many 
advancements (e.g. YOLOv3) and modifications (e.g. R-YOLO) 
have been proven to be effective for recent applications in 
agricultural contexts. 

Zheng et al. [61] compiled a plant detection dataset of 31,147 
images called CropDeep displaying different crops in varying 
lighting conditions, growth phases and camera angels in order to 
train an object detector which could be used in future applications 
such as picking robots. A comparison among different object 
detectors on the CropDeep dataset resulted in a recommendation of 
the YOLOv3 network as it outperformed other object detectors 
(e.g., Faster R-CNN, SSD, RFB, YOLOv2 or RetNet) in the 
combination of detection accuracy and speed. It reached a 
mAP@[0.5] (mean average precision) of 91.44 while performing at 
40 FPS. [61]  

Yu et al. [62] describe how an adjusted YOLO implementation 
named R-YOLO is utilized to construct a strawberry harvesting 
robot. The embedded controller on the robot (NVIDIA Jetson TX2) 
can process 18 640x480 pixels images per second which is 
described as an excellent real-time performance by the authors. R-
YOLO is reaching an overall precision of 94.43%, and the picking 
robot manages to pick strawberries with a success rate of 84.35% 
in a harvesting field test. [62] 

Another design for a tomato picking robot system is based on the 
YOLOv5 framework [63]. YOLOv5 detection is combined with a 
depth camera to determine the three-dimensional coordinates at 
which the robot can pick the tomato. A set of 1,645 tomato images 
was collected and used to train the YOLOv5s deep learning model. 
The network was able to process one image in 104 ms on average 
which corresponds to a frame rate of 9.62 FPS. [63] 

All these contributions show the prevalence of the YOLO 
framework in agricultural plant detection tasks which underline the 
decision also to make use of the YOLOv5 framework for plant 
detection in this work. In the context of this paper, no publications 
could be found which used an AR headset combined with plant 
detection in a greenhouse environment.  

Figure 1: Screen flow of the ARCHIE2 AR interface and functions of the interface sorted by dedicated menu/submenus. 
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3 ARCHIE²: AR INTERFACE FOR A PLANETARY SURFACE 
GREENHOUSE 

A research goal of the EDEN ISS operation scenario investigations 
was to develop and investigate processes for higher plant 
cultivation [64]. As mentioned previously, research [9, 10] and 
experience gained during the EDEN ISS missions in Antarctica 
concerning the operations of a space analog greenhouse have 
indicated that crew time and workload demand of the operation 
teams of a planetary surface greenhouse needs to be optimized to 
enable future space missions with integrated planetary surface 
greenhouses.  

Based on these investigations, five possible application areas: the 
display of technical greenhouse information, display of plant-
specific information, display of planning tools, communication 
tools and document processing functions (Table 8 in supplementary 
materials) are derived for implementation in an AR interface, to 
support on-site operators of planetary surface greenhouses and 
remote support teams on Earth [18]. Using these application areas 
and the EDEN ISS operation procedures, the ARCHIE2 AR 
interface concept was developed to facilitate working processes 
used for planetary surface greenhouse operations and presented in 
Zeidler and Woeckner [18] based on the preliminary work of 
Woeckner [17].  

3.1 Structure and Functions of the Design 
The ARCHIE2 AR interface consists of the main menu (Home 
Screen and Tasks menu) and five submenus Greenhouse 
Environment, Plant Environment, Communication, 
Documents and Settings (exemplary images in supplementary 
materials). By starting ARCHIE² on the AR headset, the 
greenhouse on-site operator is presented with the Home Screen 
and Tasks menu. From the Home Screen, it is possible to access 
the submenus. The Tasks menu is used for visualization and 
rescheduling of scheduled activities and accessing related plant-
specific procedures. In addition, it lists all existing alarms in the 
greenhouse. [18] 

Figure 1 shows the screen flow of the ARCHIE2 AR interface 
with the functions of the specific menu/submenus.  

3.2 Greenhouse Environment 
The Greenhouse Environment submenu visualizes all relevant 
environmental and system-related parameters in the greenhouse 
and actuator data. Current values and related setpoints are 

displayed. The user can manually modify setpoints and activate or 
deactivate the various actuators. [17, 18] 

3.3 Communication 
In the Communication submenu, the user can approach various 
points of contact such as science experts, technical support or the 
mission control center (MCC) on Earth via an integrated two-way 
voice and video communication interface for assistance in 
preparing or performing tasks in the greenhouse. It is possible for 
the interface user to share the view with the support on ground, who 
then can draw annotations such as circles, arrows or text within the 
user's field of vision. [17, 18] 

3.4 Plant Environment 
By clicking on the Plant Environment submenu on the Home 
Screen, the Plant Environment mode can be activated/ 
deactivated. An activated Plant Environment mode is symbolized 
by a white icon in the upper left corner of the user's field of vision 
(Figure 2), which can also be used by clicking on it to toggle the 
Plant Environment mode. [17, 18] In activated Plant 
Environment mode, plants are detected by a trained neural 
network using the plant detection module of the Plant 
Environment submenu on the AR headset by evaluating the 
camera video stream. Furthermore, labels on the plants in the 
greenhouse are activated in three-dimensional space. Dimensions 
and coordinates of the detected plants are used to display 
corresponding labels visualizing plant-specific information such as 
plant species and cultivar/variety. 

To minimize the scope of additional organizational tasks for the 
users, such as manual marker placement, the solution approach of 
fully automated plant detection by machine learning (ML) was 
chosen. Compared to the use of optical markers or virtual markers 
in three-dimensional space, which store the plant-specific 
information, no markers need to be manually moved when a plant 
changes location. In addition, no misplacement of labels could 
occur, because the position of the labels does not need to be 
approximated near the aeroponically/ hydroponically grown plants 
due to the plant detection process. Furthermore, the markers cannot 
become soiled or obscured as is the case with optical markers. [65] 
Furthermore, plant detection could be the first step towards a more 
sophisticated system that continuously supports the user in the 
greenhouse. More advanced algorithms could use granular plant 
detection to guide the user in pruning the correct parts of the plant 
through visual markers or to assign additional information to plants, 
such as detected diseases or the maturity of a particular fruit. 

Figure 2: Concept of the ARCHIE2 AR interface: Exemplary user view on the AR headset showing the scheduled tasks and plants inside the 
EDEN ISS greenhouse augmented with labels visualizing plant-specific information (left); Greenhouse Environment submenu (right). The 
yellow mouse pointer only illustrates a selection action on the interface (not part of the prototype). [17] 
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If several plants of the same cultivar/variety are grown in various 
locations in the greenhouse, information such as three-dimensional 
coordinates of the detected plant would be needed in addition to its 
cultivar/variety to specify exactly which plant is meant and 
visualize the correct plant labels. If the coordinates are not yet 
stored in the system, a new instance for coordinates and 
cultivar/variety is automatically created in the system. Thus, the 
plant information stored in the system can be uniquely assigned and 
displayed to the user upon detection. [65] 

In addition, the plant-specific information is complemented by 
additional information such as existing alarms, visualized as icons, 
and the next task to be performed concerning the specific plant, 
which is displayed with a dynamic progress bar illustrating the time 
remaining until then. Example tasks could be harvesting, 
transplanting or pruning of plants. A window with additional plant-
related data such as plant position, used nutrient solution, seeding 
date, transplanting date or estimated harvest date can be opened by 
clicking on the corresponding plant label. For this purpose, the 
ARCHIE2 AR interface is coupled with a database on a server 
where this information is maintained by the on-site operators of the 
greenhouse. Furthermore, colored frames indicate the urgency of 
activities on the specific plant. Blue frames visualize that no task is 
to be performed today or tomorrow. Orange ones indicate a task to 
be performed tomorrow, and red ones today. [17, 18] 

3.5 Documents 
The Documents submenu gives the user access to various pieces of 
information and documents such as checklists and procedures used 
in the greenhouse. Furthermore, a list of all the plants cultivated in 
the greenhouse with plant specific information can be accessed. All 
procedures and checklists are presented on the AR display as step-
by-step instructions with additional explanations/information and 
the option to call for support from MCC on Earth. During the 
execution of a procedure, it is also possible to record notes or take 
photos for documentation. Information about which operation is 
being processed and which step is being performed by the operator 
is automatically shared with the support team on ground. [17, 18] 

4  IMPLEMENTATION OF THE PLANT ENVIRONMENT INCLUDING 
ITS PLANT DETECTION MODULE  

Based on the special conditions of a lunar surface greenhouse, the 
Plant Environment submenu (Section 3.4) represents a central 
feature of the ARCHIE2 AR interface. For this paper, the Plant 
Environment submenu with its plant detection module was 
implemented on an AR headset (Microsoft HoloLens 2). The steps 
required for this are: 1) Object detection model selection, 2) 
Baseline dataset preparation, 3)  Iterative training process and 
preparation of plant detection model for arugula selvatica, 4) 
Implementation on HoloLens 2. The following explanations are 
based on the work of Klug [65]. 

4.1 Object Detection Model Selection 
Given the realization of the plant detection, it is necessary to train 
an artificial neural network accordingly. The implementation of 
plant detection in this paper mainly relies on the YOLOv5 
framework [66]. We refrain from creating another plant detection 
model or using other frameworks since the successful integration 
of YOLO-based models in the plant detection context has already 
been proven by various publications [61, 67]. 

As a result of the limited computational power of HoloLens 2, 
the pre-trained, 283-layer, YOLOv5s deep learning model was 
trained for plant detection. It was the smallest and fastest model of 
the YOLOv5 framework at the time of training start, resulting in 
potentially higher performance and, accordingly, a potentially 
better user experience on the HoloLens 2. The YOLOv5s model 

was pre-trained on the Microsoft Common Objects in Context 
(MS COCO) dataset [68].  

Furthermore, the automatic scaling function of the YOLOv5 
framework was used for the images. In addition, the default settings 
of the data augmentations of the YOLOv5 framework were used 
during training to achieve robust plant detection even with a small 
number of training images.  

4.2 Baseline Dataset Preparation  
To train the neural network for use in the context of the EDEN ISS 
greenhouse we used a baseline dataset of 731 annotated images. Of 
these, 314 top-view and 334 side-view images showing arugula 
selvatica plants in various development states and under relevant 
lighting conditions, as well as images of other plants and entirely 
without plants were used from the EDEN ISS greenhouse (Figure 
3). This was done since no large datasets of arugula selvatica plant 
images were freely available.  

 
Figure 3: Exemplary neural network training images: (A) EDEN ISS 
side-view image showing arugula selvatica plants; (B) EDEN ISS 
top-view image showing arugula selvatica plants; (C) EDEN ISS 
greenhouse image without plants; (D) EDEN ISS top-view image 
showing Brassica rapa ssp. narinosa plants. 

The EDEN ISS images were taken from the fixed-mounted 
cameras during the period from 2018 to 2021 inside the EDEN ISS 
greenhouse. Two different camera models were used: HIKVISION 
DS-2CD2542FWD-I 4MP with an image resolution of 2688×1520 
pixels and HIKVISION DS-2CD2185FWD-I(S) 8 MP with an 
image resolution of 3840×2160 pixels.  

Images of arugula selvatica were used because the plant does not 
form fruits or flowers due to early harvesting, and therefore few 
morphological changes are observed during growth.  

Due to limited perspectives and sometimes quality of the side-
view images, the baseline dataset was additionally extended by 83 
arugula selvatica images from external sources such as plantnet.org 
and images.google.com.  

In Figure 3 white rectangles (upper left corner of image A and C) 
can be seen covering parts of the image. These manually created 
maskings hide the time stamp of the cameras and readable labels 
on the shelves inside the greenhouse. This was conducted to prevent 
the neural network being trained from using the letters and numbers 
as features to detect arugula selvatica.  

4.3 Iterative Training Process and Preparation of the 
Optimized Plant Detection Model 

To obtain a model for detecting arugula selvatica within the EDEN 
ISS greenhouse, different datasets were formed using subsets of 
images of the baseline dataset (Section 4.2) to be used for training 
the YOLOv5s model. The datasets were modified in an iterative 
process by augmentation of images, which was applied in addition 
to the augmentations from the YOLOv5 framework, adding 
images, or changing the annotations to investigate the effects on the 
training results.  
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The basis for the modification of the datasets was a comparison 
of the performance metrics mAP@[0.5:0.95], object loss and box 
loss, as well as a review of the images annotated by the models to 
achieve robust plant detection of arugula selvatica from multiple 
perspectives. 

For each iteration of the dataset, at least one training run was 
performed. The model was always untrained at the beginning of 
each run. Therefore, the starting point was the same for all runs. 

Before each training run, the datasets were split into training and 
validation sets. The validation set was unknown to the trained 
model, ensuring that the model was generalizing and did not learn 
the specific features of the training data.  

At the beginning of each training run, the training configuration 
values were manually set: on which image size, with which batch 
size and over how many epochs the model should be trained. The 
YOLOv5 hyperparameters such as momentum, initial learning rate 
or weight decay were set to default parameter settings for training 
as described in Jocher [69]. Following an epoch, the performance 
metrics of the model trained up to that epoch were calculated for 
the training and validation set. This allowed a comparison to be 
made between the performance of the model on known data and 
unknown data to evaluate whether the model was generalizing. 
After each batch of images, the weights of the YOLOv5s model 
were adjusted based on the achieved loss values to minimize the 
overall loss function.  

The composition of the dataset selected to train the model used 
on an AR headset can be seen in Table 1. The composition of the 
other datasets and the corresponding evaluation of the training 
results can be found in the supplementary materials. 

Table 1: Composition of the dataset selected to train the model used 
on an AR headset for arugula selvatica detection. [65] 

Source of 
Images Content of Images Number of 

Images 

Number of 
Annotated 
Instances 

EDEN ISS 
Greenhouse 

Top-view with arugula 618 10,510 
Side-view with arugula 668 1,182 
Without arugula** 57 0 

External Various 67 110 
Total 1,410 11,802 

** Images without arugula selvatica are from various perspectives. 

The configuration values for the training of the dataset selected 
for the model used on an AR headset were set to an image size of 
320×192 pixels, a batch size of 8, and 300 epochs. The resolution 
of the processed images was 320×192 pixels, scaled by the 
YOLOv5 framework. The 320×192 pixels resolution was the 
largest possible resolution that resulted in a good usable application 
on a laptop1 and was determined by successively decreasing the 
model size, with subsequent testing on the laptop. In addition, 
Zheng et al. [61] reported good crop detection results on a similarly 
sized model (300×300 pixels), a YOLOv3 neural network trained 
with their CropDeep Agricultural Dataset. In the following, this 
model is referred to as the YOLOv3 CropDeep model.  

The trained and optimized 320×192 pixels plant detection model, 
hereafter referred to as the arugula model, detects arugula selvatica 
as one class. 

                                                             

1 Results achieved with a laptop equipped with an AMD Ryzen 7 5800H 
processor and a GeForce RTX 3060 graphics card. 

4.4 Implementation 
The ARCHIE2 plant detection module using the arugula model is 
implemented on the HoloLens 2 using Microsoft's Mixed Reality 
Toolkit (MRTK). Unity and the Barracuda framework are used for 
the integration of the trained neural network. Since the plant 
detection by the neural network has to be executed on the main 
thread within the Unity application, the computations required for 
this are split across multiple frames. Otherwise, the main thread 
would be blocked, resulting in performance degradation. 

The architecture (Figure 4) consists of three modules: the 
MediaCapturer, the Neural Network Manager (NNManager) and 
the LabelRenderer.  

 
Figure 4: Prototype architecture with functions of its modules. [65] 

The MediaCapturer module is responsible for communicating 
with the HoloLens 2 to transfer the current frame of the camera 
video stream to the NNManager. During this process, the resolution 
of the transferred frames is scaled down to the trained resolution of 
the neural network. Then the NNManager performs the plant 
detection on the frame and forwards the results (i.e., the class labels 
of the detected plants and their bounding box coordinates) to the 
LabelRenderer. Subsequently, the LabelRenderer transfers the two-
dimensional coordinates of the bounding boxes into the three-
dimensional space visible to the user. 

Augmentation labels (Figure 5) are placed at the three-
dimensional location of the bounding box coordinates. The 
augmentation labels contain placeholders for the plant's name, the 
duration until harvest and icons for status messages. 

 
Figure 5: Augmentation label of the AR interface for the detected 
arugula selvatica plants with information on the name of the plant, 
the duration until harvest and icons to draw attention to status 
messages. The label is visualized on the ARCHIE2 AR interface. [65] 

As the plant detection application runs directly on an AR headset, 
only the five most likely detections on the frame of the camera 
video stream are visualized for the user to keep the prototype less 
cluttered. In future work, we will remove this limitation and add the 
capability to visualize unlimited labels with appropriate off-screen 
label visualization techniques (Figure 2). Hence, a maximum of 
five labels are displayed at the same time. 

Furthermore, it is checked in each frame whether new and more 
likely plant detections of the neural network are available. In 
addition to updating the positions of the labels in each frame, the 
rotation of the labels in each frame aligns so that they face the user.  
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The user can deactivate or activate the plant detection. In the case 
of deactivated plant detection, the change of position and rotation 
of the labels and the deactivation of the labels stop. This allows the 
user to grab the labels and move them manually to more sufficient 
positions.  

5 EVALUATION AND DISCUSSION 
The evaluation of the prototype is divided into performance tests, 
perspective tests and accuracy evaluation. 

5.1 Performance Test 
The ARCHIE2 plant detection module was launched locally on the 
HoloLens 2. No user was involved in and no plants were observed 
during the performance test as applying the plant detection process 
to any picture puts the same load on the processor of the HoloLens 
2. Over 60 seconds, the achieved frame rates, metrics based on 
them (i.e., x% LOW values) and average inference times of the 
neural network were measured. Furthermore, the measurement was 
also performed on a laptop in the Unity editor to form a 
comparative value. These measurements can provide indications of 
possible performance improvements using future AR headsets.  

Since the computations required for the plant detection by the 
neural network are split across multiple frames, a trade-off between 
performance and inference time is required to determine the lowest 
possible inference time of the model while maintaining a high 
performance of the ARCHIE2 AR interface. Therefore, 
measurements were taken with a varying number of layers of the 
neural network computed within one frame to determine the 
maximum as well as minimum frame rates and inference times 
(Table 2). 

Table 2: Results of the performance tests of the arugula model, 
conducted on the HoloLens 2. A different number of layers of the 
neural network were computed within one frame. x% LOW is a 
measure for the average of all frame rates in the x-percentile 
(average of lowest frame rates). [65] 

Device Compu-
tations 

*** 

Average 
FPS 

0.1% 
LOW 

1% 
LOW 

10% 
LOW 

Inference 
[ms] 

Holo-
Lens 2 

1 57.18 20.91 26.60 34.95 5,094.58 
2 49.91 14.17 22.94 32.25 2,890.10 
5 49.55 11.96 21.79 31.95 1,175.83 

10 48.21 9.76 21.50 31.95 602.17 
50 37.30 8.80 10.01 11.81 251.33 

100 40.12 4.93 5.11 5.45 207.62 
283 41.44 3.93 4.34 4.65 183.53 

*** The term computation indicates how many layers of the neural 
network are computed per frame. 

Using the arugula model on the laptop, frame rates of 40 FPS 
were not undercut for up to 100-layer computations per frame. The 
inference time reached a value of 23 ms for 100-layer computations 
per frame. 

5.1.1 Discussion of the Performance Results 
For the classification of the frame rates achieved by the ARCHIE2 
AR interface during the performance tests, a study from 2007 is 
used [70], which measured the performance of test persons within 
a first-person shooter computer game depending on different frame 
rates. The tasks to be completed by the test persons were the control 
of a virtual avatar, with mouse and keyboard, through an obstacle 
course and accurate shooting within the computer game. It was 
found that such games are almost unplayable up to a maximum of 
constant 7 FPS. The study found significant performance increases 
in the test subjects starting at 7, 15 and 30 FPS, with the maximum 

performance at 60 FPS. In addition, the measurements suggest that 
increasing the frame rate above 60 FPS does not provide much 
added value. [70] 

As a result, the prototype is considered unusable up to a 
maximum performance of 7 FPS, limited usable between 7 and 30 
FPS, and good usable from a constant performance of 30 FPS. The 
assumption of good usability from 30 FPS is supported by the 
elaboration on YOLOv4 by [71], in which models with at least 30 
FPS were called real-time detectors. Zheng et al. [61] also 
described a frame rate of similar magnitude (40 FPS) for the 
YOLOv3 CropDeep model as appropriate for crop detection tasks 
in an agricultural context, such as in greenhouses.  

The maximum performance by computing one layer per frame 
on HoloLens 2 using the arugula model, was at a 1% LOW value 
of approximately 27 FPS and a 10% LOW value of approximately 
35 FPS, with an inference time of approximately five seconds. 
Since only one frame of the camera video stream was evaluated 
every five seconds at this inference time, this configuration is not 
practical.  

In terms of higher performance and lower inference time, the 
results of the experiment with the calculation of 10 layers per frame 
stand out. In this configuration, an inference time of 602 ms and an 
average of 48 FPS, a 10% LOW value of approximately 32 FPS, 
and a 1% LOW value of approximately 22 FPS were reached on 
the HoloLens 2. Thus, the 1% LOW value decreased by 5 FPS and 
the 10% LOW value decreased by 3 FPS, but in return, the 
inference time decreased by 8.5 times compared to the results with 
a one-layer computation per frame. Accordingly, the HoloLens 2 
prototype with the arugula model (320x192 pixels) could mostly be 
used well with 10-layer calculations per frame, although a constant 
30 FPS was not achieved.  

5.1.2 Limitations of the Performance Results 
The significance of the results concerning the performance is 
limited by the fact that only by conducting a user study can it be 
concretely proven whether and from what level of performance the 
ARCHIE2 AR interface is usable in plant detection.  

The performance fluctuations can be reduced by temporarily 
deactivating plant detection. Plants detected up to that point remain 
augmented while performance normalizes to 60 FPS, which is the 
target frame rate of the HoloLens 2. Therefore, only short phases 
of activated plant detection are necessary to display the required 
information. Nevertheless, permanently turning the plant detection 
on and off could also have a negative impact on the user experience.  

Further, the validity of the prototype's usability is limited due to 
the comparison with the study on first-person shooters [70]. Both 
the modalities of interaction and the goals of the application are 
different between the computer game and the prototype. It could be 
assumed that compared to the presented prototype, the impact of 
the achieved frame rates on the performance is higher for first-
person shooters. This is because first-person shooters require high 
responsiveness, precision and hand-eye coordination. Due to that, 
the prototype could already be considered consistently usable using 
the arugula model, as the threshold for good performance, in this 
case, could be lower than 30 FPS.  

Similarly, the comparison with the frame rates of 30 and 40 FPS 
from the YOLOv4 model [71] and YOLOv3 CropDeep model [61] 
elaboration should be critically considered. Both elaborations did 
not justify why these values are sufficient for a real-time 
application and did not explicitly address AR applications with user 
interaction. In the context of this paper, no references could be 
found that investigate the usability and performance parameters 
such as frame rates and inference times of AR applications using 
plant detection. 
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5.2 Perspective Test 
The perspective test was conducted to check the practicality of the 
prototype and to test the capability of detecting a real arugula 
selvatica plant from different perspectives. 

For the experimental setup (Figure 6), the plant was placed at 
three different heights (0 cm, 55 cm and 110 cm) and viewed at 
each height from four different horizontal distances (25 cm, 50 cm, 
75 cm and 100 cm).  

As a result, it was recorded whether or not detection and 
annotation occurred at the corresponding combination of height and 
distance. The HoloLens 2 was carried by a 184 cm tall test person 
throughout the entire test series. The positioning of the test person 
in front of the arugula selvatica plants was frontal and centered. The 
test person's gaze was directly on the plants at the various heights. 

 
Figure 6: Experimental AR interface setup for perspective test. [65] 

The results of the perspective tests show that the arugula model 
was unable to detect arugula selvatica plants at height of 0 cm 
(placed on the floor) and 55 cm. The prototype detected and 
augmented arugula selvatica plants at a height of 110 cm up to a 
horizontal distance of 50 cm.  

5.2.1 Discussion of the Perspective Results 
The fact that the detection and augmentation of the plants only 
occurred when the user was in the vicinity of them slightly limits 
the usability of the prototype in a practical use case. New plants in 
the greenhouse would always need to be viewed at close range with 
the HoloLens 2 in order to detect the plants and link the plant labels 
with the actual 3D coordinates.  

In the concept, the potential time savings of the HoloLens 2 
compared to conventional methods is the main argument for its use. 
Therefore, the Plant Environment provides, among other things, 
the capability to visualize an overview near the plants of the 
planting date, the harvesting date, and which plants are currently in 
the need of care. Once all the plants in the greenhouse have been 
detected, all the detections could be displayed based on their 3D 
coordinates, including the associated plant information mentioned 
previously. In this way, only the initial plant detection process 
would be somewhat limited. 

5.2.2 Limitations of the Perspective Test Results 
A limitation of the results of the perspective test is the composition 
of the dataset on which the model was trained for the plant detection 
of arugula selvatica and its impact on the evaluation.  
The two camera models used are wide-angle cameras. The lens of 
the HIKVISION DS-2CD2542FWD-I 4MP has a focal length of 
2.8 mm with a 106° angle of view and the lens of the HIKVISION 
DS-2CD2185FWD-I(S) 8 MP has the same focal length with a 102° 
angle of view. The wide angle of view results in slight distortions 
of the image at its edges, which could also have a negative effect 

on the plant detection results, since the focal length of HoloLens 2's 
photo/video camera is 4.87 mm +/- 5% and the angle of view is 
64.69°. 

The nature of the annotation, within the training dataset, may 
have contributed to the poorer plant detection results from a higher 
distance. During the annotation process, a bounding box was put 
around each arugula selvatica plant as accurately as possible. If the 
plants overlapped too much, so that a clear assignment was no 
longer possible, several plants were annotated together within one 
bounding box, following the plant annotation recommendations of 
Zheng et al. [61]. By annotating each plant, the option was kept 
open to indicate procedures to be performed, such as pruning, 
precisely on a specific plant. This resulted in many very small 
annotations of plants and a low number of pixels within the 
bounding boxes. If all overlying arugula selvatica plants had been 
combined into one bounding box, regardless of whether individual 
arugula selvatica plants were detectable, then the bounding boxes 
for training would have been correspondingly larger. As a result, 
the arugula model (320x192 pixels) would also have had access to 
a larger number of pixels from which features could have been 
formed, which could result in better plant detection results. 

5.3 Plant Detection Accuracy 
The arugula model achieved a mAP@[0.5:0.95] value of 0.5368. 
The mAP@[0.5] value of the arugula model is 0.8731. Zheng et al. 
[61] reported a similar mAP@[0.5] value of 0.9144 for their 
YOLOv3 CropDeep model, which has a similar size (300×300 
pixels) to the arugula model (320×192 pixels). Despite the slightly 
higher mAP@[0.5], it should be noted that the YOLOv3 CropDeep 
model considers different crops, which limits the comparison of 
mAP@[0.5]. The previously described mAP@[0.5] values are in a 
similar range to the RetNet crop detection network's mAP@[0.5] 
value of 0.9279, which is described as excellent accuracy [61]. 

6 CONCLUSION AND OUTLOOK  
In this paper, we reported on the concept of an AR interface that 
supports operational tasks to maintain future planetary surface 
greenhouses. In particular, the implementation and performance of 
its plant detection module that runs locally on the AR headset for 
arugula selvatica plant detection and augmentation was presented. 
Plant detection is feasible with an average frame rate of 48 FPS and 
an inference time of approximately 602 ms at a height of 110 cm 
up to a horizontal distance of 50 cm. The AR interface prototype 
demonstrated proof of concept that plant detection processes can be 
performed directly on an AR headset. Measurements of frame rates 
and inference times provide benchmarks for future research in that 
area. Moreover, the prototype could be used in terrestrial 
greenhouses or vertical farms. 

Furthermore, the approach could be used analogously to detect 
additional plant species. To implement this, further and more 
extensive datasets for additional plants need to be created and 
annotated, as there is a deficit in the agricultural context for this 
[61]. Such datasets could also improve the model generalizability 
of our prototype in terms of detecting various plant varieties 
through additional training. In addition, the impact of the image 
quality of training datasets on plant detection performance and 
accuracy could be examined. 

The literature review has shown that there is still a huge demand 
for research in the field of AR applications for terrestrial 
greenhouses, but especially for lunar surface greenhouses. We will 
continue to work on the ARCHIE2 AR interface to expand its 
features and improve its practical use. We are planning to conduct 
a user study for the interface under space analog conditions with 
different types of plants to evaluate further the effectiveness and 
performance of the proposed AR technology. 
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