
Towards Autonomous Intralogistics: A Testbed Environment for the Coordination
of a Robotic Fleet

Fabian Maas genannt Bermpohl and Andreas Bresser
German Research Center for Artificial Intelligence

Bremen, Germany

Abstract

In this paper we present a testbed implementation, in which
a production plant for airplane wings is simulated. The simu-
lated environment can be used for the evaluation of different
approaches to multi-agent task allocation and path finding.
We outline the relation to the relevant problems of job-shop
scheduling and multi-agent path finding and describe our ap-
proach towards a system architecture and a baseline imple-
mentation of the required software components for a multi-
agent system to tackle these challenges.
Our approach facilitates a centralized database where the
state of the production environment is consolidated (a so
called ”digital twin”), a high-level planner that continuously
dispatches the available agents to tasks, and a multi-agent
simulation to simulate the task execution. In general our sys-
tem is designed in a modular fashion, which allows the de-
veloper to extend or replace the distinct components easily.
The modular design also makes it possible to factor out the
multi-robot simulation in favor of a real-world test environ-
ment with actual robotic agents.
We describe the relevant parameters that are tracked about the
environment, the design of the planner, and the interactions
between the planner and the agents, that are executing the
plans autonomously. We present first experiments conducted
within this environment as a starting point for a series of runs
of experimentation.

Introduction
This work is set in a simulated industrial production site ded-
icated to the assembly of airplane wings. While manufactur-
ing processes in other industrial sectors already rely heavily
on the support by robotic systems and fleets (e.g., Enright
and Wurman 2011), it still seems to be infeasible to adopt
the same for the production of large and expensive parts in
relatively small numbers.

In order to address this issue, our overarching goal is to
develop techniques to increase the degree of automation and
efficiency of the shopfloor intralogistics. To achieve this,
self-driving automatic transportation agents are employed
for the just-in-time delivery of wing parts to assembly sta-
tions. The assembly workers can then focus on the actual
assembly tasks and spend less of their time waiting for com-
ponents or collecting the required parts themselves.

While there are other measures that can also positively
contribute to an increase in efficency of the production plant,

our focus is put on the intralogistics. Within the last decades,
much relevant progress has been made, especially towards
automation of warehouses or distribution centers (Enright
and Wurman 2011; Hvilshøj et al. 2012), that we would like
to see applied to other branches of industry too. Improve-
ments to the facility’s layout, to the mechanical design of
the parts, or improvements to the execution of the actual ma-
nipulation tasks are interesting topics on their own, but we
see those outside the scope of this work. Rather do we no-
tice that these are studied elsewhere (Kulturel-Konak 2007;
Fujita 2002; Jefferson et al. 2013).

Instead, we here investigate the specific applicability of
models and approaches to warehouse automation around the
aspects of planning, scheduling and multi-agent pathfinding
in the domain of airplane wing equipping and assembly. We
notice that there is a trend of more robotic systems becom-
ing commercially available, that can be used for automating
a plant’s intralogistics. At the same time however, the man-
agement of robotic fleets and their support for automatic task
assignment are still underdeveloped, which often prevents a
successful integration of these systems.

In order to let autonomous agents take actions considering
the actual state of the production environment, a sufficient
level of digitization of the plant is required, i.e., the devel-
opment of a digital twin representation, similar or in exten-
sion to a manufacturing execution system (MES). In order
to focus on the business logic first, which is the autonomous
intralogistics to and from the assembly stations, we propose
a modular abstraction layer as simple as possible around the
digital twin of the production environment. Working with a
simulated plant we can concentrate on the algorithmic chal-
lenges first, and blend out the acquisition of real-world data,
the API of a production-scale MES and the integration of
actual robot hardware for now.

Our approach shows some overlap to the one presented in
Yao et al. 2018. Based in a warehouse setting, they demon-
strate how a centralized management system automatically
schedules a single replenishing action based on a sensor
value, that is then carried out by a simple robotic system.
Overall the setting is a relatively narrow, single-agent use
case, while the scenario we propose represents a multi-agent
system designed to continuously optimize for an optimal
production rate.

Our approach has obviously areas of overlap with the



goals and challenges posed by the Robocup Logistics
League (Niemueller, Lakemeyer, and Ferrein 2015). In con-
trast to the setting represented there, for our use case we as-
sume full observability and high-level action execution. That
is, the level of abstraction largely hides the aspects of explo-
ration, localization and part manipulation. This enables us to
put more focus on the actual problems of planning, schedul-
ing and agent coordination. We do acknowledge that these
now hidden aspects play a significant role in any logistics
task. However, given recent advances towards centralized
tracking and positioning infrastructure in highly digitized
factories, we believe these topics are no longer the major
road blocks towards automatic factory intralogistics. Also,
as discussed above, we would like to focus on the algorith-
mic challenges of the multi-agent coordination first and sep-
arately from the challenges introduced by interactions with
actual robotics hardware.

Problem Description
System Resources
On a theoretical level the overall system is quite similar to an
order picking scenario in a retail logistics distribution center.
As will be shown it seems to be a simplified version form of
it. Compared to the Kiva system1 described in Enright and
Wurman 2011, inventory takes on the shape of wings, wing
movables and their respective support structures on the input
side, and readily assembled wings on the output side. Due
to the size of these components they are usually not stored
in bins of inventory or order pods. Each one of them rather
forms a unit to be transported individually, thereby making
use of specific transportation support structures to enable
mounting the different components on top of the transport
robots efficiently. Assembly tasks can be represented as or-
ders that are being worked on at multiple stations simultane-
ously. For each assembly station, there is only one assembly
task going on at any time.

The required wing parts for the assembly need to be
fetched from an induction station somewhere on the shop
floor and delivered to the assembly station. This task can
be perfomed by any agent from the fleet of transportation
robots. Similar to the OrderFetch configuration (c.f., Enright
and Wurman 2011), fully assembled wing modules are then
scheduled to be picked up by a transportation agent again to
be delivered to the shipping station. The overall system is to
be coordinated in an intelligent way, in order to avoid agents
blocking each other possibly indefinitely and to maximize
assembly stations’ utilization.

Optimization Problems
In Enright and Wurman 2011, the authors describe several
allocation problems, which are different domain specific as-
pects that each can affect the overall performance of the sys-
tem in different ways. These range from the allocation of
orders to stations, of inventory pods to picking stations, to
the allocation of missions to one or multiple transportation
robots. While optimizing the system behavior we need to

1Kiva Systems was rebranded to Amazon Robotics in 2015.

consider many factors including the deadlines for shipping,
synergies of multiple items for different orders that can be
picked from the same pod, spatial distances between storage
locations and stations, the expected waiting time at the pick-
ing station and many more. The application domain facili-
tates temporal planning for multiple agents and concurrent
task execution.

Some of these requirements can be translated in a straight-
forward way, others can be neglected, as they don’t apply to
the domain described above. This makes the following do-
main specific aspects the main subjects of our further con-
sideration.
• Assembly stations need to be provided with wings to as-

semble from the list of orders.
• Robots need to be selected to fetch and deliver the re-

quired parts to the right assembly stations. Thereby the
distance and the route a robot needs to travel in order to
fulfill a transportation task needs to be considered. Espe-
cially as the robot will travel at a rather slow pace while
mounted with a large wing part on top. Ideally the task
execution will have to start before the assembly station is
idle waiting for the part. If the part however arrives before
the assembled part that was being worked on before has
been taken away, it may lead to congestion and possibly
delay the overall process.

• After the assembly is completed, a robot needs to fetch
and deliver the wing module to the outgoing storage to
make it ready for shipment. This needs to be prioritized,
as arriving parts for the subsequent assembly task might
block the pathways if it is being done too late.
Translating this into research topics, we can identify a

Job-Shop Scheduling Problem (JSSP), intermingled with
Multi-Agent Path Finding (MAPF). Also, the recently for-
mulated Simultaneous Task Allocation and Planning (STAP)
problem can be seen as a joint instance of the former
standard problems (Schillinger, Bürger, and Dimarogonas
2018).

Despite JSSP and its variations haven been discussed for
decades, transfer into practical applications still is difficult
(Mohan, Lanka, and Rao 2019). Often the scenario is over-
lapped with instances of other (optimization) problems that
affect the viability and performance of candidate solutions.
Also the added complexity of variations with stochastic du-
rations, deadlines etc. is often accounted for by relaxing
other constraints to keep it tractable. While the methods pro-
posed deliver optimal solutions in theory, real world appli-
cations can rarely be represented as a purely combinatorial
optimization problem.

The interest in solutions to MAPF has grown in the past
decade, and due to its NP-hard nature it is still not possible
to find an optimal solution for non-trivial problem sizes in
real time. Work is being done to find approaches that give
approximate results within acceptable error-bounds (Sharon
et al. 2015), and approaches that avoid replanning in the face
of deviations from the original plan to minimize execution
time (Ma et al. 2017).

Approaches that aim for simultaneous task assignment
and path planning are already gaining traction (Bellingham



Figure 1: Modular components of the system architecture.
Both the multi-agent simulation and the multi-agent planner
directly interface only with the database used to track the
state of the environment.

et al. 2003; Biswas, Anavatti, and Garratt 2017; Yang and
Chakraborty 2019). Most of the time, when dealing with
real world conditions, only approximate approaches seem
viable, in order to keep computation times within a reason-
able range.

Local, agent-based, reactive approaches for multi-robot
navigation exist, that allow for limited coordination among
the agents to help resolve conflict situations by mutual ad-
justment of the desired paths (van den Berg et al. 2011;
Godoy et al. 2016). However, these approaches tend to
end in deadlock configurations. Local optima might prevent
agents to move out of their way in order to let another agent
pass (e.g., in configurations like Towers of Hanoi) (Wang
and Botea 2011; Janovský, Cáp, and Vokrı́nek 2014). Sce-
narios like this require a central authority that mediates the
individual agents’ paths in order to optimize the global plan,
e.g. Le and Plaku 2017 or Pecora et al. 2018.

System Architecture
We implemented a modular testbed environment that allows
us to tackle those research problems, both jointly and in-
dividually. In this testbed environment, three main compo-
nents interact with each other continuously, that will be de-
scribed in the following sections. There is a database to track
the state of the environment, a multi-agent planner to assign
tasks to agents based on the state of the environment and a
2D simulator for the task execution, which are cyclicly up-
dating the database accordingly. The components and their
interactions are depicted in Figure 1.

Environment Representation
Central part is the environment representation. Its role is to
track the state of the environment and provide an interface
for other modules, like visualizations or scripts that initial-
ize, update or analyze the state of the environment.

We chose to build our implementation on top of a Mon-
goDB database, because capabilities to stream changes to
clients directly and its built-in support for representing Geo-
JSON and geospatial queries are readily available. How-
ever, we acknowledge that other database systems or even
RDBMS might just work as good. In fact the data model al-
ready resembles a relational model and we even added an

optional schema validation procedure to detect deviations
from the models automatically for debugging purposes.

The database can be interfaced from Python code via
an asynchronous API that provides the required domain-
specific functionalities, e.g., regarding reading and updating
properties of agents, their assigned tasks and the environ-
ment structure itself. Specific functions allow the planner to
update the agents’ task plans and others enable the simula-
tion to query, execute and cycle to the next task, once the
current goal has been completed. The data model allows the
representation of several separate environments referred to
via an identifier.

Each environment can contain agents, described by their
pose and type, their current and subsequent tasks and the
currently transported payload. The agent type can be se-
lected from a number of predefined agent types, that can be
configured separately. The agent type is used to specify the
capabilities of the agent, like whether or not it can transport
or assemble certain parts, and also to select the graphical
model that is used in the visualization of the environment.

We currently distinguish the task types idle, move-to,
pick-up, put-down and assemble. Each has an expected du-
ration, which can be infinite. Tasks of type move-to also con-
tain the target coordinates. Tasks of the types pick-up, put-
down and assemble take the identifiers of the components
that are supposed to be affected by the given action.

Tasks have certain preconditions. Only agents that are ca-
pable to move can execute a move-to task. For picking up,
the agent needs to have the capability to carry that compo-
nent, and it needs to be in its vicinity to pick it up. For putting
down, the specified component needs to be in the payload
list of the agent. For assembling, the agents needs to have
the components in its payload list, and it needs to have the
capability to assemble them.

The tasks that are assigned to an agent will be added to its
task list. From there they will be executed one after another.
When the agent’s current task is completed it is moved to the
task log, then the next task in the task list is assigned.

Within each environment an arbitrary number of station-
ary obstacles can be specified, to function as walls that block
the agents’ paths. Obstacles are defined as a polygon by
the list of vertices along their contour path. Similarly areas
for storage and assembly of parts can be defined as poly-
gons. These indicate places where certain operations are per-
formed, like assembly of wing modules or the supply of
parts for the assembly.

For the simulation also supply and shipping of wings and
wing components are modelled via so called spawn and
despawn points for each component type. These are loca-
tions that either generate or consume components of the
specified type, depending on whether or not components of
the respective type are nearby. Available component types
are also selected from a set of predefined types, that carry
the information what parts are required to assemble them, or
what modules they can be assembled to. Currently we only
have three component types wing, wing-movable, which
build into wing-assembled. Spawn points keep track of the
number of components were supplied. Despawn points keep
track of the number of wing modules that were shipped, that



Figure 2: Visualization of an example environment config-
uration. Displayed are the areas for storage (left and right)
and assembly (center), that are partially enclosed by obsta-
cles (walls). Also a number of agents are shown (rectangles
and circles with arrows indicating the orientation) and the
edges and vertices of the navigation graph, that are used to
support the agents’ navigation.

can be used to calculate an average frequency of shipped
modules.

Figure 2 shows a visualization of the most relevant aspects
of the environment for a simple example configuration. A
similar visualization is presented to a human operator by the
web-based visualization frontend we developed, to monitor
the environment state and the simulation progress. Updates
to the state of the environment are continuously streamed to
the frontend, which is thereby able to update the visualiza-
tion instantly.

The frontend can also be used to edit an environment, i.e.,
it is possible to add or move agents, walls or areas in edit
mode, or to update the navigation graph. When the simula-
tion is then restarted, the updated configuration is used as
the new starting point.

All coordinates in the database are three dimensional in
latitude, longitude and elevation. However, most parts of the
system currently assume two dimensional cartesian coordi-
nates p ∈ R2 and orientations θ ∈ [−π, π]. So far our exper-
iments were structured in a way that this simplification was
sufficient, but we think this can and needs to be extended at
a later point.

Multi-Agent Simulation
We implemented a simulator that executes tasks and handles
the coordination of the agent movement.

Task Handling The simulator needs to take care of the
following key responsibilities during each iteration step.

1. Inspect the agent’s current task and act accordingly:

• If the agent has the Idle task, pause the agent.
• If the agent has a Move-To task, initiate agent move-

ment towards the goal position until the threshold on
proximity is satisfied.

• If the agent has any of the stationary durative tasks, i.e.,
Pick-Up, Put-Down or Assemble, pause the agent un-
til the simulated duration of the task has expired. Also
add the target components for the specific task to the
agent’s inventory as required. In case of an assembly

task, create a new assembled component out of the pro-
vided parts.

2. If the agent’s current task’s termination criterion is ful-
filled, terminate the current task and assign the next task
in the agent’s schedule. Thereby the end time of the for-
mer current task is set, before it is moved to the agent’s
task log.

At the end of each iteration all changes are transferred to
the database for the other modules to operate on the updated
state of the environment.

Agent Movement and Agent Coordination Agent move-
ment is simulated using a differential drive kinematics
model. In order to move towards their goals, they can adapt
their velocity. Pose updates are calculated accordingly and
communicated to the centralized environment representa-
tion.

As we assume robust obstacle avoidance to be provided
by the robotic platforms that are employed, we currently
omit the simulation of collision events. For the purpose of
this work, we have integrated the collision-free agent navi-
gation scheme provided by the RVO2 library (van den Berg
et al. 2016). The theoretical background is described in
Snape et al. 2010 and van den Berg et al. 2011.

The basic principle is the continuous adaptation of the
agent’s linear and angular velocity in order to avoid colli-
sions with mobile and stationary obstacles along their pre-
dicted trajectories. Thereby each agent slightly adjusts its
own velocity towards a value outside the so called Veloc-
ity Obstacles (c.f., Fiorini and Shiller 1998) the other ob-
jects represent. Depending on the parameterization of time
step, temporal horizons and safety margins we can rely on a
collision-free multi-agent navigation within the simulation.

We define a navigation graph within the environment in
order to guide agents around static obstacles, i.e., around the
walls surrounding the storage and assembly areas. When the
assigned goal position for the agent’s current task is not in
direct line of sight to the agent, i.e., when an obstacle needs
to be circumnavigated, it will use a graph search algorithm
(here: Dijsktra) to find the shortest path along the navigation
graph to the goal position. It will then use the vertices along
this path as waypoints for the navigation towards the goal
position. A probabilistic roadmap algorithm can be used to
create the navigation graph (Kavraki et al. 1996).

Multi-Agent Planner
We implemented a planner software that takes care of as-
signing tasks to the robots. As a first integration test, and to
deliver a baseline performance for the planning system, we
defined a set of heuristics about the state of the environment,
based on which tasks would be assigned to any idle agents
capable of doing that specific task.

The heuristics we have defined are described in the fol-
lowing paragraphs.

• Within this system, the first priority is to fetch readily as-
sembled wing modules from the assembly stations and de-
liver them to the shipping station, which is modeled as a



despawn point. The despawn point would remove nearby
components after a specified time and calculate a number
of statistics about the rate of products it has received in the
past. These statistics are useful for a later integration into
a more sophisticated, possibly learning or self-adapting
planning algorithm.

• The next priority is maintaining the supply of input parts
for the assembly stations in order to minimize their idle
time. Currently the heuristic as implemented makes the
check about whether new parts for another assembly pro-
cedure are required based on the current idle status. How-
ever, it is possible to use a threshold on the duration until
the station would be idle again, measured against the ex-
pected time of arrival of the required part for each trans-
portation agent, to indicate this status. If there is a soon-
to-be idle assembly station and there are soon-to-be idle
transportation agents to deliver the required parts, new
tasks are added to their task lists to fetch and deliver the
parts to the respective assembly station.

Using this approach, we set up an experiment to compare
the effect of different numbers of transportation agents on
the overall system performance, which is described in the
following section. In the future, we will integrate more so-
phisticated approaches to the planning and coordination of
multiple agents. We are especially curious how these will
perform in relation to the approach presented here.

Experiments
In order to demonstrate the system’s basic functionality, we
set up the test environment depicted in Figure 2 with four as-
sembly stations and for each run different numbers of trans-
portation agents. With this setting, we evaluate how the sys-
tem performance, i.e., the production rate, is affected by the
number of agents that are employed for the logistics to and
from the assembly stations.

We generated multiple configurations for different num-
bers of transportation agents in an otherwise equal environ-
ment structure. The agents start out in a cluster in the center
of the environment. We expect to observe the performance
to increase up to a certain point, at which additional agents
would block each other, instead of actually accelerating the
logistics processes.

In order to receive the relevant figures for the comparison,
we tracked the number of completed parts that were deliv-
ered to the despawn points. Via linear regression on the time
series of accumulated delivered products, we calculated an
average production rate accross several runs for each con-
figuration. In Figure 3 this value is shown in relation to the
number of available transportation agents. For this experi-
ment, we repeated each configuration fifty times in order to
obtain meaningful results. Error bars indicate the spread of
the distribution of the results. We ran this experiment on a
workstation computer, processing ten runs in parallel. Over-
all this took around 8 hours to compute.

As can be seen, it seems to be beneficial to have roughly
twice the number of transportation agents to provide sup-
plies to the assembly stations. In this configuration, from the
relative durations of transportation times vs. duration of the

Figure 3: Production rate in relation to the number of avail-
able transportation agents. The error bars indicate the mini-
mum and maximum value of the distribution accross all ex-
periment runs.

assembly process, providing new parts as quickly as possible
translates directly to an increase in the production rate. As
expected, we observe that above a certain number of agents
the effective production rate decrease again, probably due to
the increasing amount of traffic.

From the size of the error bars, we conclude that random-
ness also has a large influence on the outcome of the exper-
iment. We suspect the employed reactive, local agent coor-
dination scheme is the main contributor to this effect. In this
scheme, it is often a matter of chance, whether an agent will
prefer one path over another. This demonstrates the impor-
tance of a reliable scheme for multi-agent path finding and
navigation. We plan to integrate and evaluate such in the fu-
ture.

Conclusion
With this paper, the core of a simulation testbed is presented,
for the exploration and evaluation of different approaches
to the problems of Job-Shop Scheduling, Multi-Agent Task
Planning and Multi-Agent Path Finding. So far, we have im-
plemented baseline approaches to those problems, that were
shown to be able to coordinate multiple agents to manufac-
ture several parts in a parallel production environment.

We have presented a system that is able to coordinate a
fleet of robotic agents to take care of a plant’s intralogis-
tics in order to enable a continuous production of assembled
goods. The modular design makes it possible to switch out
single parts, and evaluate other software components in its
place. This includes the possibility to replace the multi-agent
simulation with actual robotic systems to carry out the trans-
portation tasks in a real facility.

We presented an experiment, to present the general via-
bility of the software setup as a testbed to address research
questions. Within the experiment we compared the perfor-
mance achieved by different numbers of agents executing a
production plant’s intralogistics.

We think that the application domain that lies at the ba-
sis of this testbed, the equipping or the assembly of airplane
wings, is an interesting use case for planning research. Ex-
pensive parts and relatively small production rates have so



far successfully deterred from actually implementing large
scale automation of production processes.

Undisputedly impressive results have been shown for the
case of warehouse automation already. These have not been
transferred to manufacturing plants yet, not only because of
robotic systems lacking manipulation or navigation skills,
but also due to underdeveloped fleet coordination capabil-
ities of commercially available robotic systems. Which is
why we think, that our work can contribute to bridge this
gap, and to focus attention on this problem domain.

Future Research
We plan to integrate more advanced planning approaches
to address the problems of multi-agent scheduling and task
planning. We have already started to develop the PDDL
modelling for the planning domain description and the en-
vironment representation, and to integrate external plan-
ner instances, namely a classical planning approach using
the Fast-Downward planner (Helmert 2006) and a tempo-
ral planning approach using the POPF planner (Coles et al.
2010) via the ROSPlan planning system. (Cashmore et al.
2015). We are looking forward towards comparing their per-
formance to the above described approach.

Another very interesting application would be the inte-
gration of planners that use learning algorithms. This frame-
work could provide a basis for comparing traditional plan-
ning algorithms with modern reinforcement learning ap-
proaches. Especially Neural Network based approaches are
highly interesting from a scientific point of view. These
methods could be integrated by adapting parts to the OpenAI
Gym (Brockman et al. 2016) framework, to create a special-
ized learning environment for testing in industrial settings.

Also modern strategy games like DOTA or StarCraft re-
quire complex multi-agent planning and awareness of their
environment. Being able to transfer the recent progress of
OpenAI Five (Raiman, Zhang, and Wolski 2019) and Deep-
Mind AlphaStar (Vinyals et al. 2019) to the setting of indus-
trial production seems to be an interesting angle for further
research. Also our simulated testbed system could serve as a
good starting point for activities in this direction, as it seems
infeasible to let an AI agent train for years worth of experi-
ence directly with a physical production plant.

Acknowledgments
This work was funded by the German Federal Ministry for
Economic Affairs and Energy, grant number 20X1724C.

References
Bellingham, J.; Tillerson, M.; Richards, A.; and How, J. P.
2003. Multi-task allocation and path planning for cooperat-
ing uavs. In Cooperative control: models, applications and
algorithms. Springer. 23–41.
Biswas, S.; Anavatti, S. G.; and Garratt, M. A. 2017. Near-
est neighbour based task allocation with multi-agent path
planning in dynamic environments. In 2017 International
Conference on Advanced Mechatronics, Intelligent Manu-

facture, and Industrial Automation (ICAMIMIA), 181–186.
IEEE.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
CoRR abs/1606.01540.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carreraa, A.; Palomeras, N.; Hurtós, N.; and Carrerasa,
M. 2015. Rosplan: Planning in the robot operating sys-
tem. In Proceedings of the Twenty-Fifth International Con-
ference on International Conference on Automated Planning
and Scheduling, ICAPS’15, 333–341. AAAI Press.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Proceedings of the Twen-
tieth International Conference on International Conference
on Automated Planning and Scheduling, ICAPS’10, 42–49.
AAAI Press.
Enright, J. J., and Wurman, P. R. 2011. Optimization and
coordinated autonomy in mobile fulfillment systems. 33–38.
Fiorini, P., and Shiller, Z. 1998. Motion planning in dy-
namic environments using velocity obstacles. The Interna-
tional Journal of Robotics Research 17(7):760–772.
Fujita, K. 2002. Product variety optimization under modular
architecture. Computer-Aided Design 34(12):953–965.
Godoy, J.; Karamouzas, I.; Guy, S. J.; and Gini, M. 2016.
Implicit coordination in crowded multi-agent navigation. In
Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, 2487–2493. AAAI Press.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hvilshøj, M.; Bøgh, S.; Nielsen, O. S.; and Madsen, O.
2012. Autonomous industrial mobile manipulation (aimm):
past, present and future. Industrial Robot: An International
Journal.
Janovský, P.; Cáp, M.; and Vokrı́nek, J. 2014. Finding coor-
dinated paths for multiple holonomic agents in 2-d polyg-
onal environment. In Proceedings of the 2014 Interna-
tional Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’14, 1117–1124. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Jefferson, T. G.; Crossley, R.; Smith, T.; and Ratchev, S.
2013. Review of reconfigurable assembly systems technolo-
gies for cost effective wing structure assembly. Technical
report, SAE Technical Paper.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE transactions
on Robotics and Automation 12(4):566–580.
Kulturel-Konak, S. 2007. Approaches to uncertainties in
facility layout problems: Perspectives at the beginning of
the 21 st century. Journal of Intelligent Manufacturing
18(2):273–284.
Le, D., and Plaku, E. 2017. Cooperative multi-robot
sampling-based motion planning with dynamics. In ICAPS,
513–521.



Ma, H.; Hönig, W.; Cohen, L.; Uras, T.; Xu, H.; Kumar,
T. S.; Ayanian, N.; and Koenig, S. 2017. Overview: A hi-
erarchical framework for plan generation and execution in
multirobot systems. IEEE Intelligent Systems 32(6):6–12.
Mohan, J.; Lanka, K.; and Rao, A. N. 2019. A review of
dynamic job shop scheduling techniques. Procedia Manu-
facturing 30:34–39.
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
robocup logistics league as a benchmark for planning in
robotics. Planning and Robotics (PlanRob-15) 63.
Pecora, F.; Andreasson, H.; Mansouri, M.; and Petkov, V.
2018. A loosely-coupled approach for multi-robot coordi-
nation, motion planning and control. In ICAPS, 485–493.
Raiman, J.; Zhang, S.; and Wolski, F. 2019. Long-term plan-
ning and situational awareness in openai five. arXiv preprint
arXiv:1912.06721.
Schillinger, P.; Bürger, M.; and Dimarogonas, D. V. 2018.
Simultaneous task allocation and planning for temporal
logic goals in heterogeneous multi-robot systems. The in-
ternational journal of robotics research 37(7):818–838.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.
Snape, J.; van den Berg, J.; Guy, S. J.; and Manocha,
D. 2010. Smooth and collision-free navigation for
multiple robots under differential-drive constraints. In
IEEE/RSJ INTERNATIONAL CONFERENCE ON INTEL-
LIGENT ROBOTS AND SYSTEMS, 4584–4589. IEEE.
van den Berg, J.; Guy, S. J.; Lin, M.; and Manocha, D. 2011.
Reciprocal n-body collision avoidance. In Robotics Re-

search: The 14th International Symposium ISRR, volume 70
of Springer Tracts in Advanced Robotics. Springer-Verlag.
3–19.
van den Berg, J.; Guy, S. J.; Snape, J.; Lin, M.; and
Manocha, D. 2016. Rvo2 library: Reciprocal collision
avoidance for real-time multi-agent simulations. http://
gamma.cs.unc.edu/RVO2/. Accessed: 2020-02-18.
Vinyals, O.; Babuschkin, I.; Chung, J.; Mathieu, M.; Jader-
berg, M.; Czarnecki, W.; Dudzik, A.; Huang, A.; Georgiev,
P.; Powell, R.; Ewalds, T.; Horgan, D.; Kroiss, M.; Dani-
helka, I.; Agapiou, J.; Oh, J.; Dalibard, V.; Choi, D.; Sifre,
L.; Sulsky, Y.; Vezhnevets, S.; Molloy, J.; Cai, T.; Budden,
D.; Paine, T.; Gulcehre, C.; Wang, Z.; Pfaff, T.; Pohlen, T.;
Yogatama, D.; Cohen, J.; McKinney, K.; Smith, O.; Schaul,
T.; Lillicrap, T.; Apps, C.; Kavukcuoglu, K.; Hassabis, D.;
and Silver, D. 2019. AlphaStar: Mastering the Real-Time
Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/.
Wang, K.-H. C., and Botea, A. 2011. Mapp: a scalable
multi-agent path planning algorithm with tractability and
completeness guarantees. Journal of Artificial Intelligence
Research 42:55–90.
Yang, F., and Chakraborty, N. 2019. Multirobot simulta-
neous path planning and task assignment on graphs with
stochastic costs. In 2019 International Symposium on Multi-
Robot and Multi-Agent Systems (MRS), 86–88. IEEE.
Yao, F.; Keller, A.; Ahmad, M.; Ahmad, B.; Harrison, R.;
and Colombo, A. W. 2018. Optimizing the scheduling of
autonomous guided vehicle in a manufacturing process. In
2018 IEEE 16th International Conference on Industrial In-
formatics (INDIN), 264–269. IEEE.


