
Uncertainty-aware pseudo labels for domain adaptation in pedestrian

trajectory prediction

Atanas Poibrenski, Farzad Nozarian, Farzaneh Rezaeianaran, Christian Müller

Abstract— Learning-based trajectory prediction models are
increasingly being used in a wide range of AI applications,
such as autonomous driving. However, existing methods
usually ignore the potential distribution shift between the
train and test environments. This inevitably results in an
increased prediction error in the new domain. Towards this
end, we present a novel model-agnostic student-teacher model
that leverages the recent advances in self-training and utilizes
predicted pseudo trajectories from the target domain in order
to improve its generalization capabilities. More specifically,
we propose to train the model using both trajectories from
the source domain and predicted pseudo trajectories from the
target domain. Since the predicted trajectories can be noisy,
we weigh them by the epistemic uncertainty of the model
using MC-dropout, giving more weight to the more certain
ones. Additionally, we show that the domain gap can be
reduced further by augmenting the source data. Experiments
on the ETH and UCY datasets show the effectiveness of our
framework on domain adaptation for pedestrian trajectory
prediction.

Index Terms - trajectory prediction, domain adaptation, pseudo-
labels, self-training

I. INTRODUCTION

Learning-based trajectory prediction methods are gaining

more attention in recent years due to their potential use in

areas such as autonomous driving [30], video surveillance

[31], collision avoidance and planning in robotics [32].

However, existing methods usually require huge amounts of

annotated data and tend to learn a generic motion pattern.

Moreover, when a trained model on the original scenario

(i.e., source domain) is applied to a new scenario (i.e., target

domain), it may not generalize well and the prediction error

increases [33]. As it can be observed in Fig. 1, pedestrian

trajectory distributions may vary between different domains

and adaptation is crucial for the successful transfer of models

between different environments.

To this end, in this work, we present a model-agnostic

learning framework that aims to bridge the domain gap

between the source and target domain for the task of

pedestrian trajectory prediction. Our method can be applied

to any trajectory prediction model. More specifically, we

explore the scenario where we have access to observed and

annotated future trajectories in the source domain, but only

the observed trajectories are available in the target domain.

We start by training a model on the source domain in a

supervised fashion. Then we switch to a self-training regime,
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utilizing both labeled and unlabeled trajectory data. For

the labeled data we use both the original together with an

augmented version of the source data. For the unlabeled data,

the model predicts pseudo trajectories (labels) which are used

for training and are weighted by the epistemic uncertainty

of the model in the loss function. We show that predicted

trajectories with less uncertainty have lower prediction error

on average. The self-training is an iterative process where

we utilize a student-teacher framework [34]. The student

is initialized with the weights of the pre-trained model on

the source data. At each training step with both labeled and

unlabeled data, the teacher generates pseudo-labels to train

the student and maintains an exponential moving average

(EMA) of the student’s weights. The teacher model is used

for the final evaluation on the target domain.

In this work, we tackle the domain shift problem in

trajectory prediction. To the best of our knowledge, this is

the first work to use self-training with pseudo labels in such

a setting. Our key contributions are fourfold.

• We propose to use a model-agnostic student-teacher

framework for domain adaptation in pedestrian trajec-

tory prediction.

• We propose to weight the pseudo trajectories (labels)

by their variance, given by forwarding an input to the

model multiple times and utilizing MC-Dropout.

• We show that augmenting the source data with rota-

tions can significantly improve the generalization of the

model.

• Experiments on five different datasets with different

trajectory distributions verify the effectiveness of our

method.

The remainder of this paper is structured as follows.

Related work is summarized in section II, and our proposed

solution is described and discussed in section III. This

is followed by the comparative experimental performance

evaluation in section IV before we conclude in section V.

II. RELATED WORK

A. Trajectory Prediction

Trajectory prediction aims to predict the future locations

of pedestrians based on their past locations and surroundings.

Earlier works utilize Kalman Filters [1], Hidden Markov

Models [2] and other mathematical models such as Gaussian

Process [3] and Markov Decision Process [4] in order to

make the prediction. Additionally, some works model the

dynamics of pedestrians explicitly [10].

Recently, a plethora of deep learning solutions have been

proposed. LSTM [5] is often used to encode the history of



Fig. 1: Example frame for each dataset with their corresponding 2D trajectory distribution. Each scene has a unique

distribution of pedestrian trajectories, due to the different static and dynamic objects present. ETH has the most distinct

trajectory distribution due to its vertical orientation of walkable space. Datasets from left to right - ETH, HOTEL, UNIV,

ZARA1, ZARA2.

the agent state and decode the future trajectory, respectively

[6]. Due to the highly uncertain future, stochastic decoders

are typically used to sample multiple trajectories, e.g., using

GANs [7] or conditional variational autoencoders (CVAEs)

[8], [14]. Alternatively, [9] proposed a network that predicts a

multimodal distribution over the future locations of the agent.

Motivated by the Language Processing field, some works

utilize the Transformer architecture [11] for the trajectory

prediction task [12]. More recently, some works predict the

future trajectories of pedestrians by estimating and using

their final goals [13]. Different from recent methods, our

work tackles the domain adaptation problem in pedestrian

trajectory prediction.

B. Domain Adaptation

Domain Adaptation (DA) is a technique used to address

the domain shift challenge that arises when attempting to

transfer knowledge from one domain to another that is

similar but distinct [15]. Recently, it has attracted a lot

of attention, motivating a considerable amount of works,

especially in the classification [16], object detection [18] and

semantic segmentation [17] tasks.

The most commonly used methods in DA include adap-

tation in the input space, feature space, output space, and

model-based adaptation. The objective of DA in the input

space is to produce samples from the source domain that

closely resemble the target domain [19]. Other domain

adaptation methods unify the source and target domains

by creating a domain-invariant feature representation. The

source and target inputs are projected into a shared feature

space and their distributions are aligned by minimizing a

distance measure such as CORAL [20], maximum mean

discrepancy (MMD) [21], or adversarial loss [22]. Pseudo-

label-based [23] domain adaptation methods are the most

common domain adaptation methods in the output space.

A model is trained in a supervised fashion with labeled and

unlabeled data simultaneously. In scenarios where the data is

unlabeled, a technique called Pseudo-Labeling is employed.

This technique involves selecting the class with the highest

predicted probability during each weight update and treating

it as if it were a true label. These pseudo-labels are then used

as a substitute for the actual labels in training the model.

Lastly, model-based domain adaptation approaches reduce

the domain shift of a model by imposing constraints on its

parameters [24]. In this work, we focus on pseudo-labels as

well as augmenting the input space of the source domain for

domain adaptation.

Furthermore, DA can be divided into unsupervised and

semi-supervised DA. In unsupervised DA [25], there is no

access to labeled samples from the target domain, in contrast

to semi-supervised DA [26], where a small portion of labeled

samples from the target domain is accessible during training.

In this work, we focus on the unsupervised DA setting.

The area of domain adaptation in trajectory prediction has

not been extensively researched within the scientific com-

munity. Recently, [27] proposes a cross-domain trajectory

prediction network which encodes observed trajectories from

the source and target domains, then their features are aligned

by a cross-domain feature discriminator. In [28], a domain-

invariant graph neural network (GNN) is used to explore the

structural motion knowledge in trajectory prediction, where

the domain-specific knowledge is reduced. Alternatively, [29]

uses meta-learning, where Bayesian regression is employed

to incorporate an adaptive layer into existing trajectory

prediction models, enabling efficient domain transfer through

offline fine-tuning, online adaptation, or a combination of

both. However, to the best of our knowledge, there is no

other work that utilizes self-training and pseudo-labels for

domain adaptation in the task of trajectory prediction.

III. PROPOSED METHOD

Our proposed framework is illustrated in Fig. 2. For both

the student and the teacher models, we use the recent state-

of-the-art trajectory prediction model SGNet [13].

A. Problem Description

At time step t, given the observed trajectory Ki
t =

{Oi
t−e+1, O

i
t−e+2, ..., O

i
t} of a pedestrian i in the last time
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Fig. 2: Architecture of our proposed training framework. Given the validation dataset from the target domain and the training

dataset from the source domain, unlabeled (only observed part) and labeled (observed + future) trajectories are extracted,

respectively. The set of labeled trajectories is further enlarged through augmentation. All the trajectories are then fed into the

student-teacher EMA model self-training loop. The student-teacher model tries to learn an observed trajectory’s continuation

(future). The supervised loss is calculated using both the ground truth future trajectories from the source domain together with

self-predicted pseudo future trajectories from the target domain. Since the pseudo trajectories are noisy, they are weighted

by their uncertainty (inverse variance). The final teacher is used for inference on the target domain’s test set.

steps e, the goal is to predict the future trajectory K̄i
t =

{Oi
t+1, O

i
t+2, ..., O

i
t+d} in the next time steps d, where Oi

t =
(xi

t, y
i
t) ∈ R

2 denotes the 2D coordinates of a pedestrian.

Formally, the aim is to find the parameters w∗ of a model

f(·), that, given the observed trajectory of a pedestrian, will

predict the future trajectory as:

K̃i
t = f(Ki

t , w
∗) (1)

During training, we assume access to a dataset DS =

{Kj , K̄j}
|DS |
j=1

, which contains observed-future trajectory

pairs for all pedestrians in the source domain S . Additionally,

we have access to the observed trajectories from the target

validation dataset DT val = {Kj}
|DT val|
j=1

. The aim is to

obtain a model that can be effectively deployed to the target

test dataset DT test.

B. Model Pretraining and Data Augmentation

We start by pretraining our model SGNet [13] on the given

source domain dataset. The model consists of a recurrent

neural network and estimates and uses the final locations

of each pedestrian at multiple temporal scales. In particular,

it utilizes an encoder that captures historical information, a

stepwise goal estimator that predicts successive goals into

the future, and a decoder that predicts the future trajectory.

We use stochastic gradient descent to find the parameters of

the model w, by minimizing the Root Mean Square Error

(RMSE):

RMSE(DS) =

√

√

√

√

1

|DS |

|DS |
∑

i=1

(K̃i − K̄i)2 (2)

given the observed and future trajectory pairs from the source

domain DS , where K̃ and K̄ are the predicted and ground

truth future trajectories. We employ early-stopping [42] to

prevent the model from overfitting on the training data by

utilizing a small validation set from the source domain.

To improve the generalization capabilities of the model

further, we enlarge the domain trajectory source dataset DS

by augmenting it via rotations. A rotation matrix R is defined

as:

R =

[

cos θ − sin θ
sin θ cos θ

]

, (3)

where θ is uniformly random generated from the interval

[−π
3
, π
3
]. We multiply the rotation matrix R with every 2D

coordinate at each time step for each trajectory in the domain

dataset DS , effectively rotating each trajectory by a random

angle between −60◦ and 60◦. This way, we acquire a new

rotated dataset DSrot, which has the same cardinality as DS .

The pretrained model weights w, together with the datasets

DS , DSrot and DT val, will be used for self-training in

Section III-D.

C. Uncertainty Estimation

The future trajectories that will be used for self-training in

the dataset DT val need to be predicted by our model. There-

fore, we propose measuring those predictions’ reliability by

quantifying the model uncertainty during forecasting using

stochastic approximation. In general, the model uncertainty,

or epistemic uncertainty can be estimated from the mean

and variance of the marginal distribution p(y∗|x∗, X, Y ) of

a Bayesian neural network, where X and Y represent the

training input and output samples while y∗ represents the

predicted output for some new test input x∗. The marginal

distribution depends on the posterior p(ω|X,Y ), where ω
represents the network’s weights. Since this posterior is

intractable, we can use Monte Carlo dropout as a vari-

ational approximation to such Bayesian Neural Networks

[43] without modifying our existing network architecture.

We apply MC Dropout by performing multiple stochastic



(a) ADE vs Var(ETH→HOTEL) (b) ADE vs Var (ETH→UNIV) (c) ADE vs Var (HOTEL→ZARA2)

Fig. 3: Visualization of the Average Displacement Error (ADE) of the pseudo trajectories against their variance (Var.) on 3

chosen tasks. The line of best fit (red line) shows the linear correlation between variance and error. As the variance of the

pseudo trajectories increases, their error also increases on average.

forward passes with the means of activated dropout in our

model during the inference phase. The probability of dropout

is set as p = 0.6 and the inference is run N = 20 times to

obtain a set of predicted trajectories {K̃∗
1 , K̃

∗
2 , ..., K̃

∗
N} for

each observed pedestrian trajectory K∗ in DT val. We can

then estimate the mean µ and variance σ2 of the predictions,

where the variance indicates model uncertainty:

µ =
1

N

N
∑

i=1

K̃∗
i (4)

σ2 =
1

N

N
∑

i=1

(K̃∗
i − µ)2 (5)

For the final prediction of each observed trajectory, we

pick one at random from the 20 predictions. We found this

to perform better than taking the average. Additionally, we

store the variance σ2 of each trajectory. Our target validation

set now has pseudo labels (future trajectories) together with

the observed trajectories DT val = {Kj , K̃j}
|DT val|
j=1

, which

will be used in the next self-training step.

D. Student-teacher self-training

We begin by initializing identical student and teacher

networks fstudent and fteacher with the pre-trained weights

w as described in Section III-B. We continue with a self-

training loop for 100 epochs. At each epoch, we first augment

the source trajectory dataset DS with rotations to generate

a new dataset DSrot, as illustrated in Section III-B. Using

the observed trajectories from the validation set of the target

domain DT val, we predict pseudo future trajectories with the

current teacher model by employing MC-dropout and storing

the variance σ2 of each pseudo trajectory (see Section III-

C). The student fstudent is trained using both supervised

and unsupervised loss. The supervised loss is calculated

with samples from DS and DSrot, while the unsupervised

loss is calculated with samples from DT val. To prioritize

the learning on target data, we assign a weight λ to the

unsupervised loss. The total loss function Ltotal is defined

as:

Ltotal = RMSE(DS) + λRMSEσ2(DT val) +RMSE(DSrot)

(6)

where RMSE is defined in Eq. 2. RMSEσ2 is the weighted

Root Mean Square Error:

RMSEσ2(DT val) =

√

√

√

√

1

|DT val|

|DT val|
∑

i=1

1

σ2
i

(K̃i − K̄i)2

(7)

where K̃ is the current predicted trajectory, K̄ is the pre-

dicted future trajectory from the previous epoch, and σ2 is

the variance of the predicted trajectory from the previous

epoch. The predicted (pseudo) trajectories K̄ cannot be used

directly as ground truth labels, since they are noisy. There-

fore, we weight their contribution by their uncertainty i.e., by

their inverse variance. This weighting is motivated by Fig.

3, where the linear relationship between the variance of the

pseudo trajectories and their prediction error is shown. The

teacher fteacher weights are then updated as an Exponential

Moving Average (EMA) of the student weights:

f i
teacher = f i−1

teacher + (1− α)f i
student (8)

where i is the current epoch and α is a smoothing coefficient

hyperparameter. Both student and teacher model outputs can

be used for prediction, but at the end of the training, the

teacher prediction is more likely to be correct. The complete

self-training algorithm is outlined below in Alg. 1.

IV. EVALUATION

A. Experimental Setting

1) Datasets: We evaluate our proposed framework on

two publicly available datasets: ETH [35] and UCY [36].

As illustrated in Fig. 1, we conduct our experiments on

the ETH-eth, ETH-hotel scenes as well as on the UCY-uni,

UCY-zara1 and UCY-zara2 scenes. These datasets are used

as a standard trajectory prediction benchmark and comprise

of trajectories captured at 2.5 Hz (∆t = 0.4s). In total,

there are 1536 pedestrians and 4 unique environments. The



Algorithm 1: Student-teacher self-training

1 Pretrain a network fθ , using the trajectory samples from DS

2 f0

student
← fθ

3 f0

teacher
← fθ

4 for i← 1 to MaxIterations do

5 DSrot ←Augment DS // Section III-B

6 K̃ ← f i

teacher
(K) // Section III-C

7 DT val ← {K, K̃}

8 D̃ ← DS ∪DSrot ∪DT val

9 Train f i

student
using samples from D̃ // Eq. 6

10 f i

teacher
← f i−1

teacher
+ (1− α)f i

student
// Eq. 8

11 return fteacher

trajectory distributions from Fig.1 together with the statistics

from Table I show the different biases present in the datasets

used.

TABLE I: Statistics from the five different datasets used.

seqNum denotes the number of sequences to be predicted,

avgNum denotes the average number of pedestrians per

sequence, avgVel denotes the average pedestrian velocity

(m/s), avgAcc denotes the average pedestrian acceleration

(m/s2) and std denotes the standard deviation.

Metric ETH HOTEL UNIV ZARA1 ZARA2 std

seqNum 70 301 947 602 921 383.63
avgNum 2.59 3.50 25.70 3.74 6.33 9.79
avgVel 0.44 0.18 0.20 0.37 0.20 0.12
avgAcc 0.13 0.06 0.04 0.04 0.03 0.04

2) Evaluation Protocol: For evaluation, we follow

the protocol introduced in [28]. We use each of

the 5 scenes as a training source domain S ∈
{eth, hotel, univ, zara1, zara2} and evaluate our model on

the other 4 scenes as the target domain T , where S ≠ T . This

results in 20 different cross-domain pairings: A → B/C/D/E,

B → A/C/D/E, C → A/B/D/E, D → A/B/C/E and E →
A/B/C/D, where A, B, C, D, and E denote ETH, HOTEL,

UNIV, ZARA1, and ZARA2, respectively. During training,

our model has access to the source trajectory domain together

with only the observed trajectory from the validation set of

the target domain, as described in Section III-A. The test set

of the target domain is used for final evaluation. It should be

noted that the validation and test sets of the target domain

are independent of each other, and there are no overlapping

trajectory samples.

3) Baselines: Our first five baselines, namely Social-

STGCNN [37], PECNet [38], RSBG [39], Tra2Tra [40]

and SGCN [41] are trained on the source domain and eval-

uated on the target domain. T-GNN [28] has access to both

the source domain and the observed trajectory from the vali-

dation set of the target domain for adaptation. Trajectron++

[29] proposes offline adaptation, where a small dataset from

the target environment is assumed to be provided, as well

as online adaptation, where the model is gradually adapted

to the new domain as new target data comes in. We use

their best results for comparison. We train our base model

SGNet [13] on the source domain and evaluate it on the target

domain. Additionally, we create an SGNet oracle that has

access to the source domain and the full validation set of the

target domain. Each of the baselines samples 20 predictions,

and the best is used for the final evaluation on the test set

of the target domain.

4) Evaluation Metrics: Following previous works [13],

[28], [29], we adopt two metrics for the performance eval-

uation. Average Displace Error (ADE) is the mean-squared

error between the ground truth and the predicted trajectory

at each time step:

ADE =

∑N

i=1

∑pred

t=obs+1
∥K̄i

t − K̃i
t∥2

N ∗ pred
(9)

Final Displacement Error (FDE) is the Euclidean distance

between the ground truth and the prediction at the final time

step:

FDE =

∑N

i=1
∥K̄i

pred − K̃i
pred∥2

N
(10)

where N is the total number of pedestrians in the target

domain, obs is the number of observed frames, pred is the

number of predicted frames, and K̃i
t and K̄i

t are predicted

and ground-truth trajectory coordinates, respectively.

5) Implementation Details: Similar to all baselines, 8

frames are observed (3.2 seconds) and 12 frames (4.8 sec-

onds) in the future are predicted. In our experiments, we

set α = 0.99 and λ = 2. All the training is done with a

learning rate of 1× 10−4, batch size of 128, and the Adam

[44] optimizer. We use the default network parameters as in

the original SGNet [13].

B. Results

The experimental results are shown in Table II and Table

III. Our proposed method achieves the lowest error on

average and is able to outperform all baselines on almost all

domain adaptation tasks. Results indicate that training with

pseudo-labeled trajectories from the target domain together

with a mixture of ground truth and augmented source trajec-

tories can greatly improve the domain adaptation. However,

Trajectron++ [29] outperforms our method the most in tasks

A2B and B2A due to the fact that their method has access

to a small set of target trajectories. Additionally, scenes A

and B have the biggest domain shift between each other,

since A has mostly vertical trajectories and scene B has

mostly horizontal ones (see Fig. 1). Moreover, there is still a

gap between our method and the proposed oracle, which has

access to the validation set of the target domain. We believe

this is due to the noisy pseudo trajectories used for training.

Despite the weighting based on their variance or uncertainty,

there are many pseudo trajectories that have low variance and

high error and vice versa, as illustrated in Fig. 3. Additional

source augmentation can further help in reducing this gap.

Moreover, in some tasks such as E2D and D2E, all baselines

have relatively small error and the gap between the oracle

and our method is small as well. This is due to the similar

physical environments of scene D (ZARA1) and scene E

(ZARA2) which result in similar trajectory distributions, as



TABLE II: ADE (Average Displacement Error) Our proposed framework compared to other baselines on 20 different domain

adaptation settings. “2” represents from source domain to target domain. A, B, C, D, and E denote ETH, HOTEL, UNIV,

ZARA1, and ZARA2 datasets

Method A2B A2C A2D A2E B2A B2C B2D B2E C2A C2B C2D C2E D2A D2B D2C D2E E2A E2B E2C E2D AVG

Social-STGCNN [37] 1.83 1.58 1.30 1.31 3.02 1.38 2.63 1.58 1.16 0.70 0.82 0.54 1.04 1.05 0.73 0.47 0.98 1.09 0.74 0.50 1.22
PECNet [38] 1.97 1.68 1.24 1.35 3.11 1.35 2.69 1.62 1.39 0.82 0.93 0.57 1.10 1.17 0.92 0.52 1.01 1.25 0.83 0.61 1.31
RSBG [39] 2.21 1.59 1.48 1.42 3.18 1.49 2.72 1.73 1.23 0.87 1.04 0.60 1.19 1.21 0.80 0.49 1.09 1.37 1.03 0.78 1.38
Tra2Tra [40] 1.72 1.58 1.27 1.37 3.32 1.36 2.67 1.58 1.16 0.70 0.85 0.60 1.09 1.07 0.81 0.52 1.03 1.10 0.75 0.52 1.25
SGCN [41] 1.68 1.54 1.26 1.28 3.22 1.38 2.62 1.58 1.14 0.70 0.82 0.52 1.05 0.97 0.80 0.48 0.97 1.08 0.75 0.51 1.22
T-GNN [28] 1.13 1.25 0.94 1.03 2.54 1.08 2.25 1.41 0.97 0.54 0.61 0.23 0.88 0.78 0.59 0.32 0.87 0.72 0.65 0.34 0.96
Trajectron++ [29] 0.33 0.56 0.50 0.38 0.80 0.60 0.43 0.31 1.03 0.41 0.41 0.38 0.93 0.32 0.48 0.35 0.91 0.31 0.49 0.44 0.52
SGNet [13] 2.75 1.14 0.68 0.67 1.21 0.81 1.50 0.92 0.41 0.22 0.17 0.14 0.47 0.57 0.42 0.18 0.47 0.57 0.39 0.21 0.69

SGNet (Ours) 1.04 0.59 0.32 0.40 0.99 0.38 0.64 0.29 0.39 0.15 0.17 0.14 0.42 0.25 0.33 0.18 0.43 0.20 0.29 0.20 0.39

SGNet (Oracle) 0.17 0.26 0.32 0.19 0.56 0.27 0.33 0.19 0.35 0.11 0.16 0.12 0.41 0.14 0.24 0.15 0.38 0.14 0.24 0.20 0.25

TABLE III: FDE (Final Displacement Error) Our proposed framework compared to other baselines on 20 different domain

adaptation settings. “2” represents from source domain to target domain. A, B, C, D, and E denote ETH, HOTEL, UNIV,

ZARA1, and ZARA2 datasets.

Method A2B A2C A2D A2E B2A B2C B2D B2E C2A C2B C2D C2E D2A D2B D2C D2E E2A E2B E2C E2D AVG

Social-STGCNN [37] 3.24 2.86 2.53 2.43 5.16 2.51 4.86 2.88 2.30 1.34 1.74 1.10 2.21 1.99 1.41 0.88 2.10 2.05 1.47 1.01 2.30
PECNet [38] 3.33 2.83 2.53 2.45 5.23 2.48 4.90 2.86 2.22 1.32 1.68 1.12 2.20 2.05 1.52 0.88 2.10 1.84 1.45 0.98 2.29
RSBG [39] 3.42 2.96 2.75 2.50 5.28 2.59 5.19 3.10 2.36 1.55 1.99 1.37 2.28 2.22 1.77 0.97 2.19 2.29 1.81 1.34 2.50
Tra2Tra [40] 3.29 2.88 2.66 2.45 5.22 2.50 4.89 2.90 2.29 1.33 1.78 1.09 2.26 2.12 1.63 0.92 2.18 2.06 1.52 1.17 2.34
SGCN [41] 3.22 2.81 2.52 2.40 5.18 2.47 4.83 2.85 2.24 1.32 1.71 1.03 2.23 1.90 1.48 0.97 2.10 1.95 1.52 0.99 2.29
T-GNN [28] 2.18 2.25 1.78 1.84 4.15 1.82 4.04 2.53 1.91 1.12 1.30 0.87 1.92 1.46 1.25 0.65 1.86 1.45 1.28 0.72 1.82
Trajectron++ [29] 0.65 1.18 1.06 0.81 1.59 1.19 0.89 0.64 1.98 0.81 0.93 0.84 1.81 0.57 1.01 0.70 1.71 0.54 1.02 0.96 1.04
SGNet [13] 5.10 1.99 1.10 1.03 2.22 1.67 3.27 1.92 0.78 0.50 0.35 0.28 0.88 1.15 0.84 0.33 0.88 1.20 0.77 0.38 1.33

SGNet (Ours) 1.77 1.02 0.51 0.59 1.82 0.71 1.38 0.55 0.71 0.29 0.35 0.28 0.71 0.47 0.60 0.31 0.73 0.37 0.56 0.35 0.71

SGNet (Oracle) 0.24 0.46 0.55 0.32 0.99 0.51 0.62 0.33 0.63 0.19 0.30 0.23 0.69 0.23 0.45 0.27 0.63 0.22 0.45 0.35 0.43

shown in Fig. 1. Alternatively, scene transfers from and to A

(ETH) have a larger error on average since the distribution

of trajectories is more vertical compared to the other scenes,

as depicted in Fig. 1. This distribution gap further illustrates

the need for domain adaptation techniques.

C. Ablation Study

In this section, we study the contribution of each compo-

nent in our proposed method. This is achieved by measuring

the average error of the model after the addition of each

component, as shown in Table IV. For all variants, we use

the same evaluation as in Section IV-A, where 20 future

trajectories are predicted, and the best one is chosen for

the error computation. We start by measuring the average

ADE and FDE of our baseline SGNet [13] on the 20

different domain adaptation tasks. Next, we add MC-Dropout

(M) to the pre-trained baseline on the source domain, in

order to obtain 20 different predictions on the target domain,

during inference (Section III-C). This results in a 5.79%
improvement in ADE and 6.76% improvement in FDE
compared to the baseline. Incorporating Self-training (S) into

the model reduces the error further by 13.04% in ADE and

15.03% in FDE compared to the baseline. Finally, adding

Augmentation (A) to the source domain results in an overall

improvement of 43.47% in ADE and 46.61% in FDE. The

results indicate the effectiveness of each component. We

believe that self-training can reduce the domain gap even

further by focusing on methods for reducing bad pseudo

trajectories with high error. This is left for future work as

well as for the trajectory prediction community for further

research.

V. CONCLUSION

In this work, we have presented a model-agnostic student-

teacher self-training framework, that leverages pseudo tra-

TABLE IV: Ablation study of the different components

in our proposed method. ”M” denotes MC-Dropout, ”S”

denotes Self-training, and ”A” denotes Augmentation.

Variant Error (ADE/FDE)

SGNet [13] 0.69/1.33
SGNet + M 0.65/1.24

SGNet + M + S 0.60/1.13

SGNet + M + S + A 0.39/0.71

jectories from the target domain in order to bridge the

domain gap for the task of trajectory prediction. We have

also shown an approach to weighting the pseudo trajectories

during self-training based on their uncertainty. Additionally,

we show how simple data augmentation can improve the

domain adaptation further. Our experiments and ablation

study confirm the effectiveness of the proposed method. We

believe that pedestrian trajectory prediction is an important

problem in the context of autonomous vehicles. Successful

generalization of pedestrian trajectory prediction across dif-

ferent environments will directly translate to better motion

planning of an autonomous vehicle. A limitation of the

proposed approach is the assumption of the existence of

observed trajectory data from the target domain. Ongoing

work is concerned with further improving the quality of

pseudo trajectories by various methods such as filtering as

well as extending our experiments to different road agents

(e.g. vehicles, cyclists), to different trajectory prediction

models and datasets.
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