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Abstract— Legged locomotion is arguably the most suited and
versatile mode to deal with natural or unstructured terrains.
Intensive research into dynamic walking and running con-
trollers has recently yielded great advances, both in the optimal
control and reinforcement learning (RL) literature. Hopping is
a challenging dynamic task involving a flight phase and has
the potential to increase the traversability of legged robots.
Model based control for hopping typically relies on accurate
detection of different jump phases, such as lift-off or touch
down, and using different controllers for each phase. In this
paper, we present a end-to-end RL based torque controller that
learns to implicitly detect the relevant jump phases, removing
the need to provide manual heuristics for state detection. We
also extend a method for simulation to reality transfer of
the learned controller to contact rich dynamic tasks, resulting
in successful deployment on the robot after training without
parameter tuning.

I. INTRODUCTION

Dynamic legged locomotion evolved as a versatile strategy
to traverse natural or unstructured terrains. Thus, legged
robots such as quadrupeds and humanoids are popular for
applications performed in these environments, either au-
tonomously or alongside a human. Quasi-instantaneously
making and breaking contacts with the environment is an
integral part of legged locomotion, which leads to highly
nonlinear, non-smooth dynamics. Thus, from a control per-
spective, dynamic legged locomotion requires significantly
more complex algorithms than e.g. wheeled locomotion.
Whereas the problem of dynamic walking on real robots
has been solved by various techniques from optimal control
(OC) [1], [2], [3] or reinforcement learning (RL) [4], [5],
[6], [7], [8], [9], there is considerably less research for the
even more dynamic locomotion type of hopping. Hopping
can increase a system’s mobility, since it allows for leaping
over obstacles that cannot be surpassed otherwise [10], [11].
However, hopping incurs even more control complexity since
there is a considerable flight phase during which the system
has limited possibilities to adjust for the impact, and the
center of mass trajectory is largely determined when the feet
leave the ground.
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Fig. 1: RL based torque controlled jumping snapshots in
simulation and on the real robot.
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Fig. 2: Comparison of control concepts.

The canonical system to study hopping, which is also
used in this paper, is a single hopping leg or monoped.
Indeed, one of the earliest robotic systems showing dynamic
legged locomotion was a single leg that could navigate a
flat surface by jumping [12]. To control the hopping height,
a heuristically tuned force controller was used, motivated
by an energy shaping algorithm [13]. These seminal studies
sparked a wealth of research into the control of single legged
hopping machines. A common theme of such controllers is
the reliance on detection of various states, e.g. lift-off, peak
attitude, touchdown, and minimum attitude [13], [14], [15],
[16], [17], [18]. The full jumping controller is then realized
as a state machine, where PD controllers are typically used
during flight phases, while stance phase states are directly
controlled by torque or force. Deploying these controllers
on hardware requires hand tuning parameters and system
specific adaptations to account for model inaccuracies or
unmodelled dynamics. Also, the detection of different jump
states and appropriate control output during the lift-off phase
relies on accurate height estimation and contact detection, for
which further heuristics are typically employed.

RL offers the promise to alleviate these issues. We hypoth-
esize that, since neural networks are universal function ap-
proximators [19], [20], learning based controllers with neural
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network function approximators are able to implicitly detect
relevant jump phases and thus realize a unified hopping con-
troller without the need for explicit state transition heuristics.
Even more, a fully integrated end-to-end solution for hopping
should be possible via RL, mapping only proprioceptive
feedback, i.e. actuator positions and velocities, to direct
torque control, since this proprioceptive data is theoretically
sufficient to implement a variable jumping height controller.
The comparison of our method to a classical approach is
visualized in Fig. 2.

Whereas several previous studies utilized learning based
controllers for jumping [11], [21], they focussed on single
leaps, making implicit detection of jump phases less critical
than for continuous jumping. From the data, it can also
not be derived whether such a phase detection is actually
realized. Recently, a RL based continuous hopping controller
with adjustable jumping height for a small quadruped was
developed in [22]. While this shows the feasibility of a
unified controller that does not require a state machine, it
still relied on height estimation and PD control, and thus can
not be considered as a truly end-to-end learning approach.
The widespread use of PD controllers in RL research is in
part a consequence of the low sample complexity of many
algorithms, which necessitates training in simulation. Using
PD controllers reduces the requirements on the accuracy
of the dynamics simulation and thus increases the chances
of successful simulation to reality transfer. However, this
requires tuning of PD gains for a successful sim2real transfer
and may additionally hinder performance in highly dynamic
tasks such as jumping, where direct torque control can unlock
the full dynamical capabilities of a system [4], [23].

In summary, all previous approaches from classical con-
trol and RL require a subset of height estimation, contact
detection, hyperparameter tuning, PD control, or a behavior
state machine. In this paper, we present a RL based method
that requires none of the above. We show successful training
and simulation to reality transfer of a torque controller with
implicit jumping phase detection and controllable jumping
height, while only relying on proprioceptive feedback 1. To
achieve this, we draw inspiration from energy shaping for
the design of the reward function, and extend a previous
technique for accurate simulation to reality transfer [24] to
higher dimensional parameter spaces and dynamic, contact
rich tasks. To the best knowledge of the authors, such a
controller is described for the first time for a monoped.

II. MATERIALS AND METHODS

A. Robotic System

The robot used for the experiment is a custom-made 3
degrees of freedom (DOF) hopping leg system, mounted
on a vertical rail with 1 passive DOF and 2 active DOFs.
Fig. 3 shows a photo of the system, along with a 3D design
model. The 2 active DOFs in the leg are actuated via quasi-
direct drive motors qdd100 from mjbots [25] operating at a

1https://github.com/dfki-ric-underactuated-lab/
hopping_leg

Fig. 3: Hopping leg used in the experiments.

frequency of 200Hz. While the shoulder joint shares the joint
axis with the motor axis, the elbow joint is driven by a motor
placed at the shoulder via a belt drive with transmission ratio
= 1:2. The housing is a light weight carbon fiber construction.

B. Energy Shaping

As a baseline comparison, we implemented a classical
energy shaping (ES) controller in simulation [26]. This ES
controller is part of a finite state machine [27]. As shown in
Fig. 4 the state machine consists of three states:

• Lift-off : This phase is used to apply the desired energy
with the ES controller for the next jump. It ends when
the leg loses its ground contact.

• Flight: In the flight phase, the leg prepares for the
touchdown by moving into a predefined pose. The phase
ends with the first contact of the leg with the ground.

• Touchdown: During touchdown, the leg damps its move-
ment using high damping and low positional gains. It
ends when the base velocity ẋ ≥ 0.

1) Controller design: As mentioned above, the desired
energy Ed which is required to jump to a desired base height
xd hast to be applied during the lift-off phase. For simplicity,
we assume the robot to be a point mass m at its base. In
this case, the required energy can be calculated with:

Ed = mgxd (1)

Here, g is the gravitational acceleration.
Accordingly, we can estimate the reached energy Ej−1

from the last jump using the estimated jumping height xj−1:

Ej−1 = mgxj−1 (2)

For reaching this energy, we needed to apply a feed-forward
force Ff,j−1 to the ground while the leg had ground contact.
For the next jump, we estimate the new feed-forward force
with:

Ff,j =
mg (xd − x0,j)

∆xl,j
(3)

if no contact if contact

if ẋ ≥ 0

flightlift-off touchdown

Fig. 4: State machine used for the energy shaping controller.
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Here, x0,j is the current minimum base height after the
touchdown, and ∆xl,j is the the expected distance to be
covered during the current lift-off, calculated from x0,j .
Since the formerly applied force is proportional to the
reached energy Ej−1 we can write:

E ∝ kFf (4)

and as the feed-forward force is almost constant:

Ė ∝ k̇Ff (5)

Thus, we can control the energy in the system by altering
the gain k. To control the gain k the following update rule
has been used:

kj = kj−1

(
Ed

Ej−1

)2

(6)

As joint torque controller, Cartesian stiffness control with the
following control law was used [28]:

τ = JT (q)

[
kj

(
Ff,j

0

)
+ kp,y

(
0
−y

)
+ kd,y

(
0
−ẏ

)]
(7)

Here, τ is the vector of desired joint torques, JT (q) is the
transpose of the hybrid Jacobian at the end-effector and Kp,y

and Kd,y are the Cartesian PD gains in y direction (refer to
Fig. 3). As shown in (7), the PD terms of the Cartesian
stiffness controller are only responsible to maintain the y
position of the end-effector, while the energy shaping control
is used to apply the forces in x direction.

2) Jumping height estimation: For the ES controller, a
height feedback is necessary. Therefore, a proprioceptive
height estimation has been implemented. During flight phase,
no additional forces can be applied to the system. Hence,
we can expect the base acceleration ẍ to be roughly equal
to the gravitational acceleration g. Due to the proprioceptive
feedback, we know the lift-off position xl and velocity ẋl.
Thus, the current base height x during flight phase can be
calculated with:

x =
1

2
g
(
t2 − t2l

)
− g tl (t− tl) + ẋl (t− tl) + xl (8)

Here, t is the current time and tl is the time at lift-off. During
stance phase, the current height is calculated from forward
kinematics.

3) Simulation and real system parameters: The simu-
lations of the ES controller have been performed using
PyBullet physics simulation [29]. For the simulation a control
frequency of 400Hz has been used to control the joint
torques. The parameters kj=0 = 1.0, kp,y = 10.0, kd,y = 3.0
were optimized manually. For the real system, the control
frequency has been reduced to 200 Hz.

C. Reinforcement Learning

1) Problem Formulation: The hopping leg problem is
formulated as a Markov Decision Process (MDP), where
the agent, i.e. the controller in this case, interacts with the
environment, i.e. the leg and its surroundings. A MDP is
given by a tuple (S,A,P,R), where S is the set of states
called the state space, A is the set of actions called the action

space, P(st+1 | st, at) the probability that taking action
at in state st will lead to state st+1, and R(st, at, st+1)
the expected immediate reward for transitioning from st to
st+1 by taking the action at. At each time step t, an action
at ∼ π(at | st) is sampled from the policy given the current
state st. The objective of RL is to optimize the policy π such
that the expected return is maximized.

From the variety of RL algorithms, we choose Soft Actor-
Critic (SAC) [30], a state-of-the-art off-policy algorithm,
since it is relatively sample-efficient, stable, and requires
little to no hyperparameter tuning. SAC aims to maximize the
expected reward while also maximizing the policy entropy
H. The objective is formulated as

π∗ = argmaxπ E
a∼π

[∑∞
t=0 γ

t

(
R(st, at, st+1) + αH(π(· | st))

)]
.

Maximizing the entropy as a secondary objective leads to
policies that are maximally variable while performing the
task, making them intrinsically robust.

For continuous actions, exploration is commonly done in
action space. At each time step, a noise vector ϵt is sampled
from a Gaussian distribution and added to the action output,
such that π(at | st) ∼ µ(st, θµ) + N (0, σ2), where µ
is the deterministic policy and θµ its parameters. We use
the modification of generalized state dependent exploration
(gSDE) [31]. Here, the noise vector is a function of the state
and the policy features zµ(st, θzµ), which is the last layer
before the deterministic output µ(st) = θµzµ(st, θzµ), i.e.
ϵt(st, θϵ) = θϵzµ(st). With gSDE, the action for a given state
st remains the same until the noise parameters are sampled
again. This promotes more consistent exploration and results
in reduced shaky behavior on hardware [31].

2) Network architecture: The policy is modeled with a
multilayer perceptron (MLP) with four hidden layers of 256,
256, 128, and 128 neurons. The activation function is ReLU.
The critic network is modeled by a separate network with
the same architecture. LSTM policy networks were also tried
but offered no empirical advantage. The policy is inferred at
the operating frequency of 200Hz.

3) Observation and action space: The hopping leg system
has no additional sensors apart from the joint encoders. Thus,
only normalized joint positions and velocities, and the de-
sired jumping height over the three last time-steps t, t−1, and
t−2 constitute the observation state. Joint data over multiple
time-steps is empirically found to be essential to produce the
desired behaviour with implicit contact detection. Hence, the
observation space is sϵR3×5=15. The action space consists of
the normalized output motor torques, which are later scaled
up before being sent as the torque commands. The action
space is thus a ϵ R2.

4) Reward: The total reward at each time step is a
weighted sum of positive gains and negative penalties, encod-
ing behaviours to be encouraged or precluded. The reward
comprises the following components:

a) Energy Gain (Ge): The agent is incentivized to
maximize the kinetic and elastic potential energy of the leg
at any given time step. The reasoning behind this term is



an approximation of the leg by spring with mean length xo.
This reward term promotes an oscillatory behaviour leading
to high enough velocities for hopping. The corresponding
term is calculated as:

Ge = ẋ2 + (x− xo)
2 (9)

where x and ẋ are the base height and velocity, respectively.
xo is the base height for the initial standing position of the
leg.

b) Height barrier penalty (Ph): The agent is penalized
exponentially when the base height crosses the desired height
command xd.

Ph =

{
1− ex−xd

, if x ≥ xd

0, otherwise
(10)

c) Jerky Action Penalty (Pj): Sudden changes in the
output torques can cause shakiness in the hardware, making
the policy hard to transfer. Therefore, the agent is penalized
for large differences in consecutive actions.

Pj =

2∑
i=0

(ait − ait−1)
2 (11)

d) Joint constraints penalty (Pjp, Pjv): It is desired
to keep the joint position limits within some pre-defined
constraints to avoid self-collisions and prevent arbitrary
configurations. The joint velocities should be reasonably
bounded for successful sim-to-real transfer. These constraints
are imposed with negative penalties. The penalty for the
position limit is structured such that it becomes significant
around the limits and beyond them but stays reasonably low
elsewhere. It is calculated as:

Pjp =

2∑
i=0

{
e−10(qi−qli) + e10(qi−qhi ), if qli ≤ qi ≤ qhi
1, otherwise

(12)
Here, qli and qhi denote the lower and upper joint limits,
respectively. To reasonably constrain the search space for the
agent, we used a PD controller to bring the joints back within
bounds if joint limits are passed during training. The joint
velocities are penalized if they cross the saturation limits for
the motors.

Pjv =

2∑
i=0

{
0, if − q̇hi ≤ q̇i ≤ q̇hi
q̇i

2 − q̇h
2

i , otherwise
(13)

Here, q̇hi is the maximum desired joint velocity.
The final expected reward is calculated as:

R = w1Ge − w2Ph − w3Pj − w4Pjp − w5Pjv (14)

The weights used during training are w1 = 0.5, w2 = 2,
w3 = 0.05, w4 = 0.02, and w5 = 0.005.

D. Simulation to Reality Transfer

We use a custom gym [32] environment with MuJoCo
physics engine [33] for training in simulation. As explored
in [34], MuJoCo is well suited for robotics and reinforcement
learning problems as it provides a wide range of solver
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trajectories

position
difference

cost

PD
control

dynamics 
and solver
parameters optimization

real systemsimulation

Fig. 5: Parameter optimization pipeline.

parameters and settings, which can be adapted and optimized
for many use cases. The policies trained in MuJoCo with
default model and simulation parameters failed to transfer
to the hardware. Therefore, we optimised the simulation
parameters to narrow the sim-to-real gap.

1) Simulation Parameter Optimisation: The goal of this
step is to match simulation dynamics to the real robot using
simple training trajectories.

a) Trajectory Generation and Data Collection: A var-
ied set of task-space, hand-tuned sinusoidal trajectories is
generated for two different system configurations. These
include a fixed-base configuration, where the leg is sus-
pended in the air, and a moving-base configuration, where
the leg comes in contact with the ground. For the fixed-base
configuration, the template trajectories are:

x = (A cos

(
2πt

T1

)
+ ϵ) cos(θ)

y = (A cos

(
2πt

T1

)
+ ϵ) sin(θ)

θ = −π

2
cos

(
2πt

T2

) (15)

Here, ϵ = L1+L2−A is the trajectory offset from the origin,
given L1 and L2 are the shank and calf link lengths for the
leg. The periods (T1, T2) and the amplitude A are varied
such that the maximum workspace of the leg is covered. The
moving-base trajectory only consists of vertical trajectories
with a few segments fast enough to break ground contact.
These trajectories closely imitate the hopping configuration
of the leg and are given as:

x = A cos

(
2πt

T1

)
+ ϵ

y = 0

(16)

The joint-level trajectories are obtained through inverse kine-
matics and tracked on the hardware with a PD controller



running at a frequency of 200Hz. The controller gains are
fixed and the target velocity set to 0. For both fixed-base
and floating base configuration, 240 s of data was recorded
where T1 ∈ {0.75, 0.5, 0.25}, T2 ∈ {10, 20}, and A ∈
{0.15, 0.1, 0.05}. Joint positions, velocities, and resulting
motor torques are recorded on the actual hardware.

b) Simulation Parameters Optimisation: Using the
hardware trajectories, we optimize for the simulation’s dy-
namics and solver parameters. We use the same PD controller
running at the same frequency to track the generated trajecto-
ries in simulation, with gains adjusted for the motors’ internal
gear ratio. We optimize for the following set of simulation
parameters:

• Dynamic Parameters: The simulation model’s dynamic
parameters to be optimized involve the friction loss,
damping and armature (rotor inertia) values for the hip
and knee motors, friction loss and damping for the rail,
which is modeled by a passive prismatic joint, and the
link inertias.

• Solver Parameters: Time constant and damping ratio are
two of the solver parameters, characteristic of the mass-
spring-damper constraint modeling of MuJoCo. These
parameters are optimized to modulate the contact model
between the leg and the plane.

CMA-ES [35] is used to optimize these parameters with
a cost on the cumulative joint position difference between
simulation trajectories and recorded real hardware data at
each time step.

J(q) =

tf∑
t=0

1∑
i=0

(qtisim − qtireal)
2 (17)

In high dimensional optimization problems, such as this, it
can become hard for the solver to converge and find an
optimal solution. Dynamic coupling also occurs between the
parameters, potentially leading to low cost but poor transfer
to the hardware. To prevent these issues, the parameters
that can be roughly estimated during modeling, i.e. link
inertia and solver parameters, are fixed in a first optimization
pass. In a second pass, we optimize all dynamic and solver
parameters while placing bounds on the friction, damping,
and armature parameters derived from the first pass. This
helps converging to an optimal and pragmatic solution. Fig.
5 visualizes the optimization procedure.

2) Policy Robustness: Two methods are employed during
training to make the policy robust to delays, noise, and other
disturbances.

a) Delays: As mentioned before, the observation space
consists of sensor readings from the last three consecutive
time steps. In addition, the observation data over the last
ten time-steps is stored in a buffer. While training, with a
probability of 0.5 at each time step, data of three time steps
is randomly sampled from the buffer in correct temporal
sequence and used as observation instead. This helps to
simulate plausible delays on the real system, effectively
making the policy more robust.

TABLE I: The simulation parameters obtained after CMA-
ES optimization.

Joint Friction loss Damping Armature

Rail Prismatic Joint 0.7024 1.0724 -

Hip Joint 0.4364 0.0005 0.00004

Knee Joint 0.0015 0.1441 0.0001

Parameter Value

Hip Link Z Inertia 0.004061

Knee Link Z Inertia 0.000845

Time Constant 0.0911

Damping Ratio 0.6678

b) Noise: Noise is added to the joint data and the
torques given by the policy to simulate sensor noise and
control inaccuracies. At each time step, the noise is sampled
from a uniform distribution ranging from −λu to λu, where
λ is the error range and u is the observed value. We set
λ = 0.05 for the joint positions and velocities, and λ = 0.15
for the output torques.

III. RESULTS

The optimization of simulation parameters described in
Section II lead to the parameters shown in Table I. Training
for the jump heights 0.25 m, 0.3 m, and 0.35 m in simulation
yielded a controller that is able to interpolate between
these three desired jump heights, showing that the controller
learned an approximation of the task space inverse dynamics
for this problem. Figure 6 shows the jump height of a 30 s
trial with an initial desired jump height of 0.25 m. Every
5 s the desired jump height is increased by 0.02 m. While
there is a significant deviation of the actual average jump
height especially for intermediate commands, the mapping
from desired to actual jump heights is monotonic.

To assess the implicit contact detection of the controller,
we analyse the applied torque in simulation to the elbow
joint for a 10 s trial with a commanded jump height of
0.30 m. Figure 7 shows the controller torque output for all
encountered configurations in the phase space of the actuated
elbow joint. It is evident that during the stance phase, the
controller applies significantly higher torques than in the
flight phase, to generate the lift-off. In addition, the control
torque increases after the minimal attitude is reached. This
strongly implies that the controller indeed detects ground
contact, solely based on the proprioceptive observation of
joint positions and velocities.

The controller trained in simulation was tested on the real
robot without further adjustment. Figure 8 shows the base
height trajectories for simulated and real robot for a trial with
changing desired jump height. Whereas the real jump height
is lower than the commanded height, the ordering of jump
heights is as intended, i.e. a higher desired height leads to a
higher actual jump height. The offset between commanded
and actual jump height lies between 0.04 m and 0.06 m.
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of the elbow joint. The black (grey) line is an example phase
space trajectory for one flight (stance) phase. Circles and
diamonds denote starting and end points of the jump phase.

We observe that the temporal structure of consecutive jumps
differs between simulation and the real robot. For a desired
jump height of 0.25 m, the real robot shows jump heights
alternating between ≈ 0.2 and ≈ 0.24 m. For a commanded
height of 0.35 m, the jump frequency on the real robot is
slightly reduced, because two jumps, around 11 and 12.5
s, were ’skipped’. Note that the absolute values of the jump
heights on the real system are not exact, since it is determined
by tracking the center of the upper motor in video recordings.
This induces some noise on the measurement. In addition, a
height dependent small parallaxis error can be expected.

For a statistical analysis of the jump height distribution for
varying height commands, the data of the 15 s trial shown
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Fig. 8: Jumping heights of simulated and real robot for 15
seconds. The commanded jump height is 0.25 m for the first
5 s, 0.30 m for the next 5 s, 0.35 m for the last five seconds.
Both in simulation and the real robot, increasing the desired
jump height leads to higher actual jumps.
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Fig. 9: Jump height distributions for different commands,
in simulation and on the real system. Colored lines show
the medians of the distributions, gray lines the respective
commanded height. In simulation, the distributions for the
RL controller are completely non-overlapping, thus clearly
significantly different. On the real system, the distributions
show some overlap. For comparison, the distributions of
jump heights generated by an ES controller are also shown.

in Figure 8 is merged with 15 s trials of fixed jump heights
at 0.25 m, 0.30 m, and 0.35 m, both in simulation and
the real robot (also see the accompanying video available
as the multimedia attachment). Figure 9 show the resulting
jump height distributions for the trained controller, along
with simulation results for an energy shaping controller as
reference. While the distributions of RL based jumping are
completely separated for the simulation, the real system tests
show overlaps between neighbouring jump height distribu-



tions. This can at least partly be attributed to the noise
induced by the pixel tracking used to estimate the heights in
the real experiments. The bimodal nature of the distribution
for a commanded height of 0.25 m is a consequence of the
alternating jump heights, also seen in Figure 8. We use a
Wilcoxon-Ranksum test to evaluate the difference between
neighbouring distributions. Both in simulation and on the
real system, all neighbouring distributions are significantly
different at p < 0.001.

Our baseline energy shaping controller worked remarkably
well in both simulation and on real hardware (see Fig. 9).
This is as expected since we exploit the model knowledge
and physics that captures the essence of jumping task.
However, it requires expert knowledge to tune the contact
detection threshold and other controller gains which can be
time consuming. Our proposed End-to-End RL controller
does not require such expert knowledge and demonstrates
a similar trend for different jumping heights. The standard
deviation in jumping height is even smaller in some cases,
especially in simulation. However, there is substantial room
for improvement in the performance of the RL controller on
the real system in comparison to the baseline ES controller.

IV. DISCUSSION

The main objective was to find a jumping controller
mapping proprioceptive feedback to torque control, including
the avoidance of height estimation and PD control strategies
as used by [22]. Thus it may seem counterintuitive that we
impose soft joint limits with a PD controller and use the base
height for reward calculation. However, since variable height
jumping cannot be defined without the notion of height,
it is strictly necessary information for the agent such that
the task space inverse dynamics can be approximated. We
want to emphasize though that the height is only used in
the reward during training, and is not required as direct
feedback to the controller. The soft joint limits serve as a
gentle exploration guiding strategy, similar to initial example
trajectories as used by [22]. On the hardware, they are still
in place for safety reasons, but are rarely crossed. Thus, our
control approach can be considered truly end-to-end. In the
following, further features and critical design decisions are
discussed in more depth.

A prerequisite for successful transfer to the real system
is a small simulation to reality gap. Prior to developing the
current approach, the more common technique of domain
randomization [36] was also tested, which generated un-
satisfying behavior transfer. Our approach is adapted from
[24], who used simulation parameter optimization to make
trajectories in simulation follow real recorded training data.
We extend this approach by introducing a two stage process
for high dimensional parameter spaces and showing the
applicability to collision rich and dynamic tasks. We chose
to keep inertia parameters fixed in the first stage, since
they can be reasonably well estimated from the structure,
whereas other dynamical parameters are much harder to infer
a priori. We also noted that identifying the rotor inertia was
crucial. While not necessary for less dynamic behavior such

as walking, rotor inertia becomes more influential for highly
dynamic motions. The superior simulation to reality transfer
can be explained by domain randomization leading to a trade
off between generality over a range of parametrizations to
optimality on the actual hardware, which has well defined
parameters. In contrast, the method we propose is more
akin to dynamic system identification. However, the target
is not the true physical parameters, but the closest possible
representation of the system dynamics within the simulation.

To make the policy robust to expectable delays on the
real system, we used random sampling from an observation
buffer. This random sampling technique is easy to implement
without having to know the exact delays and their distribu-
tions. An alternative approach would be to use an actuator
model as suggested by [5] to learn quadruped walking. In
their case, a good motor model was probably more relevant
since the robot’s legs use series elastic actuators, which are
expected to have more complex delay dynamics. If this is
not the case, we argue for our method as a simpler solution.

The policy shows good interpolation performance for
height values that were not explicitly included in the training.
This suggests that the policy implicitly learned a task space
inverse dynamics model of the system. This assumption is
further supported by the implicit detection of different jump
phases. However, height tracking shows relatively higher de-
viations at intermediate commands around 0.3 m. This could
be an issue of the neural network not having enough capacity
to represent the full dynamics. A thorough hyperparameter
tuning of the network architecture could improve the results,
but is out of scope for this paper.

The remaining differences in the jump heights between
simulation and reality can be a consequence of non-optimal
dynamic parameters of the simulator. However, we noted
that adding more data to the parameter optimization pipeline
did not significantly change the optimization result. Another
explanation could be additional, unmodelled non-linear dy-
namics such as motor backlash, motor torque saturation,
or state dependent sensor noise. A strategy to improve
performance without having to explicitly model these effects
is to continue training the controller on the real system
directly, using the current policy as a starting point. For this,
the used SAC algorithm is particularly well suited [37].

V. CONCLUSION

In summary, we presented a method to train a unified
torque controller for continuous hopping with a monoped
robot. The controller is able to interpolate between jump
heights and implicitly detect relevant jump phases and act ac-
cordingly. The simulation to reality mapping procedure elim-
inates the need of parameter tuning for behavior transfer. The
trained policy realizes a direct mapping from proprioceptive
feedback to torque control. To the authors’ knowledge, this
is the first reported end-to-end training procedure for a jump
height adjustable monoped torque controller. However, much
needs to be done to bring the height tracking accuracy of this
approach closer to the model based energy shaping control.
Future research directions include a thorough hyperparameter



tuning of the neural network architecture to improve the
jump height interpolation in simulation, as well as continued
training on the real system to mitigate the effect of residual
dynamics modeling inaccuracies of the simulator. We also
plan to integrate this work in the RealAIGym ecosystem [38]
similar to other canonical underactuated systems like simple
pendulum [39], double pendulum [40], and AcroMonk [41].
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