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Abstract
Gaze estimation is an important factor in human activity and behavior recognition.
The technology is used in numerous applications such as human-computer interac-
tion, driver monitoring systems, and surveillance. Gaze estimation can be achieved
using different technologies such as wearable devices or cameras. Estimating gaze
using a webcam can indeed be more accessible and convenient compared to methods
that rely on specific hardware like infrared cameras. In this paper, we propose a data
acquisition approach for modeling appearance-based webcam gaze estimation. We
implemented an application to capture gaze points using a common webcam. The
application asks to click on the circle displayed on the screen, and whenever the cir-
cle is clicked, the face image and the pixel coordinates of the circle are stored. From
each of the 17 participants, 50 patterns of face images and pixel coordinate infor-
mation were collected. The gaze estimation models used were VGG16, ResNet50,
EfficientNetB7, and EfficientNetB2. In conclusion, the result of the test set is best
for VGG16 (four feature extractors) with an error difference of 2.4 cm. To validate
our model, we also applied leave-one-participant-out cross-validation and found that
the participant with the smallest error difference is 2.533 cm and the largest error dif-
ference is 4.759 cm. The study contributes to proposing the data collection method,
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the best prediction model, and discovering the difficulty of prediction occurs with
human individual differences for webcam-based gaze estimation.

1 Introduction
Gaze estimation plays an essential role in many fields. In previous research, it is used
to understand reading behavior [1–3], to develop intelligent textbooks for readers [4,
5], and also to analyze confidence or mind wondering while answering questions [6,
7]. The limitation of the above work was that all these studies required specialized
hardware to track gaze. In the field of activity behavior computing, replacing the
expensive device to estimate the same activity is significant [8]. Gaze estimation
using inexpensive devices such as webcams is important.

In gaze estimation, traditional image processing techniques extract features such
as pupil position, eye angle, pupil diameter, or gaze direction from eye images. Eye
tracking systems, on the other hand, use special cameras or sensors to track eye
movements directly. Deep learning has shown great success in various computer vi-
sion tasks, including gaze estimation. Gaze estimation has become more convenient
with the advent of web cameras compared to the use of skin electrodes in the past [9].

The attached sensor-based method involves sampling the electrical signal from
skin electrodes to detect the user’s eye movement. The 3D eye model recovery
method constructs a geometric model of the eye to determine the direction of gaze.
However, it requires the use of special equipment such as infrared cameras.

The 2D feature regression method uses the detected geometric features, such as
pupil center and glints, to directly estimate the gaze direction. Like the 3D eye model,
the reconstruction method requires using infrared cameras. Funes Mora et al. divides
eye images into 15 subregions and computes the sum of pixel intensities in each
subregion as features [10]. Appearance-based gaze estimation uses the deep neu-
ral network to estimate the gaze point. The main difference between conventional
appearance-based methods and deep learning-based methods is that the performance
of the conventional appearance-based method drops when it encounters head mo-
tion, while the deep learning method can tolerate the head motion. In addition, deep
learning methods can extract high-level abstract gaze features from high-dimensional
images and learn a highly nonlinear mapping from eye appearance to gaze.

This study aims to estimate gaze position from webcam images. To do so, we
create our face dataset using our application. By comparing several methods, we can
discover the best prediction model. The evaluation of the model is done by leave-
one-participant-out cross-validation. Our contributions are as follows:

1. Gaze data collection application: We implement an application for we-
bcam gaze data collection. This application can be used on any laptop.

2. Top-performing gaze estimation model among our range of models:
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We compare several deep learning models to identify the best-performing
gaze estimation model.

3. Discovery of the user dependent features: We discuss characteristics
of high and low prediction rate users from the result of the leave-one-
participant-out cross-validation.

2 Related Work
Previous appearance-based methods rely on a user-specific mapping function, which
requires time-consuming calibration and a fixed environment to collect the user-
specific training samples. To minimize the total number of training samples, Williams
et al. gave a semi-supervised Gaussian process regression method [11]. However,
these appearance-based methods show satisfactory performance only under con-
strained conditions, such as fixed headphones and specific users. Their performance
drops when tested in an unconstrained environment.

Deep learning-based methods are used to automatically extract the deep features
from the eye images to overcome the disadvantages of conventional appearance-
based methods. Zhang et al. proposed the first gaze estimation method to compute
the gaze directions using a simple Convolutional Neural Network (CNN), and the
performance surpasses most of the conventional appearance-based methods [12]. In-
spire by the research, Figure 1 shows an architecture of gaze estimation using face
images proposed by Krafka et al. [13]. Another approach is to use video as an input
to estimate gaze because it provides more valuable information than images [14].
Gaze estimation from a video (or video frames) involves extracting static features
from each frame using a conventional CNN. These static features are then fed into a
Recurrent Neural Network (RNN) to capture temporal information.

Convolutional Neural Networks (CNNs) have been extensively applied in various
computer vision tasks, including object recognition, image segmentation, and activ-
ity recognition, where they exhibit exceptional performance [15–18]. Various CNN
methods have been applied to address the gaze estimation task, including supervised,
semi-supervised, self-supervised, and unsupervised CNNs. Supervised CNNs are the
most common type of gaze regression. In order to supervise the training, the system
needs a large dataset, such as MPIIGaze [19], GazeCapture [13], and EyeDiap [10].

A semi-supervised CNN approach uses labeled and unlabeled images during
training [20]. This method incorporates an additional appearance classifier and a
head pose classifier to allow feature matching between labeled and unlabeled im-
ages. Labeled images from the training set and unlabeled images from the target
dataset are required to train this model. Unlabeled images are referred to as "targets",
while labeled images are labeled as part of the "training set".

A self-supervised CNN method [21] consists of two sub-networks as shown in
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Figure 1: Gaze estimation with face and eye images of a user.

Figure 2: A self-supervised CNN method.

Figure 2. The regression network estimates gaze using two eye images and generates
ground truth for the other network, which enables self-supervision.

An unsupervised CNN method [22] uses a CNN to extract 2D features from eye
images as shown in Figure 3. The difference in features between two images, along
with one of the eye images, is fed into a pre-trained gaze redirection network. This
network generates the other eye image without supervision or labeled data.
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Figure 3: An unsupervised CNN method.

3 Data Collection
In this Section, we explain the process of collecting the face image and the laptop
screen position data. Figure 4 shows an overview of the experimental settings and
the data collection workflow. We will explain the background information about the
participants in Section 3.1 and the data collection procedure in Section 3.2.

3.1 Participants

Our experiment collected data from 17 participants (12 males and 5 females). Along
with the gaze points, we recorded background information about them, such as their
country of origin and whether they had to wear glasses during the experiment. Out
of the 17 participants, nine were from Japan, five were from India, and the rest were
from Hungary, Chile, and Morocco. Before the experiment, we obtained participants’
general data protection regulation (GDPR) consent. The participants were allowed to
opt out of the experiment at any time.

3.2 Data Collection Procedure

In this study, we conducted an experiment using a single laptop computer. The ex-
periment was conducted in the same room in a controlled manner. Figure 4 shows the
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(a) Experiment condition. The participant sits in front of the laptop screen.

(b) Experiment work-flow. A participant looks at the circle on the screen and clicks with the mouse cursor.

Figure 4: Data collection experimental setting and the workflow.

data collection experimental setting. The data collection was done in the following
procedure.

1. The participants were positioned at an approximate distance of 30 cm
from the webcam.

2. The Experiment conductor explains to the participant about the process
and the purpose of data collection.

3. Fill out the agreement on the consent form.

4. Sit in front of the laptop and direct their attention towards the circle on
the screen.

5. Click on the circle using the mouse cursor.

6. Clicking the mouse triggers the camera to capture an image as well as
recorded the pixel coordinates corresponding to the click location.

7. The circle will randomly move to another position on the screen.

8. Repeat Steps 4-6 and when 50 images are saved, the process will end.



7

Figure 5: Experiment dimensions.

The data we collect are the pixel coordinates of the laptop screen and facial im-
ages associated with each clicked circle. In total, 50 sets of pixel coordinates and
face images are stored for 17 participants, which is 850 sets of pixel coordinates, and
face images are collected. Figure 5 shows the dimensions of an experiment laptop.
The screen resolution was 1080px×1920px with a width of 19.4cm×34.5cm.

The experiment was conducted in an approximately 15-minute session in a con-
trolled environment within a closed empty room. This approach ensured consistent
lighting conditions and helped minimize any potential background noise so as not to
interfere with the gaze data. The laptop was placed in a stable position.

4 Methodoogy
To estimate the gaze points, we used two different methods. The first method uses
one feature extractor, and the second uses four different feature extractors.

4.1 Data Preparation

Data preprocessing is a crucial stage. The use of preprocessing techniques improves
the quality and suitability of the image data, making it more suitable for subsequent
analysis or processing tasks, such as object detection, image classification, or image
segmentation. In addition, directly using the raw gaze images for gaze regression in-
creases computational resources and introduces confounding factors such as scene
changes. We cropped some essential parts of the images, such as the face and the
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Original Image

Right eye Left eye

Face

Figure 6: Image extraction of the right eye and left eye and face.

left and right eyes, from the original images collected during the experiment for each
participant, as shown in Figure 6. The images were normalized because normaliz-
ing pixel values to a standard range helps to achieve consistency and comparability
across different images. In the single feature extractor method, all images (original
images taken during the experiment, faces and left and right eyes) are combined into
one image. In contrast, the four feature extractors method uses a single image as
input.

4.2 Deep Learning Model

Three different backbones were used to compute the gaze points: VGG16, ResNet50,
EfficientNetB2, and EfficientNetB7. Different combinations with the backbones
were used in terms of image resolution (64× 64, 128× 128, 256× 256), batch size
(8, 16, 32), number of trainable layers in the backbone (all, last layer, last two lay-
ers, none), and backbones with the same weights as imagenet or without the same
weights as imagenet (i.e. training from scratch) We incorporated a learning rate of
5e-5 alongside the ReduceLROnPlateau callback. This callback plays a vital role by
automatically adjusting the learning rate during training and continuously monitoring
a specified metric like validation loss. If the monitored metric shows no further im-
provement, the callback reduces the learning rate accordingly. Additionally, we uti-
lized the“Adam” optimizer for our model optimization. The process we undertook
can be regarded as an experiment, where we explored various combinations to de-
termine the most effective approach for gaze estimation. Our aim was to thoroughly
investigate and compare different combinations of models, considering factors such
as top-1 accuracy, top-5 accuracy, the number of parameters, and model depth [23].
By conducting this comprehensive analysis, we sought to identify the combination
that would yield the best results for gaze estimation.

The method using a single feature extractor takes a single input constructed by
combining the original image, the face, and the left and right eyes. Then this input
is fed into a backbone (VGG16, ResNet50, EfficientNetB7). In our selection pro-
cess, we carefully considered the performance metrics of top-1 accuracy and top-5
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Figure 7: Architecture of the method which uses one feature extractor.

Figure 8: Architecture of the method which uses four feature extractors.

accuracy when choosing the VGG16, ResNet50, EfficientNetB7, and EfficientNetB2
models. We aimed to assess whether models with a higher or lower number of pa-
rameters yielded better results. Additionally, we took into account the depth of the
models to ensure a comprehensive evaluation of their capabilities. Then the feature
maps are passed to the fully connected layer, and finally, the network outputs the
gaze pixel coordinates as shown in Figure 7.

pixel coordinates ∈ R2

In contrast, the method using the four feature extractors takes four different im-
ages as input: the original image, the face, and the left and right eyes. Then, these four
images are fed to four different backbones, and the feature maps from each backbone
are passed through a concatenation layer, where the feature maps are concatenated.
Then the concatenated feature maps are passed to the fully connected layer, and fi-
nally, the network outputs the gaze pixel coordinates as shown in Figure 8.

pixel coordinates ∈ R2
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Table 1.1: The best results using one feature extractor method.

Model
Image

Resolution
Batch
Size

Trainable
layer of

Backbone
RMSE (px) RMSE

(cm)

EfficientNetB7 64×64 32 All 271.490 4.848

EfficientNetB7 64×64 32 Last 262.567 4.688

ResNet50 64×64 8 All 152.236 2.718

VGG16 64×64 32 All 147.168 2.628

ResNet50 64×64 16 All 146.577 2.617

VGG16 64×64 16 All 139.425 2.489

Table 1.2: Comparison of best results using four feature extraction method.

Model Resolution Batch
Size

Trainable
layer of

Backbone
RMSE (px) RMSE (cm)

EfficientNetB2 64×64 32 All 213.906 3.819

ResNet50 64×64 32 All 141.319 2.523

VGG16 64×64 32 Last two 134.419 2.400

4.3 Model Accuracy Comparison

We were interested in determining the individual contribution of each participant
to the overall result. To assess the impact of each participant, we used a technique
known as leave-one-participant-out cross-validation. In this method, one participant
is excluded from the training set and used as the test set, while the remaining partic-
ipants are included in the training set.

We used the root mean square error matrix to evaluate the error difference be-
tween the ground truth gaze points and the predicted gaze points. Note that we
used pixel coordinates and computed the error difference in centimeters. In order
to convert the pixel error difference to the centimeter error difference, we made some
simple calculations. The following calculations refer to PPC: Pixels Per Centime-
ter, SWR: Screen Width Resolution, SWL: Screen Width Length, and RMSE: Root
Mean Square Deviation, respectively. SWR and SWL are our experimental screen-
dependent variables, as explained previously in Figure 5.

PPC = SWR/SWL = 1920(px)÷34.5(cm) = 55.65 ≈ 56(px/cm)

RMSE(cm) = RMSE(px)÷PPC = RMSE(px)÷56(px/cm)
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Table 1.3: The result of Leave-One-Participant-Out cross-validation.

User ID Gender Glasses RMSE (px) RMSE (cm)

P1 Male Yes 150.066 2.679

P2 Male No 150.339 2.684

P3 Male No 149.632 2.672

P4 Male No 148.674 2.654

P5 Male No 148.029 2.643

P6 Female No 145.878 2.604

P7 Female No 149.390 2.667

P8 Female Yes 141.857 2.533

P9 Male No 266.543 4.759

P10 Male No 259.303 4.630

P11 Male Yes 257.719 4.602

P12 Male No 251.260 4.486

P13 Female No 249.370 4.453

P14 Male Yes 230.259 4.111

P15 Male No 190.853 3.408

P16 Female Yes 165.613 2.957

P17 Male No 159.160 2.842

Mean 189.056 3.375

Standard Deviation 49.911 0.891

5 Result
In this Section, we explain the result of comparing each deep learning model and
leave-one-participant-out cross-validation.

Table 1.1 shows the result using one feature extractor from the different combi-
nations of settings, and it presents the best two results from each of the backbone or
feature extractors. We found that VGG16 with image resolution 64× 64, batch size
16, and all trainable layers with the same weight as imagenet produces the best result
with an error difference of 2.489 cm.
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Table 1.2 shows the result for each backbone with the best setting using the four-
feature extractors method. It can be seen that the VGG16 with the image resolution
64×64, batch size 32, and only the last two trainable slices with the same weight as
the imagenet setting again outperformed the others and gave the best result with an
error difference of 2.400 cm.

Table 1.3 summarizes the result of the cross-validation where one participant
is evaluated based on the remaining participants. In this method, we have used the
same setting as the best method with four feature extractors, i.e. VGG16 backbone
with image resolution 64× 64, batch size 32, and only the last two trainable layers
with the same weight as the imagenet. The lowest error difference is 2.533 cm and
the highest error difference is 4.759 cm among the participants.

Regarding to these results, we found that VGG16 performs well for appearance-
based gaze estimation. Using VGG16 to perform leave-one-participant-out cross-
validation, we got a mean error of 3.375±0.891 cm.

6 Discussion and Future Work
In this Section, we will discuss the results shown in Section 5. Regarding the exper-
iment, the performance of multi-feature extractors was observed to surpass that of
methods employing single-feature extractors. Each feature extractor is designed to
capture specific information from the input data. We can leverage the diverse infor-
mation they offer by combining multiple feature extractors. Each extractor can focus
on distinct aspects or patterns in the data, resulting in a more comprehensive repre-
sentation. By extracting features from multiple extractors and merging the outputs
using fusion techniques such as averaging, concatenation, or advanced methods like
attention mechanisms, the overall performance can be enhanced, leading to a more
robust representation. Contrary to the initial assumption, the results indicated no sig-
nificant difference in error rates between individuals who wore glasses and those
who did not. This finding is intriguing as it demonstrates the broad applicability of
our model across various users, including individuals who wear glasses. Individual
differences among participants, such as eye shape, size, and movement patterns, can
affect the accuracy of gaze estimation. Additionally, factors like fatigue, or blinking
frequency can introduce variability in the estimation results. By delving into these
aspects in future research, we can gain a deeper understanding of the factors influ-
encing error differences in participants’ gaze estimations using web cameras. This
knowledge can contribute to the development of more accurate and robust gaze esti-
mation methods in various applications.

For future work, there are several aspects we aim to address. Firstly, we intend
to enhance the model’s robustness by collecting additional data from diverse back-
grounds, including variations in room lighting and zoomed-in and zoomed-out im-
ages. Secondly, evaluating the VGG16 model on publicly available datasets. In order
to achieve a robust model for appearance-based eye tracking, it is significant for the
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next task. Thirdly, expanding the participant pool and gathering data from more indi-
viduals is another task we plan to undertake. Fourthly, instead of random appearances
of circles on the screen, we can modify the experiment by controlling the number of
circles in each quadrant to ensure data balance and mitigate potential issues. Lastly,
an important aspect of our future endeavors involves designing publicly available
gaze prediction software.

Additionally, in the future, there is potential to explore enhancements in the com-
putational and memory costs associated with the method that employs four feature
extractors. Furthermore, the estimation of gaze can be done using transformers in
the future. By leveraging transformers-based models, we can potentially improve the
accuracy and performance of gaze estimation in our system.

7 Conclusion
This research presents an approach to collect data for modeling webcam gaze es-
timation based on appearance. A total of 17 participants were involved, and we
collected 50 patterns of face images along with corresponding pixel coordinate in-
formation. The findings reveal that utilizing a VGG16 backbone with four-feature
extractors yields the most accurate results for gaze estimation. Through leave-one-
participant-out cross-validation analysis, we observed that the participants’ root
mean square deviation ranged from 2.533 cm to 4.759 cm, with an average error
value of 3.375±0.891cm. Our future work will expand our data collection efforts to
encompass diverse datasets. This expansion aims to enhance the robustness of our
model for gaze estimation.
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