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Abstract

Semi-supervised 3D object detection can benefit from the
promising pseudo-labeling technique when labeled data is
limited. However, recent approaches have overlooked the
impact of noisy pseudo-labels during training, despite ef-
forts to enhance pseudo-label quality through confidence-
based filtering. In this paper, we examine the impact of
noisy pseudo-labels on IoU-based target assignment and
propose the Reliable Student framework, which incorpo-
rates two complementary approaches to mitigate errors.
First, it involves a class-aware target assignment strategy
that reduces false negative assignments in difficult classes.
Second, it includes a reliability weighting strategy that sup-
presses false positive assignment errors while also address-
ing remaining false negatives from the first step. The relia-
bility weights are determined by querying the teacher net-
work for confidence scores of the student-generated pro-
posals. Our work surpasses the previous state-of-the-art
on KITTI 3D object detection benchmark on point clouds
in the semi-supervised setting. On 1% labeled data, our
approach achieves a 6.2% AP improvement for the pedes-
trian class, despite having only 37 labeled samples avail-
able. The improvements become significant for the 2% set-
ting, achieving 6.0% AP and 5.7% AP improvements for the
pedestrian and cyclist classes, respectively. Our code will
be released at https://github.com/fnozarian/
ReliableStudent

1. Introduction
Significant progress has been made in image classifica-

tion [4] and object detection [2, 8, 13, 15–17, 27, 33] with
recent developments in deep learning. The availability of
large datasets [4, 11, 14, 20] has helped to accelerate these
advancements. However, annotating massive datasets re-
mains a bottleneck, particularly for 2D and 3D object de-
tection. Semi-supervised approaches (SSA) have been pro-
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Figure 1. Illustrates the need for class-aware foreground thresh-
olds for foreground/background target assignment. The IoUFG

on the x-axis shows the IoU of proposals with respect to pseudo-
labels that are foreground relative to ground truths. (a) The de-
fault class-agnostic threshold in the PV-RCNN baseline. (b) Our
class-aware thresholds. Lowering the threshold and including
more foreground proposals can benefit challenging and uncom-
mon classes. It also significantly reduces false negatives with IoUs
close to zero. (Best viewed in color)

posed to address this problem. Unlike supervised methods,
these approaches require only a limited amount of annotated
data for training, with the remaining data being unlabeled.

Several semi-supervised techniques have been proposed
for object detection, including [5, 9, 12, 21, 22, 28]. Self-
training using pseudo-labeling is the most commonly used
method and has shown effectiveness in both object detec-
tion [9, 12, 19, 21] and classification [18, 29]. At its core,
a student-teacher framework is used to incrementally train
teacher and student models on unlabeled data in a mutually
beneficial manner. The teacher model is initially trained
in a supervised manner on limited labeled data to generate
pseudo-labels (PL) to train the student model on unlabeled
data. Mean-teacher-based techniques [21, 22] use an ex-
ponential moving average (EMA) of the student model’s
weights to update the teacher model’s weights, leading to
more stable predictions on the unlabeled data.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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Due to its limited pre-training on labeled data, the
teacher model fails to generalize effectively, resulting in
noisy pseudo-labels that hinder the learning of the student
model. Existing methods overcome this problem by fil-
tering out low-quality pseudo-labels with confidence-based
thresholds, acting as a global quality-based filtering mech-
anism. However, even with strict filtering, pseudo-labels
remain noisy, as shown in Fig. 1 (a). They have erroneous
Intersection over Union (IoU) with proposals that are fore-
ground relative to ground truths. This poses a significant
problem for downstream tasks such as target assignment in
Region Proposal Network (RPN) and Region-based Convo-
lutional Neural Network (RCNN) modules, which rely on
these noisy IoUs.

The standard target assignment inevitably misclassifies
the proposals with IoUs close to zero, i.e., the bar close to
the y-axis in Fig. 1 (a), as background, leading to perfor-
mance degradation.

Fig. 1 also shows distinct class-specific distributions of
IoUs due to the different levels of difficulty and the un-
balanced distribution of classes in the dataset. Neglecting
the difference in distributions poses a challenge for class-
agnostic target assignment methods in detectors such as
PV-RCNN. A high-value class-agnostic threshold will ex-
acerbate false-negative (FN) errors for difficult classes, such
as pedestrians and cyclists, with lower distribution modes,
while lowering the threshold will cause many false positives
(FP) for the car class, which is easier to learn.

We address these challenges from two perspectives: 1)
reducing false-negative and false-positive errors using a
new and simple class-aware target assignment approach,
and 2) increasing robustness in training against potential
failure of our initial assignment by weighting the classifi-
cation loss to suppress misclassified proposals. These two
steps are complementary, with the first step aiming to min-
imize assignment errors by considering the difference be-
tween the distribution modes of different classes, while the
second step mitigates residual errors from the first step.

To this end, we first modify the target assignment process
in two key areas where IoU scores are used. We replace the
standard foreground/background random subsampling with
a top-k IoU-based subsampler to promote learning from
uncertain or difficult background proposals. We also pro-
pose local class-aware foreground thresholds for target as-
signment. As shown in Fig. 1 (b), the new thresholds in-
clude more foreground proposals of difficult classes (lead-
ing to higher recall) while preserving a high value for the
dominant car class to ensure learning from high-precision
proposals. The foreground and background thresholds di-
vide proposals into three categories: foreground (FG), back-
ground (BG), and uncertain (UC). We assign hard labels to
FG and BG proposals and use soft labels for those in the
UC category to consider their uncertainty.

Second, to address false negative/positive target assign-
ment errors, we propose to use the teacher to provide reli-
ability scores for the student-generated proposals. To this
end, the teacher’s RCNN head refines the student’s pro-
posals and assigns confidence scores to them, which we
use to weight the RCNN classification loss on unlabeled
data using different FG/UC/BG weighting options. Our re-
sults show that weighting uncertain and background pro-
posals effectively suppresses false positives and false nega-
tives, respectively, and outperforms other proposed weight-
ing schemes.

In summary, our key contributions are as follows:

• We thoroughly investigate the impact of noisy pseudo-
labels on the IoU-based target assignment.

• We propose a class-aware target assignment method to
address the target misclassification problem present in
recent pseudo-labeling approaches.

• We propose different reliability weighting options to
suppress false negatives and positives using teacher
confidence scores.

• We conduct extensive experiments and ablation stud-
ies to evaluate the effectiveness of our approach on
the KITTI 3D object detection benchmark in a semi-
supervised setting.

2. Related Work
2.1. 3D Object Detection

Research on 3D object detection from point clouds fo-
cused on a bird’s eye view of the lidar point cloud [3, 7].
However, VoxelNet [33] employed a different approach by
dividing the point cloud into 3D voxels and encoding each
voxel using a feature encoding layer. Although 3D con-
volution layers were applied to further aggregate features,
this method was considered time-consuming due to the 3D
convolutions involved. To address this, SECOND [27] pro-
posed a spatially sparse convolutional network to improve
the speed of previous methods. PointPillars [8] then sug-
gested using vertical columns instead of voxels and a 2D
convolutional network to encode features. This approach
was found to be faster and more robust than previous meth-
ods. Another approach by PointNet and PointNet++ [15,16]
was to work directly on encoding points instead of voxels,
resulting in more efficient and flexible approaches. In this
study, we use PV-RCNN [17], a robust two-stage detector
that combines the VoxelNet and PointNet approaches and
achieves high performance.

2.2. Semi-Supervised Object Detection

There have been many studies in the field of semi-
supervised 2D object detection. PseCo [9] combines both
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Figure 2. Overview of our Reliable Student framework. It uses a teacher-student network, where the EMA teacher produces high-quality
pseudo-label boxes bi. We compute the IoU ui between bi and the student’s post-NMS proposals ri, followed by a top-k sampling of ri
based on ui. The sampled proposals ri are injected into the student and teacher RCNN heads to predict the objectness scores s̃i and ŝi,
respectively. While s̃i serves as an input to the RCNN classification loss Lcls

u , ŝi are converted into reliability weights wi for Lcls
u . The

class-aware target assignment module uses thresholds for different classes on ui to assign objectness targets ti for Lcls
u .

pseudo-labeling and consistency approaches. It uses not
only label-level consistency but also feature-level consis-
tency, which further improves the performance of the fi-
nal detector. This approach also uses focal loss similar
to [12] to alleviate the class imbalance in pseudo-labeling.
[10] considers the localization task as a classification task
and proposes a certainty-aware pseudo-label approach. By
quantifying the quality score of classification and regres-
sion, they adjust the threshold used for generating pseudo-
labels. Instant-Teaching [32] proposes to generate pseudo
annotation for unlabeled data using a weak augmentation
in mini-batch, then using these predicted annotations as
ground truth of the same image with strong augmentation.
For strong augmentation, the authors use Mixup [30].

Recent works have also focused on class imbalance and
confirmation bias issues. LabelMatch [1] leverages the
labeled data distribution for adaptive thresholding to fil-
ter out unbiased pseudo-labels and recalibrates the high-
quality unreliable pseudo-labels into reliable ones. Unbi-
ased Teacher [12] attempts to address the class-imbalance
problem in pseudo-labeling by incorporating a focal loss
that forces the model to focus on challenging samples
from the underrepresented classes. Humble Teacher [21]
achieves comparable results by using soft labels instead of
hard labels with a teacher ensemble network to improve the
reliability of the pseudo-labels.

Soft Teacher [26] deals with the misclassification of fore-
ground proposals by suppressing the classification loss us-
ing the teacher’s confidence scores. Our approach follows
this but additionally considers the reliability of foreground
targets with a foreground reliability weight. Our work also
differs from Soft Teacher in that we use a third category of
targets in the RCNN, called the Uncertain (UC) region, and
assign soft labels to them. These targets may correspond

to real foreground or background boxes. Thus, it is crucial
to assign appropriate weights to this region to optimize the
precision-recall trade-off. Combating Noise [25] assumes
that background proposals are accurate, and it suppresses
the noisy foreground proposals losses. In contrast, we show
that dealing with both misclassified foreground and back-
ground proposals is important.

There are few works on semi-supervised point-based 3D
object detection, such as SESS [31] and 3DIoUMatch [24].
SESS uses asymmetric data augmentation techniques and
enforces consistency between teacher and student predic-
tions through different losses. 3DIoUMatch [24] proposes
a pseudo-labeling approach for both indoor and outdoor 3D
object detection. Inspired by FixMatch [18], they introduce
a joint confidence-based pseudo-label filtering mechanism
using predicted objectness and class probabilities. Addi-
tionally, they estimate IoU and use it as a localization qual-
ity to filter pseudo-labels. Unlike 3DIoUMatch, we employ
only an objectness threshold, eliminating the complexity of
using multiple thresholds. Moreover, unlike 3DIoUMatch,
we adopt objectness supervision on unlabeled data. Our
findings indicate that this strategy enhances performance.

3. Method

3.1. Overview

An overview of our approach is depicted in Fig. 2. Our
approach is based on the mean-teacher framework, where
the teacher creates PLs for unlabeled input to serve as a
supervised signal for the student. The student is provided
with the strongly augmented version of the unlabeled input
as well as the labeled input, and its parameters are updated
through backpropagation. The teacher’s parameters, on the
other hand, are gradually updated from the student’s param-
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eters using the exponential moving average strategy. To en-
sure the quality of the generated PLs, we filter them based
on their confidence scores. We introduce the Class-aware
Target Assignment module (Sec. 3.2) with class-aware fore-
ground thresholds on IoU of proposals with PLs to improve
recall, particularly for challenging classes. This is based on
the understanding that the learning status of classes depends
on their difficulty level and the availability of their instances
in the dataset. Given these foreground thresholds and the
default background threshold, we define hard classification
targets for the foreground and background proposals, while
uncertain proposals whose IoUs lay between the FG and BG
thresholds are assigned soft targets.

Due to the noisy IoU signal used for target assignment,
some proposals may be mistakenly assigned to incorrect tar-
gets, leading to FPs and FNs. To mitigate this, we introduce
the reliability-based weight assignment module (Sec. 3.3),
which assigns reliability weights to the proposals of each
category based on the dominant error type in that category,
making the training more robust. To obtain the reliability
weights, we use the teacher model to refine the student’s
proposals using its RCNN module and use its confidence
score ŝi as additional supervision to improve the student’s
performance. Given the student’s RCNN refinement box
and score {b̃i, s̃i} and their corresponding targets, we use
the teacher score ŝi to weight the loss of classification on
unlabeled data.

3.2. Class-aware Target Assignment

We investigate the problem of learning from noisy PLs,
mainly used to supervise RPN and RCNN modules in the
detector. We focus on the RCNN module and its classifi-
cation target assignment, where the proposals are assigned
with foreground/background labels.

Denote P = {bn, cn, sn}
Npl

n=1 as the set of filtered PLs
consisting of bounding box bn, category label cn, and the
confidence score sn. We define {ri} as the final proposals
or Regions of Interest (RoIs) generated by the student af-
ter the IoU-guided filtering and deduplication of RPN pro-
posals using Non-Maximum Suppression (NMS). Existing
pseudo-labeling approaches use the IoU between these RoIs
and PLs to assign category labels and FG/BG targets to pro-
posals of unlabeled data in the RPN and RCNN modules of
PV-RCNN, respectively. In RCNN, for a given proposal, if
its maximum IoU with PLs, i.e., ui = maxp∈P IoU(ri, p),
exceeds a predefined class agnostic foreground threshold
τ fg , it is considered as a foreground proposal. We define
these IoU thresholds used in these two modules as local
thresholds (τ fgc ), as opposed to the global thresholds (δfgc ),
used to filter out low-quality PLs.

We analyze the suboptimal classification target assign-
ment from PLs with the optimal assignment from GTs. In
Fig. 1, we evaluate the mean IoU of proposals that are

foreground with respect to GTs, i.e., their IoUs with GTs
are greater than the evaluation mode class-wise foreground
threshold ∆fg

c . We observe two crucial issues when using
the standard target assignment.

First, the classes exhibit distinct mean IoU distribu-
tions. Therefore, the standard target assignment strategy
based on a single class-agnostic foreground threshold, e.g.,
τ fg = 0 .75 , cannot reliably classify the proposals. For the
pedestrian and cyclist classes, which have lower distribution
modes than the car, such a class-agnostic threshold results
in many misclassified foreground proposals whose IoU can-
not exceed the threshold by a small margin. To address this
issue, we propose local class-aware foreground thresholds
τ fgc , instead of a class agnostic τ fg on ui IoUs, to construct
the FG/BG target ti for the proposal ri as follows:

ti =


1, ui > τ fgc
ui−τbg

τ fg
c −τbg

, τbg ≤ ui ≤ τ fgc

0, ui < τbg
. (1)

Background proposals have consistently low IoUs, en-
abling a single class-agnostic threshold τbg to distinguish
them from other proposals.

Second, the IoUs used for target assignment are unre-
liable. This is particularly the case for the pedestrian and
cyclist classes, which are difficult to learn due to their ob-
ject size and the imbalanced class distribution of the dataset.
Given the presence of noisy IoUs, despite the implementa-
tion of class-specific local thresholds, the assignment car-
ried out in Eq. (1) will inevitably result in the occurrence of
false negative (FN) and false positive (FP) errors.

To examine how proposals in the FG, UC, and BG cate-
gories are affected by the FP and FN errors, we illustrate the
density plots in Fig. 3, showing the distribution of RoI IoUs
relative to both PLs and GTs. The FP proposals are referred
to as foreground with respect to PL, but background with
respect to GT, whereas those that are the opposite are re-
ferred to as FN proposals. As shown, each local class-aware
threshold divides the plot into three columns showing FG,
UC, and BG sections from right to left.

Ideally, we expect well-calibrated IoU scores such that
the IoU of RoIs with respect to PLs are as close as pos-
sible to their corresponding IoUs with respect to GTs. In
practice, however, there exist two sub-densities close to the
axes contributing to the error. More specifically, in the fore-
ground region, we observe the density of FP proposals in
section (d), near the x-axis, for all classes. However, for the
pedestrian class, we have significantly higher density com-
pared to the other classes. In the background region, FN
proposals are present in (a) near the y-axis. The definitions
of FP and FN have been extended to the uncertain region,
i.e., sections (b) and (e), where FN and FP proposals are lo-
cated in section (b) and at the bottom of section (e), close to
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Figure 3. Illustrates the density of IoU values of proposals with their matched PL (ui) and GT (vi) on the x-axis and y-axis, respectively.
Denser regions are shown with darker shades. The red and orange vertical lines denote the local foreground (FG) (τ fg

c ) and background
(BG) (τbg) thresholds, while the black horizontal line represents the FG threshold (∆c) for the evaluation mode, dividing the plot into six
subregions. Subregions (a) and (f) represent false negative and true negative proposals, respectively. (b) and (e) depict proposals lying in
the uncertain region and are assigned with soft targets, while (c) and (d) depict true positive and false positive proposals, respectively. The
proposals are obtained from the last few training iterations. We also omit proposals that are in the background with respect to both GT and
PL for better visualization. All three plots follow the same subregion breakdown. (Best viewed in color)

the x-axis, respectively.

3.3. Reliability-based Weight Assignment

To address these FP and FN erroneous proposals, we fo-
cus on making the training robust against a given set of un-
certain PLs. We propose weighting the classification loss
of such proposals based on the reliability of their target as-
signment, i.e., the IoU between RoI and PL. We seek a reli-
ability score that can consistently assign a low value to both
FN and FP proposals. In this work, we evaluate the relia-
bility score proposed by Soft Teacher. However, any other
reliability score can also be plugged into our framework.

We estimate the reliability of the student’s proposals
based on their corresponding teacher’s refined confidence
scores. We use these scores to suppress the loss due to FP
and FN targets. To this end, we first reverse the augmenta-
tion h on the student proposals before sending them to the
teacher. The teacher refines each student’s proposal ri using
its RoI pooling module and predicts ŷi = {b̂i, ŝi}, where b̂i
and ŝi denote the corresponding refined bounding box and
its confidence score, respectively. The confidence score ŝi,
represents the foreground probability of the refined bound-
ing box proposal, which acts as the reliability score for ri.
We propose different reliability weighting schemes based
on the teacher’s confidence score ŝi, for the RCNN classifi-
cation loss of unlabeled samples.

Based on our error breakdown in the previous section,
we introduce reliability-based weighting options as follows:

• Background proposals (BG): suppress the FN pro-
posals in subregion (f) of Fig. 3 by incorporating the
teacher’s background score as a weight (wi = 1 − ŝi)
for classification loss in subregions (a) and (f).

• Uncertain FN proposals (UCFN): suppress the FN
proposals in subregions (b) of Fig. 3 by incorporating

the teacher’s background score as a weight (wi = 1−
ŝi) for classification loss for subregions (b) and (e).

• Uncertain FP proposals (UCFP): suppress the FP
proposals in subregion (e) of Fig. 3 by incorporating
the teacher’s foreground score as a weight (wi = ŝi)
for classification loss for subregions (b) and (e).

• Foreground proposals (FG): suppress the FP pro-
posals in subregion (d) of Fig. 3 by incorporating the
teacher’s foreground score as a weight (wi = ŝi) for
classification loss for subregions (c) and (d).

In all the weighting options, proposals belonging to the
remaining categories are assigned with the reliability weight
wi = 1. Later in Sec. 4.3.1, we evaluate the application
of different weighting options individually and in combina-
tion and achieve the best performance from UCFP +BG
by suppressing FPs from uncertain proposals and FNs from
background proposals.

We further leverage these reliability-based weights to let
the student model learn more about challenging and uncer-
tain proposals instead of the easy backgrounds. The student
model’s target assignment in RCNN involves computing the
IoU between post-NMS proposals and pseudo-labels. Prior
works perform sampling on these IoUs such that, at most,
50% of the foreground proposals are randomly sampled be-
fore being passed on for refinement. The remaining back-
ground proposals are further randomly subsampled, ensur-
ing that 20% of them have low IoU (e.g., < 0.1), that are
easily classified as background. Our approach differs in that
it avoids subsampling of such easy backgrounds on unla-
beled data and instead uses a top-k sampling strategy on the
IoU. This allows the model to learn more about the chal-
lenging backgrounds.
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Methods
1% 2%

Car Pedestrian Cyclist Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PV-RCNN† [17] 87.7 73.5 67.7 32.4 28.7 26.2 48.1 28.4 27.1 \ 76.6 \ \ 40.8 \ \ 45.5 \
3DIoUMatch† [24] 89.0 76.0 70.8 37.0 31.7 29.1 60.4 36.4 34.3 \ 78.7 \ \ 48.2 \ \ 56.2 \
PV-RCNN 87.6 74.1 67.9 36.5 31.7 28.9 49.9 28.8 27.3 88.9 76.8 71.9 45.1 40.4 35.6 63.0 42.3 38.9
3DIoUMatch (Baseline) 89.2 76.4 71.3 41.8 35.7 32.9 59.9 36.0 33.8 90.7 78.9 74.3 52.9 47.0 41.8 74.2 53.3 49.6
3DIoUMatch + ULB RCNN CLS 89.8 76.6 72.0 41.9 36.0 33.1 59.0 35.6 33.3 91.1 79.3 75.3 54.6 48.6 42.8 75.9 54.4 50.7
Reliable Student 89.7 77.0 72.5 48.0 41.9 38.4 59.1 36.4 34.2 90.9 79.5 75.0 59.3 53.0 46.9 83.1 59.0 55.1

% Improvement over Baseline +0.5 +0.6 +1.2 +6.2 +6.2 +5.5 -0.8 +0.4 +0.4 +0.2 +0.6 +0.7 +6.4 +6.0 +5.1 +8.9 +5.7 +5.5

Table 1. Results on the KITTI evaluation set based on mAP over 40 recall positions. PV-RCNN† is the supervised-only baseline, and
3DIoUMatch† is the original work (both based on OpenPCDet v0.3). 3DIoUMatch (Baseline) is our adaptation of the original work to
OpenPCDet v0.5, and 3DIoUMatch + ULB RCNN CLS is our modified version of the baseline with objectness supervision from unlabeled
data. (†) denotes borrowed results from [24], (\) indicates non-available results, and Bold indicates the best results from OpenPCDet v0.5.

Let {b̃i, s̃i} denote the student’s refinement of the pro-
posal ri. The RCNN classification loss on unlabeled data is
summarized as follows:

Lcls
u =

∑Nb

i wilcls(s̃i, ti)∑
i wi

, (2)

where Nb are the total number of proposals for a single un-
labeled sample.

Given Nl labeled samples, we define Dl =
{(xl

i, y
l
i)}

Nl
i=1, where yli contains the class labels and

bounding box coordinates information, and use Nu un-
labeled samples for Du = {xu

i }
Nu
i=1. The unsupervised

RCNN loss Lu consists of the classification loss Lcls
u from

Eq. (2), and box regression loss Lreg
u , which is defined as:

LRCNN
u =

1

Nu

Nu∑
i=1

(Lcls
u (s̃ui , t

u
i ) + Lreg

u (b̃ui , b
u
i )), (3)

where tui is the target for classification loss from Eq. (1),
and bui is the bounding box of the assigned pseudo box
based on ui, acting as the regression loss target. We fol-
low 3DIoUMatch for the RCNN box regression loss Lreg

u ,
as well as for the RPN classification and regression losses,
to formulate the unsupervised loss Lu. The supervised loss
Ls is calculated similarly on labeled data using ground truth
yli. The overall loss of the student model is defined as

L = Ls + λuLu, (4)

where λu is a coefficient balancing the unsupervised loss.
The teacher weights are updated as the exponential moving
average of the student model.

4. Experiments
4.1. Experimental Setup

We evaluate our method on KITTI [6] dataset, consisting
of 7,481 training samples and 7,518 test samples. The train-
ing samples are divided into the train set (3,712 samples) for

training the model and the validation set (3,769 samples)
for evaluation. We use 1% and 2% labeled data splits with
three folds each, provided by 3DIoUMatch [24]. For each
fold, we carry out three trials with different random seed
values and report the mean Average Precision (mAP) over
all fold-trial combinations. The mAP is computed using a
rotated IoU threshold of 0.7, 0.5, and 0.5 for the car, pedes-
trian, and cyclist classes, respectively, at 40 recall positions.
Experiments are conducted over all three object difficulty
levels - Easy, Moderate, and Hard.

Implementation Details

For a fair comparison with [24], we utilize PV-RCNN [17]
as the object detection backbone. We used the Open-
PCDet v0.5 framework [23] to implement our method and
adapted the original 3DIoUMatch from OpenPCDet v0.3
to v0.5 for a fair comparison. The data augmentation on
the student model is based on the 3DIoUMatch settings.
Unlike 3DIoUMatch, which uses both RPN classification
and RCNN objectness scores to filter pseudo labels, our
approach uses only the RCNN objectness threshold, i.e.,
τplcar = 0.95 for car, and τplped = τplcycl = 0.85 for pedes-
trian and cyclist. Unlike 3DIoUMatch, both the RPN and
RCNN modules are supervised using labeled and unlabeled
data through classification and regression losses, with the
unlabeled loss weight λu = 1. On small amounts of data
(1% and 2%), we pre-train PV-RCNN over 80 epochs with
10 repeated traversals in each epoch and use 60 epochs with
5 repeated traversals in each epoch for the training stage,
similar to [24]. We use a batch size of 8, consisting of 8
labeled and 8 unlabeled samples in both stages. For the
evaluation stage, we use the student model.

4.2. Main Results

Tab. 1 shows the results of our approach, the orig-
inal state-of-the-art 3DIoUMatch method referred to as
3DIoUMatch†, and our adapted version of 3DIoUMatch,
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Figure 4. Illustrates the assigned reliability weights for RCNN classification loss based on the IoU of the proposals with PLs (ui) on the
x-axis and GT (vi) on the y-axis. The red and orange vertical lines depict the local class-aware foreground (FG) (τ fg

c ) and background
(BG) (τbg) thresholds, respectively, while the black horizontal line represents the FG threshold (∆c) for the evaluation mode. The color
bar on the right shows the intensity of the reliability weights. Plots are based on the last few training iterations for better visualization.

Methods 1% 2% mAP
%Car Ped. Cycl. Car Ped. Cycl.

Baseline 76.4 35.7 36.0 78.9 47.0 53.3 54.6

BG 76.8 40.5 36.7 79.1 53.2 57.2 57.3 (+2.7)
UCFN +BG 76.9 41.6 36.6 79.4 51.3 58.1 57.3 (+2.7)
UCFP +BG* 77.0 41.9 36.4 79.5 53.0 59.0 57.8 (+3.2)
FG+UCFN +BG 76.8 39.9 37.2 79.6 53.0 55.5 57.0 (+2.4)
FG+UCFP +BG 77.0 41.4 35.9 79.5 53.2 56.8 57.3 (+2.7)

Table 2. Ablation study on different reliability-based weighting options on 1% and 2% data splits for moderate difficulty level. For a
fair comparison, we show the mAP across all classes in the last column, where UCFP +BG performs the best. (*) indicates our chosen
weighting option, and Bold indicates the best results.

which is referred to as the baseline. The baseline performs
similarly to the original work, except for the cyclist class in
the 2% split, where there is a minor drop of less than 3%.
Note that the baseline does not use the RCNN classification
loss on unlabeled data, while our approach benefits from it.
Hence, for a more accurate comparison, we have also in-
cluded the results of our adapted baseline with RCNN clas-
sification loss on unlabeled data, which shows an improve-
ment over the naive baseline. We refer to our method as the
best option selected from the weighting schemes evaluated
in Tab. 2, i.e., UCFP +BG.

Our framework shows superior performance over both
3DIoUMatch and its improved version across all labeled
data splits, specially for pedestrian and cyclist classes.
While we are also successful in improving for the car class,
the margins are relatively small because of two reasons.
First, the car class suffers from a substantial number of FP
errors and in Section 4.3.1, we show that the effectiveness
of reliability weights in such a scenario is limited. Second,
the car class being dominant in terms of class distribution is
already learnt well in the pre-train stage itself, leaving small

room of improvements for the second stage.

4.3. Ablation Studies

4.3.1 Effects of reliability weights

Tab. 2 ablates the performance over different reliability-
based weighting options, improving the mAP over the base-
line by 2.7%-3.2%. The UCFN and UCFN+BG were eval-
uated to suppress FN errors, while others assess the effect
of suppressing both FN and FP errors. The last two op-
tions were assessed to determine efficient ways to weight
UC proposals to suppress FN or FP errors. While the relia-
bility weights help in all of these options, UCFP +BG has
the highest gain in mAP of 3.2% over the baseline. More-
over, the teacher’s foreground score was found to be more
efficient as a weight in the BG option than in the FG option.
We believe that FG+UCFN +BG has lower performance
due to the down-weighting of truly uncertain proposals. In
Fig. 5, we show the mean reliability weights of all fore-
ground proposals relative to the PLs with the weighting op-
tion of FG+UCFP +BG. As shown, the weights from
this option effectively suppress the loss due to FP and FN
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Figure 6. Shows the percentage of foreground proposals with re-
spect to GT used to train the FG/BG classification head, highlight-
ing the imbalanced FG/BG ratios across different classes.

proposals at the cost of suppressing the loss of some true
positives (TP). Moreover, the weights of FPs are relatively
higher (close to 1), especially for the car class, and less ef-
fective than those for the FNs. We conjecture that this is due
to the unbalanced number of FG/BG proposals in the RCNN
module. Fig. 6 illustrates this by showing the percentage of
FG proposals used to train the RCNN classification branch.
Note that the car class is highly skewed, with almost 95%
of the proposals as BGs. As a result, the network is biased
towards the BG class, and the teacher model cannot pro-
vide a reliable FG score for the FP proposals. Whereas, the
UCFP +BG option compensates this by avoiding the sup-
pression of the loss due to the TP proposals, instead mainly
suppressing the FPs and FNs, as shown in Fig. 4.

4.3.2 Effects of class-aware target assignment

Tab. 3 analyzes the effects of local class-aware foreground
thresholds over class-agnostic thresholds and their sensitiv-
ity to different values. We show that the class-aware thresh-
olds not only perform better than the default threshold by
a large margin, but also they are consistent in performance
across different values. We leverage our previous finding
that the pedestrian and cyclist classes require lower thresh-
olds than the car class by adjusting our baseline thresholds
by 10%.

4.3.3 Effects of top-k based sampler

Tab. 4 shows that using the balanced random sampler with
the class-aware target assignment and unreliability weight-
ing scheme improves the results over the baseline. How-
ever, our top-k sampler improves the baseline further by
0.2%-4.4% across different classes.

Methods Car Pedestrian Cyclist

Baseline 76.4 35.7 36.0

C-Ag 0.75 76.6 37.0 33.2

C-Aw
0.75, 0.55, 0.5 76.5 41.9 36.6
0.65, 0.45, 0.4* 77.0 41.9 36.4
0.55, 0.35, 0.3 76.9 41.1 36.5

Table 3. Ablation study of local class-aware (C-Aw) and class-
agnostic (C-Ag) foreground thresholds. C-Aw thresholds are
shown for the car, pedestrian, and cyclist (in the same order). We
used 1% labeled data for the moderate difficulty level. (*) indi-
cates our chosen thresholds, and Bold indicates the best results.

Methods Car Pedestrian Cyclist

Baseline 76.4 35.7 36.0

Default sampler 76.8 37.5 35.5
Top-k sampler 77.0 41.9 36.4

Table 4. Ablation study of default random sampler and our top-k
sampler. We use 1% labeled data for the moderate difficulty level.

5. Conclusion
Our research on semi-supervised 3D object detection

indicates that while generating high-quality pseudo-labels
via quality-based filtering is advantageous, the impact of
such noisy pseudo-labels on the IoU-based target assign-
ment module should be considered. We emphasize the sig-
nificance of distinct learning curves for different classes and
the need for class-specific target assignments, especially
with pseudo-labeling techniques. Moreover, we utilize the
teacher model to obtain a reliability score to suppress in-
accurate target assignment from noisy pseudo-labels and
maintain clear supervision from unlabeled data. Our re-
search offers an error analysis framework that can be used
with other reliability-based metrics to enhance the overall
reliability of the system. We plan to extend it to more au-
tonomous driving datasets and object detectors in the future.
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