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ABSTRACT
To aid smart wearable researchers in selecting optimal ground
truth methods for motion capture (MoCap) across all loose garment
types, we introduce a benchmark: DrapeMoCapBench (DMCB).
This benchmark is tailored to assess optical marker-based and
marker-less MoCap performance. While high-cost marker-based
systems are recognized as precise standards, they demand skin-
tight markers on bony areas for accuracy, which is problematic
with loose garments. Conversely, marker-less MoCap methods
driven by computer vision models have evolved, requiring only
smartphone cameras and being cost-effective. DMCB employs real-
world MoCap datasets, conducting 3D physics simulations with
diverse variables: six drape levels, three motion intensities, and
six body type-gender combinations. This benchmarks advanced
marker-based and marker-less MoCap techniques, identifying the
superior approach for distinct scenarios. When evaluating casual
loose garments, both methods exhibit notable performance degra-
dation (>10cm). However, for everyday activities involving basic
and swift motions, marker-less MoCap slightly surpasses marker-
based alternatives. This renders it an advantageous and economical
choice for wearable studies.

CCS CONCEPTS
• Computing methodologies→ Model verification and vali-
dation.
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1 INTRODUCTION
Wearable sensing systems have gained a growing interest towards
motion tracking, including IMU sensors [13, 16, 49], RFIDs [17],
capacitive fabric sensors [50], computational fabrics [21], and multi-
modalities [22]. With continuous motion tracking, activity recogni-
tion in various scenarios is trivial downstream tasks [7, 15] along
with the shared representation with other domains such as com-
puter vision and large language models [30, 37].

However, the widely accepted golden standard for motion cap-
ture (MoCap) systems, such as Qualisys (Sweden), Vicon (USA),
and OptiTrack (USA), relies on optical markers placed on the body
[16, 48]. These systems employ skin-tight marker placement on
bony areas and rely on rigid biomechanical models to convert the
surface points to inner joints [14, 32]. Optical marker-based MoCap
utilizes either active markers [5, 38] with built-in light sources or
passive markers [20] with unique visual patterns or retro-reflective
properties. These systems capture the surface marker positions
using synchronized camera triangulation and infer the joint motion
inside the human body using biomechanical models [32]. Optical
MoCap systems are generally favored over inertial methods (that
lack absolute positioning) due to their simplicity, accuracy, and
robustness against external interference [11]. However, when the
markers are placed over a loose piece of garment, they are not able
to follow the underlying body motion, which results in significant
kinematic errors [28]. The development of loose-fitting is crucial in
wearable applications [8, 27, 50] to improve user acceptance, com-
fort, accommodation of various body shapes, and mass adoption.
Nevertheless, relying on marker-based MoCap to provide motion
ground truth constraints further the development of loose gar-
ments. Video-based marker-less MoCap deep learning algorithms
map semantic information (e.g., body parts) to pose without explicit
markers using deep learning [9, 12, 41] have matured with the rapid
advancement of artificial intelligence. But there is a lack of com-
prehensive comparisons between marker-based and marker-less
MoCap systems, especially considering loose garments.

Several studies comparing marker-based and marker-less MoCap
in applications such as controlling an endoscopic instrument [40],
baseball pitching biomechanics [10], gait analysis [19], and clinical
usability [4] have found that while marker-based MoCap generally
exhibits slightly higher accuracy, marker-less systems have the po-
tential to serve as a viable alternative, especially in clinical settings
where patient comfort and ease of use are crucial factors [31].

These studies prioritize complexity, ease of use, and overall per-
formance rather than quantitative precision comparison due to the
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Figure 1: Overall pipeline of DMCB depicting pose estimation and calculation of MPJPE and CRMSE for all MoCap methods for
different garment classes using a single motion data sequence.

absence of anatomic motion reference, and no evaluation is done
considering loose garments to the level of casual apparel. In practi-
cal terms, it’s unfeasible to perform an accurate quantitative com-
parison of motion capture methods for loose garments due to the
inability to non-invasively capture true anatomical motion beneath
the clothing and replicate precise motion sequences across diverse
body shapes and attires. Largely due to these challenges, existing
quantitative reviews of marker-less methods use marker-based Mo-
Cap as reference [46], which itself has substantial error from the
anatomic joints due to the biomechanical approximation. To address
these issues, we leverage 3D physics-based simulation to bench-
mark the impossible. We use real-world captured motion datasets
to generate the inputs required for marker-based and marker-less
MoCap methods, thus quantitatively comparing them to the com-
mon anatomic true motion. In particular, we make the following
contributions:

(1) A garment and soft body physics simulation evaluate marker-
based and marker-less MoCap performances while persons
with different body types repeat the same motions wear-
ing different garments in terms of drape. Using real-world
captured motion datasets to generate the input required for
both MoCap methods, we quantitatively compare them to
the common anatomical true motion.

(2) Our benchmark involves diverse varieties of motion types
and garment drape levels which, together with a holistic
comparison, can assist practitioners in choosing the optimal
MoCap for wearable experiment ground truth for their spe-
cific applications balancing aspects such as garment designs,
types of motion, cost and time overhead, and precision.

2 PROPOSED METHOD
The overall framework of our benchmark methodology is shown in
Figure 1. By leveraging 3D physics simulation, we solve the reality
challenge that the exact motion cannot be perfectly reproduced to
establish quantitative comparisons of different scenarios.

2.1 DrapeMoCapBench Pipeline
The simulation pipeline strictly adheres to reality, as the inputs
to all MoCap methods are true to their specifications: 3D surface
marker locations for marker-based kinematic methods and 1080p
image sequences for marker-less vision models.

2.1.1 3D physics simulation. With Blender3D [2], motion sequences
from Section 2.1.2 were converted to volumetric human bodies of
different builds with the help of SMPL-X blender addon [34], then
dressed in garments described in Section 2.1.3. All simulated gar-
ments are assigned cloth properties equivalent to that of woven
cotton (un-stretchable) with vertex mass of 0.05 kg, stiffness ten-
sion and compression of 15, stiffness and damping bending of 0.5,
damping tension, compression, and shear 5, and stiffness shear of
10. Doubled layered cloth mesh and improved body-cloth collision
provided in Simplycloth [1] along with soft tissue dynamics over
captured skeletal motions using Mosh++[23] enabled us to intro-
duce realistic deformation of the garments over volumetric human
models performing dynamic activities while having minimal ar-
tifacts. Then inputs for optical MoCap were derived from the 3D
scenes of parallel simulations of the same underlying motion as
described in Section 2.2.

2.1.2 Motion Source Dataset. We used the AMASS framework [25]
for converting MoCap data from various sources and formats to
a standardized format based on the SMPL [24] body model, a 3D
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SMPL-X model 
(Male,60kg, 170cm)

Sewing patterns
Textured Model with simulated cloth Covered Body Volume 

Vol: 0.0247 m3

Cloth Volume 
Vol: 0.0277 m3

T-shirt
0.121

Cloth over T-pose simulation Volume extraction

Drape

-

➗

Excessive Vol:
0.003 m3

Figure 2: Quantifying drape for t-shirt and trousers.

model that accurately represents the human body. We considered
three types of motion. First, the basic motions, such as walking and
interaction, are derived from the HumanEva [42] and TotalCapture
[43] dataset containing 20 minutes of motion sequences. Second,
the fast motions, including sports, dancing, etc., are derived from
DanceDB [44] and Totalcapture containing 40 minutes of motion.
Finally, the motions with extreme joint bending, like Yoga and
gymnastics, are derived fromPosePrior [3], and PresSim [39] dataset
containing 37 minutes of motion.
2.1.3 Quantifying drape of loose garments. We used 3D assets for
a broad selection of apparel from commonly available categories
for both genders using the Simplycloth[1] plugin with garments
ranging from skin-tight (minimal drape) to very loose (maximal
drape). They are assigned into one of six classes based on the drape
percentage, as depicted in Figure 3. Drape amount is calculated as
the percentage of the extra volume occupied by the garment as
compared to another garment that fits the body perfectly and has
the volume underlying the covered body as visualized in Figure 2:
𝐷𝑟𝑎𝑝𝑒 =

𝑉𝑜𝑙𝑢𝑚𝑒garment−𝑉𝑜𝑙𝑢𝑚𝑒CoveredBody
𝑉𝑜𝑙𝑢𝑚𝑒CoveredBody

. For all garments except
uni-cloths, a piece for the upper body and lower body for a partic-
ular build sharing combined drape class from 1 to 6 is selected to
dress the SMPL body mesh.

2.2 MoCap methods
State-of-the-art marker-based and marker-less MoCap methods
were implemented with the benchmark pipeline.
2.2.1 Marker-based. Regardless of the marker principle, they re-
turn a 3D coordinate. A marker set of 24 marker pairs (48 markers)
associated with the 24 joints from the SMPL skeleton is either at-
tached over the garments or the skin, depending on whether their
original position is covered by the garment in T-pose. This repre-
sents the optimal real-world marker placement, and 24 marker pairs
are sufficient, as the simulation retrieves the coordinates directly
without accounting for occlusion and triangulation from multiple
cameras. 5 mm error was added as Gaussian noise to the coordinate
according to the best-performing solutions [26, 29, 45]. The sur-
face markers are converted to Bio-Vision Hierarchy (BVH) MoCap
files having SMPL skeleton hierarchy using forward kinematics to
approximate joints’ absolute position and angle.
2.2.2 Marker-less. Two marker-less models were considered: a
temporal semi-supervised 3d pose estimation model VideoPose3D
[35] and a lightweight real-time 3d pose estimationmodel BlazePose3D
[6]. Videos (1920×1080) were rendered from the simulation scene,
then fed into Detectron2[47] + VideoPose3D or BlazePose3D to
extract multi-joint poses relative to the video frame. They are then
rescaled to the original size of the body (170cm height) and con-
verted to BVH files.

Figure 3: Drape class for different garments, gender & builds.

2.3 Evaluation Metrics
We consider two frequently used metrics in the MoCap field: abso-
lute Mean Per Joint Position Error (MPJPE), which provides a quan-
titative measure of the accuracy of 3D joint positions and is more
often used in animation, and Circular Root Mean Squared Error
(CRMSE), that assesses the performance of pose joint angle estima-
tion used primarily in sports and medical research on joint angles.
They are defined as follows:𝑀𝑃𝐽𝑃𝐸 = 1

𝑛

∑𝑛
𝑖=1 | |P𝑖 − P̂𝑖 | | where 𝑛 is

the number of joints, P𝑖 is the ground truth position of the 𝑖-th joint,
P̂𝑖 is the estimated position of the 𝑖-th joint, and | | · | | denotes the

Euclidean distance. 𝐶𝑅𝑀𝑆𝐸 =

√︂
1
𝑁

∑𝑁
𝑖=1

(
1 − cos(\𝑖 − \̂𝑖 )

)
Here,

N represents the total number of joint angles, \𝑖 represents the
ground truth angle for the 𝑖-th joint, and \̂𝑖 represents the corre-
sponding predicted angle. Due to the availability of comprehensive
measurements about human models and garments obtained from
the simulation, it is straightforward to calculate MPJPE using the
3D estimated joints in Euler space. On the other hand, the CRMSE
involves estimating joint angles by applying forward kinematics
and then computing the error.

3 RESULTS AND DISCUSSION
With the unclothed body, the MPJPE between marker-based and
marker-less implementations of basic motion tested on the Total-
Capture dataset is 4.7 cm, and extreme angle motions tested on the
PosePrior dataset is 8.2 cm. These results quantitatively align with
the literature comparing marker-less models with marker-based
mocap as reference [18, 33, 36, 46]. TheMPJPE and CRMSE between
different MoCap implementations and the anatomic joints are de-
tailed in Figure 4. We calculated MPJPE for both markers placed on
cloth only as well as the entire marker set for marker-based MoCap
method. The minimum joint-position error is unsurprisingly from
drape class 1 with marker-based methods, which is still >10 cm.
Such comparison has only been possible before with our simulation
pipeline, as the anatomic joint coordinates cannot be derived in
reality with non-invasive superficial methods like surface markers
or video analysis as explained in Section 1. The term ‘looseness’ is
highly subjective, and its interpretation depends on the relative vol-
ume of the garment as compared to the wearer. To account for this
variability, we employed a quantitative measurement of drape and
organized our findings into drape classes. Everyday loose garments
that effectively follow the wearer’s body motion typically belong to
drape class 2 or 3. In this range, either marker-based or marker-less
gives 15cm to 35cm MPJPE and 6° to 11° CRMSE. Absolute MPJPE
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Figure 4: Benchmark results of marker-based & marker-less
MoCap methods in different drape & motion combinations.

is susceptible to joint hierarchy alignment, including shifting and
rotation errors, while CRMSE is affected by the relative angle of
bone in terms of its parent. As expected bio-mechanical constraints
the MPJPE overall marker set as compared to where it is calculated
for markers placed only over the garment in marker-based MoCap.
However, there are extreme cases, such as robes and trench coats,
where the garments exhibit limited adherence to the wearer’s mo-
tion. All methods see gradually increasing errors with more drape
of the garment.Marker-less methods (especially VideoPose3D) are
more stable as the drape increases, which might be attributed to
the fact that they work on detecting semantic segments of body
parts. DL-based marker-less models are expected to perform better
on basic and fast motions than on extreme joint angles since they
are primarily trained on datasets consisting of the first two. On the
other hand, the marker-based method does not have such limita-
tions, as it uses forward kinematics with biomechanical constraints
from the markers. Apart from the quantitative benchmark results,
we also compare both methods holistically as listed in Figure 5.

In our simulated benchmark, we aimed to maintain realism as
much as possible; however, there are certain limitations that could
be addressed in future research. For the MoCap implementations,
themarker-basedmethod excluded occlusions in real-world triangu-
lation and human setup errors as marker positions and marker-less
methods did not consider optical confusions which may lead to sub-
optimal image quality. However, these aspects are also challenges in
real-world experiments and are often actively eliminated by practi-
tioners. Our simulation only considered one standard cloth material
although draping is significantly affected by cloth material as it
determines the weight, stretch, and rigidity which influences how
the fabric hangs, folds, and holds a shape when draped over a 3D
form. To further enhance realism, future work should incorporate
support for external collisions, such as garments interacting with
the floor. The variety of clothing options and motion types could
also be expanded. It is also crucial to introduce support for other

Pros

Cons

Marker-based MoCap
(e.g. Qualisys, Vicon, OptiTrack) 

Marker-less MoCap
(e.g. Detectron2+VidPose3D, 

MediaPipe+BlazePose3D)

Requirem
ents

Dedicated volume space, multiple (typical 6-12) 
special cameras and synchronization systems, 
high throughput computer, active camera or 
active marker, multiple markers (typical 39-57) 
of tight placement for full body pose.

Single common digital camera (e.g. 
smartphone camera), AI-capable computing 
hardware for model inference, Sufficient 
subject/background contrast and lighting 
conditions

Highly precise for rigid object tracking and 
MoCap with skin-tight clothing, 
stable for all types of motions

Better angle accuracy especially with extreme 
loose cloths, more stable with increasing drape, 
computation can be outsourced (e.g. to cloud 
services), can be used in the wild, little setup 
time

High cost, setup time of attaching markers and 
calibrations, setup required before every 
recording, multiple markers need to be placed 
all over the body, markers can be 
uncomfortable, restricted to dedicated space

Worse with certain motions due to DL model 
limitations,
sensitive to lighting conditions

Remarks

Preferred if the marker placement 
requirements specified by the producer’s 
manual can be met (e.g. skin-tight clothing), for 
example medical or sports evaluations.

Sufficient in most daily activities with loose 
casual apparels for wearable technology 
research. The performance on extreme angle 
motions may be improved in time with ongoing 
computer vision research

Figure 5: Holistic comparisons for two MoCap methods

modalities in our benchmarking multi-camera and RGBD marker-
less MoCap methods, which could provide even better precision
with still less cost than marker-based MoCap.

4 CONCLUSIONS AND OUTLOOK
We propose the DrapeMoCapBench as a benchmark methodology
based on 3D physics simulations to compare marker-based and
marker-less MoCap systems, mainly when dealing with loose gar-
ments. The simulation allows us to quantitatively compare different
scenarios of precisely reproduced motions against the anatomic
true motion under draped garments and body skin. It incorporates
physics-based simulation of the human body and garment models
with real-world motion datasets, generating input data for marker-
based and marker-less MoCap methods. Through the benchmark,
we provide a comprehensive comparison of the MoCap methods
with a benchmark table that quantifies precision for different mo-
tion types and levels of garment drape and holistic considerations.
Our findings indicate that, while in line with the literature for
skin-tight clothing, both marker-based and marker-less MoCap
suffer significant performance loss in casual loose garments like
shirts. For daily activities, marker-less MoCap slightly outperforms
marker-based MoCap and could be a preferable choice of reference
for wearable studies. DMCB can be a valuable resource for wearable
practitioners seeking to select the most suitable MoCap method for
their own applications, considering scenario-specific precision and
holistic factors. The marker-less methods are closer to the marker-
based MoCap than the anatomic joints in terms of MPJPE, which
could be explained by the fact that the DL models were trained
mostly using marker-based MoCap as the ground truth. DMCB can
also be used in future work as a data augmentation tool to improve
vision-based pose estimation models. Furthermore, Wearable de-
velopers can consider the specific errors identified for each motion
and garment type rather than relying solely on marker tracking
errors, which through our findings, do not accurately represent the
pose estimation error often not specified explicitly by the MoCap
system and to evaluate the expected MoCap performance for new
garment designs for tailored assessment.
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