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ABSTRACT

This work develops a first Model Predictive Control
for European Space Agency’s 3-dof free-floating plat-
form. The challenges of the platform are the on/off
thrusters, which cannot be actuated continuously
and which are subject to certain timing constraints.
This work compares penalty-term, Linear Comple-
mentarity Constraints, and classical Mixed Integer
formulations in order to develop a controller that
natively handles binary inputs. Furthermore, lin-
ear constraints are proposed which enforce the tim-
ing constraints. Only the Mixed Integer formulation
turns out to work sufficiently. Hence, this work de-
velops a new Mixed Integer Model Predictive Control
on the decoupled model of the platform. Feasibil-
ity analysis and simulation results show that for a
short enough prediction horizon, this controller can
(sub)optimally stabilize and control the system un-
der consideration of the constraints in real-time.

1. INTRODUCTION

Satellite control to do rendezvous maneuvers, e.g.,
in the field of space debris removal, recently gained
attention [19]. To test such controllers and sub-
systems, the European Space Agency (ESA)’s Or-
bital Robotics and GNC Lab (ORGL) features a
9 × 5 m flat floor [20]. On top, the 220 kg heavy
air-bearing platform REACSA simulates a satellite
[4]. REACSA is equipped with a cold gas propul-
sion system and a reaction wheel. The latter exerts
a precise desired torque to the system. The eight
thrusters are mounted in a way to be able to control
linear and angular acceleration. Like a real satellite
or system that uses rocket motors or reaction wheels,
this experimental platform is subject to certain input
constraints. In REACSA’s case, these constraints
are rather strict: Besides the reaction wheel’s min-
imum and maximum angular velocity, the thrusters

can only be on/off actuated. Thus, a thruster can ei-
ther deliver its full thrust or no thrust. In addition,
the thrusters are subject to certain time restrictions:
Once a thruster has been switched on, it must re-
main switched on for a minimum time ton,min to ex-
ert repeatable and reliable thrust. Also, it must not
exceed a maximum activation time ton,max due to the
requirements imposed by the pneumatic system. Af-
ter an activation phase, a thruster must have an off
period toff,min, while the buffer is filled up.
The current controller is a Time-Varying Linear
Quadratic Regulator (TVLQR) with preliminary
trajectory optimization. However, it does not know
about the system constraints and hence, in reality,
performs poorly [4]. By enabling optimal control
while respecting any constraint, developing an Model
Predictive Control (MPC) is hence the next step.

Existing works on MPC for satellites with binary
thrusters can be divided into different classes: First,
continuous MPC formulations treat the control in-
put as continuous and convert it into binary values,
e.g., by using a Delta-Sigma modulator [18]. Or, like
the MPC presented by Arantes et al. [2], output con-
tinuous PWM parameters, which assumes one firing
cycle per prediction step and cannot flexibly allocate
binary thruster values.
Since optimal control by exploiting perfect thruster
allocation under consideration of the timing con-
straints is desired, this work focuses on the second
class: formulations that have direct binary outputs.

Enforcing an input to be a binary variable makes the
controller’s underlying optimization problem signifi-
cantly complex, since a non-convexity is introduced.
The current state-of-the-art literature tackles this
optimization problem using three different methods:

1. A widely used approach is to define respective
variables as integer variables and formulate the
problem as a Mixed Integer Program (MIP).

2. The binary variables are assumed to be contin-
uous, and the problem is a QP. To prioritize



binary values, an additional quadratic penalty
term is used [1].

3. Good results have been achieved with so called
Mathematical Program with Complementarity
Constraints (MPCC) in the area of contact-
implicit trajectory optimization [14]. Here, a
quadratic non-convex constraint, called LCC,
enforces binary values.

While for the MIP an appropriate solver is necessary,
the QP can be solved by any (non-convex) QP solver.
A MPCC can be solved with any non-linear solver.
However, problems with binary variables are NP-
hard, and solvability in real-time depends strongly
on the problem [10].

For the MILP approach, there are already works
in the space and satellite context, but these are
mostly concerned with attitude control and do not
have such strict timing constraints on their inputs
[17, 5]. And even of these, only a very few have im-
plemented a real-time capable controller, like [11, 15].
An MPC for a very similar platform without timing
constraints is developed in Khayour et al. [9]. Com-
pared to classical controllers, it performs better, but
is not real-time capable. For the LCP and quadratic-
cost-based formulation, to the best of the author’s
knowledge, there are no results yet for a similar ap-
plication.

The goal of this work is to find a MPC formulation
that knows about both the binary and the timing
constraints and can solve the optimization problem
within a reasonable time. Hence, the three differ-
ent binary constraint formulations are compared on
a simplified model of REACSA. An MPC for this is
developed and tested in simulation.

This paper is organized as follows: Section 2 de-
scribes the system model used and gives some theo-
retical considerations about the system’s limit cycle.
Section 3 introduces the MPC formulations. The re-
sults are described in section 4 followed by the sum-
mary and conclusion in section 5.

2. SYSTEM DESCRIPTION

In this section, the used model of REACSA is pre-
sented and analyzed for its limit cycle behavior.

2.1. Dynamic model

Fig. 1 shows the model of REACSA used in this
work. The two respective thrusters that accelerate
in the same direction are combined into one force
Fi. Therefore, the binary number of binary inputs

is reduced to four, and binary inputs don’t intro-
duce a torque. Orientation changes are applied by
the torque source τ . Hence, this model is referred to
as the decoupled model. Note that in this work the
reaction wheel with its limits is not modeled.

Figure 1. Schematics of the modeled system. Pairs of
thruster forces (dashed) that apply thrust in the same
direction are lumped together to one single (virtual)
thruster which applies force Fi. Rotation is applied
by the torque source τ .

The state vector x contains the linear and angular
position and velocity in world coordinates:

x =
[
x y θ ẋ ẏ θ̇

]T (1)

The system input vector u contains the applied
torque τ and the four binary inputs u1,...,4 ∈ {0, 1}:

u = [τ u1 u2 u3 u4]T (2)

The system dynamics are given by:

ẋ = f(x, u) =
[
03×3 I3×3

03×6

]
︸ ︷︷ ︸

A

x

+


03×5

0 cθ 2Fn
m cθ −2Fn

m sθ 2Fn
m sθ −2Fn

m

0 sθ 2Fn
m sθ −2Fn

m cθ −2Fn
m cθ 2Fn

m1
Izz

01×4


︸ ︷︷ ︸

B(θ)

u (3)

Where sθ, cθ denote the sinus and cosine of the sys-
tem’s orientation, Fn denotes the force applied by a
thruster firing, m and Izz denote the system’s mass
and inertia. Since two respective thrusters are actu-
ated together, a firing creates 2Fn force. Note that
the input matrix B(θ) depends on the orientation of
the system, so it is a linear time-variant system.

2.2. Systems limit cycle

The minimum activation time for a thruster causes
the system to experience a minimum thrust force or



acceleration. Consequently, this leads to a minimum
change in velocity on the system:

∆vmin = 2Fnton,min

m
(4)

During this minimum firing, the system will travel a
certain distance:

∆xmin = +2Fn (ton,min)2

2m
+ toff,minv0 + ton,minv0 (5)

Where v0 denotes the system’s velocity before the
firing, measured on the thruster axis and the di-
rection of thrust force. Note the assumption that
the thruster had just fired before, and hence waits
toff,min. If the system has a speed lower than ∆vmin
on the axis in which respective thruster points, a
minimum thrust firing overcompensates. The sys-
tem will start moving in the other direction, with a
velocity that is again smaller than ∆vmin. Hence,
the system can not be fully stopped [13].

Instead of fully stopping the system, it can only be
held in an artificial limit cycle around the target po-
sition. Assuming that an optimal controller fires at
the right moment to keep the system as close as pos-
sible, an upper one-dimensional position bound for
the limit cycle can be derived:

±

(
2Fntoff, minton,min

m
+ 0.625 · 2Fn (ton,min)2

m

)
(6)

3. MPC FORMULATION

The general MPC optimization problem is stated in
the following:

min
xt+k|t,xt+N|t,ut+k|t

Lf (xt+N |t) +
N−1∑
k=0

L(xt+k|t, ut+k|t)

(7a)

∀k ∈ [0, N) s.t. xt+k+1|t = f(xt+k|t, ut+k|t), (7b)
ut+k|t ∈ U (7c)
xt+k|t ∈ X (7d)
xt+N |t ∈ Xf (7e)
xt|t = xt (7f)

Note, that xt+k|t and ut+k|t refers to the k steps
into the future predicted state or input at time step
t. The above problem consists of the cost function
(7a) to minimize. The system prediction is based
on the system dynamics constraint (7b). The inputs
ut+k|t have to be in the input set U (7c), the inter-
mediate predicted states within the state set X (7d)
and the final predicted state within the final state
set Xf (7e). In the following, the parts of the opti-
mization problem are explained in more detail. The
three MPC formulations compared in this work are
listed within Table 1 and consist of different parts.

Binary constraints Cost function
MILP Integer constraint L1 Norm
QP Penalty term L2 Norm
MPCC LCC L2 Norm

Table 1. The three different MPC foundations that
are compared in this work together with their opti-
mization problem ingredients.

3.1. System dynamics

The system dynamics (3) are linearized using the
first-order Taylor expansion around the current
state xt. This is equivalent to evaluating the state-
dependent input Matrix B(θ) at the current orienta-
tion θt. The system is discretized using the backward
Euler approach, with a sampling rate of ∆t. Hence,
the general dynamic constraint (7b) in the MPC for-
mulation expands to a set of linear constraints:

xt+k+1|t = xt+k|t+∆tAxt+k+1|t + ∆tBut+k|t

Where A and B = B(θt) refer to the state and input
matrix of the system dynamics (3).

3.2. Thruster timing constraints

Minimum on time The chosen system discretiza-
tion rate ∆t = 0.1s matches the minimum on time
ton, min = 0.1s. Hence, by assuming a zero-order
hold, the minimum on-time is enforced naturally.

Maximum on time The maximum on time is a
multiple of the discretization rate: ton, max = 3·∆t =
0.3s. Therefore, a constraint must prevent the binary
input variables from having the value 1 for four con-
secutive time steps, respectively. This is done via a
sliding window constraint, which for each input lim-
its the sum of all consecutive subsequences of length
four to three and is stated as:

k+3∑
j=k

ui,t+j|t ≤ 3, ∀k ∈ [−3, N − 3), ∀i ∈ [1, 3] (8)

The sliding summation window constraint is
sketched for a sequence of 6 binary inputs in Fig. 2.

Minimum off time The minimum off time is
twice the discretization rate, i.e. toff, min = 2 · ∆t =
0.2s. Hence, an input value of 1 must be followed
by another 1 or two consecutive 0. Hence, the in-
put sequence (1, 0, 1) is prevented by another sliding
window constraint (Fig. 3), which is given by:
ui,t+k−1|t − ui,t+k|t + ui,t+k+1|t ≤ 1, ∀k ∈ [−2, N − 1),

∀i ∈ [1, 3] (9)



1 1 1 1 0 0
++ + +

1 1 1 0 0 0
++ + +

Figure 2. Example for an input sequence that (top)
violates the maximum on time constraint and (bot-
tom) does not.

1 0 1
+ - +

0 0 0
+ - +

1 0 0
+ - +

1 1 0
+ - +

0 1 0
+ - +

1 1 1
+ - +

Figure 3. Example for the input sequence (top left)
that violates the minimum off-time constraint and se-
quences that don’t.

3.3. Continuous input constraints

The applied torque is limited by a maximum torque:

−τmax ≤ u0,t+k|t ≤ τmax (10)

3.4. Binary input constraints

The three formulations to enforce binary values for
the thruster inputs compared in this work are stated
in the following. Together with the bounding box
constraint on the continuous input (10), they replace
the input constraint (7c) in the MPC formulation.

Linear Complementarity Constraints The
condition for the input variables only taking value
0 or 1 can be expressed as a set of LCC’s:

0 ≤ (1 − ui,t+k|t) ⊥ ui,t+k|t ≥ 0, ∀i ∈ [1, 3] (11)

These constraints emerge from Linear Complemen-
tarity Programs and the ”⊥” means that either the
left or the right term must be zero, while both have
to be non-negative [? ]. A Mathematical Pro-
gram with Complementarity Constraints is difficult
to solve, and there exist many techniques and spe-
cialized solvers for MPCC specializations [8]. Note
that (11) can be reformulated into a general Non
Linear Program (NLP):

(1 − ui,t+k|t) ui,t+k|t = 0 (12a)
0 ≤ ui,t+k|t ≤ 1 (12b)

This formulation can be solved with any appropri-
ate NLP solver [6]. With the LCC, the optimiza-
tion problem becomes a Linear Complementarity
Quadratic Program (LCQP).

Penalty term In this formulation, the binary vari-
ables are not enforced via a hard constraint. In-
stead, a quadratic penalizing term [1] together with
a bounding box constraint is added to the cost func-
tion:

J∗(xt) = min
Ut,Xt

Lf (xt+N |t) +
N−1∑
k=0

L(xt+k|t, ut+k|t)

+
3∑

j=1
4β (ui,t+k|t − u2

i,t+k|t), β > 0 (13a)

0 ≤ ui,t+i|t ≤ 1, ∀i ∈ [1, 3] (13b)

The penalty term is only optimal if the respective
variable is 0 or 1. Note that the penalizing term
is non-convex. Hence, the optimization problem be-
comes a non-convex QP and can be solved by any
appropriate QP-solver.

Integer constraint The binary decision variables
are formulated as integer variables which can only
take the value 0 or 1:

ui,t+k|t ∈ {0, 1}, ∀i ∈ [1, 3] (14)

This approach transforms the problem into a Mixed
Integer Program. As mentioned above, solving these
problems requires a special class of solver.

3.5. State constraints

The system state is limited by a lower- and upper
bound to stay below a safety velocity, and not to
exceed the edges of the flat floor. Thus (7d) becomes:

xlb ≤ xt+k|t ≤ xub (15)

3.6. Final constraint

To ensure recursive feasibility, the terminal con-
straint (7e) is set to the velocity limits of the mini-
mum limit cycle (4). Hence, it can be ensured that
after the final prediction step, the system can be kept
within the limit cycle bounds (5).

3.7. Cost function

The cost function (7a) is used in two ways. First, to
minimize the deviation from the target pose x̂ ∈ R6.



Secondly, to minimize the control effort, in this case
mainly thrust. In this work, due to the different
binary constraint formulations and solvers used, two
different cost terms are studied:

L1 Norm The L1 norm can be expressed as a lin-
ear sum of additional linear auxiliary constraints:

L(xt+k|t − x̂, ut+k|t) = 1
T ex,k + 1

T eu,k (16a)
Lf (xt+N |t − x̂) = 1

Tex,N (16b)

Where ex,t ∈ R6, eu,t ∈ R5 are the auxiliary vectors
for state and input cost. They are related to the
state and input by additional linear constraints:

−ex,k ≤ Q(xt+k|t − x̂) ≤ +ex,k (17a)
−eu,k ≤ W(ut+k|t) ≤ +eu,k (17b)

Where Q ∈ R
6×, W ∈ R

5×, are the cost matrices
that define the weighting for each state and input.
The auxiliary vectors are added as another decision
variable to the optimization problem. Hence, the
optimization problem stays a linear program.

L2 Norm The L2 norm is expressed as a quadratic
cost:

L(xt+k|t − x̂, ut+k|t) = (xt+k|t − x̂)T Q(xt+k|t − x̂)
+ (ut+k|t)T W(ut+k|t) (18)

Lf (xt+N |t − x̂) = (xt+N |t − x̂)T Q(xt+N |t − x̂)
(19)

4. RESULTS

The controllers have been tested on a rigid body sim-
ulation using drake toolbox [16]. SNOPT solver [7]
is used to solve the non-convex QP and MPCC. In
addition, the solver LCQPow [8] represents a spe-
cialized LCQP solver. To efficiently solve the MIP
problem, SCIPSolver [3] with python bindings [12]
is used. All experiments were performed on stan-
dard hardware with a 12th generation I7 processor
and 32 GB of RAM.

4.1. Feasible region

The feasible regions of the different formulations are
calculated to compare their ability to find solutions.
The initial state is x0 = [x0, 0 m, 45◦, ẋ0, 0 m

s , 0 rad
s ]T ,

where x0, ẋ0 take different values to analyze the fea-
sibility in state space. The final velocity constraint is
set to the limit cycle bounds (4). Position error and
thruster usage are minimized via the cost function.
Fig. 4 shows the feasible region for the MILP for-

Figure 4. Feasible region for MILP under final limit
cycle velocity constraint. Position error and thruster
usage are minimized via cost.

mulation for different prediction horizons. For each
initial condition, the feasible solutions are marked
according to their solving time ts. A star indicates
ts ≤ 0.1s, which was chosen as the desired real-time
solving rate. Due to the final velocity constraint, the
maximum initial ẋ, for which the solver finds a so-
lution, is limited. For large values, the solver is not
able to enter the velocity limit cycle within the pre-
diction horizon. A higher prediction horizon leads
to a bigger feasible region. For a prediction horizon
N = 30, the solving time is up to 2 s for certain re-
gions, indicated by the red areas in Fig. 4. For the
longer prediction horizon, this becomes even more
evident. However, the triangles indicate that there
was at least one feasible suboptimal solution avail-
able at ts ≤ 0.1s.

Figure 5. Feasible region for QP under final limit
cycle velocity constraint. Position error and thruster
usage are minimized via cost. The different plots re-
fer to different weightings of the penalty cost.



Fig. 5 shows the feasible regions for the QP formula-
tion for a prediction horizon of N = 40 and different
weightings of the penalty term. The feasible regions
are bigger and the solving time is significantly lower
than for the MILP. However, the plus indicates that
for most of the initial conditions, the penalty costs
couldn’t be minimized. Hence, the input values do
not take a binary value. No significant improve-
ment can be observed through higher weighting of
the penalty term.

Experiments with the MPCC have shown that for a
few initial conditions, a solution can be found mostly
below 0.05s. However, most of the time, all solvers
fail to find a solution. One option is to relax the
constraint. However, choosing the relax parameter,
in general, is not practical because it introduces non-
binary values to the solution.

Since the objective of this paper is an MPC that
optimally controls the system while respecting bi-
nary and timing constraints, only the MILP formu-
lation is appropriate. The LCP formulation provides
only partial or no solution, while the QP formula-
tion often yields non-binary inputs, which may re-
quire rounding up or down in a preliminary step.
The timing constraints and theoretical assumptions
however assume binary inputs, which means that in
reality, these constraints will not be met. Therefore,
the MILP formulation is chosen. If an optimal solu-
tion is not found within 0.1 s, suboptimal solutions
are used. The impact of suboptimally (i.e., predic-
tion horizon) on suboptimally is analyzed in the fol-
lowing.

4.2. Closed loop simulation

Figure 6. System trajectories under MPC control law
for different prediction horizons for optimal solver
solutions and suboptimal, fast solutions.

Fig. 6 shows the trajectory of the system for the
closed-loop simulation for different prediction hori-
zons. For each horizon, there exist two trajecto-
ries. One where the optimal result is taken as

the control input and one where the most opti-
mal solution within 0.1 s is taken, to meet the real-
time requirement. The initial system state is x =
[3.0m, 1.5m, 90◦, 0, 0, 0]T , and the target to mini-
mize it towards the origin (i.e., x = [0, 0, 0, 0, 0, 0]T ).
Fig. 7 shows the time that the solver took to find
the optimal solution for each time step for the differ-
ent prediction horizons. Only horizon N = 20 never
exceeds the target limit of 0.1 s. For N = 30 the
optimal solution was found not within 0.1 s for some
time steps at the beginning. For the rest of the ex-
periment, the optimal solution could be found within
0.1 s. For N = 40 the solver time oscillates around
0.1 s, while N = 50 requires especially at the begin-
ning more considerably more time. For N = 60, the
solver takes on average more than 1 s to find the opti-
mal solution. Note that for all these tests, a feasible
solution was always found within 0.1 s. The different

Figure 7. Solving time for MILP solver to find the
optimal solution over the whole simulation for differ-
ent prediction horizons.

prediction horizons also reflect in the system trajec-
tories obtained by the respective controllers (Fig.6).
It is worth noting that for values of N up to 40, the
suboptimal and optimal trajectories are similar. On
the other hand, for N = 50, a distinct overshoot be-
comes evident. For N = 60 the system position at
the origin can not be maintained, and it drifts away.

A more detailed plot of the system’s behavior to-
gether with actuation for N = 40 under MILP con-
troller is shown in Fig. 8. It shows that the system
is steered within 22 s to the origin, where it is os-
cillating in a limit cycle with ±0.004 m around the
origin. The thruster usage at the beginning is high,
to accelerate the system and finally break it into the
limit cycle. Where then a much lower thruster usage
is necessary to maintain the limit cycle.

5. SUMMARY AND CONCLUSION

The comparison of the three different binary con-
straint formulations shows that only the MILP for-
mulation works in practice. Even if the non-convex



Figure 8. States and input of the system controlled
by the MILP MPC towards the origin, where position
is maintained.

QP finds optimal results, most of the time the bi-
nary constraints are violated. A higher weighting of
the penalty function can not counteract this. Either
way, this formulation adds another tuning parameter
to the problem, which has a critical impact. In addi-
tion, the constraints are not guaranteed to be met.
The MPCC formulations were very promising, since
the constraints are enforced, whereas the problem
can be solved in theory with any non-linear solver.
However, it shows that the LCP constraints in this
problem are too complex to solve for the standard
solver. Also, a special solver tested in this work could
not bring any improvement. It is worth noting that
there are other solvers available for comparison in
future work. However, these solvers often use MIP
solving techniques and the results are likely similar.
Although the MILP formulation may not always
yield the optimal solution in a reasonable time, it
has been demonstrated that it can always identify
at least one feasible solution. Therefore, it can be
assumed that the controller system always stays fea-
sible. Additionally, it was found that the feasible so-
lution, which is obtained within 0.1 s, has a narrow
optimality gap for a sufficiently small prediction hori-
zon. The simulation experiments demonstrate that
the MILP MPC formulation can effectively guide the
system to the origin and maintain it there.
Furthermore, this work shows a simple linear formu-
lation of the binary input timing constraints. For fu-
ture work, it would be interesting if these constraints

can be generalized and applied to other timings.
The next steps are to extend this to a coupled formu-
lation involving all thrusters and the reaction wheel
limits, to fully exploit the capabilities of the system.
Secondly, the MPC has to be tested on the real sys-
tem to determine if it can handle model errors and
disturbances by the not perfectly even flat floor.
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[17] Márcio Santos Vieira, Roberto Kawakami Harrop
Galvão, and Karl Heinz Kienitz. Attitude stabiliza-
tion with actuators subject to switching-time con-
straints using explicit MPC. In 2011 Aerospace
Conference, pages 1–8, March 2011. doi: 10.1109/
AERO.2011.5747482.

[18] Josep Virgili-Llop, Costantinos Zagaris, Hyeongjun
Park, Richard Zappulla, and Marcello Romano. Ex-
perimental evaluation of model predictive control
and inverse dynamics control for spacecraft prox-
imity and docking maneuvers. CEAS Space Jour-
nal, 10(1):37–49, March 2018. ISSN 1868-2510.
doi: 10.1007/s12567-017-0155-7. URL https://
doi.org/10.1007/s12567-017-0155-7.

[19] Shubham Vyas, Lasse Maywald, Shivesh Ku-
mar, Marko Jankovic, Andreas Mueller, and
Frank Kirchner. Post-capture detumble trajec-
tory stabilization for robotic active debris re-
moval. Advances in Space Research, September
2022. ISSN 0273-1177. doi: 10.1016/j.asr.2022.
09.033. URL https://www.sciencedirect.com/
science/article/pii/S0273117722008742.

[20] Martin Zwick, Irene Huertas, Levin Gerdes, and
Guillermo Ortega. ORGL – ESA’s Test Facility
for Approach and Contact operations in Orbital
and Planetary Environments. In Proceedings of the
International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS), vol-
ume 6, Madrid, Spain, June 2018.


