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Abstract

Constructing a robust model that can effectively generalize to test samples under
distribution shifts remains a significant challenge in the field of medical imag-
ing. The foundational models for vision and language, pre-trained on extensive
sets of natural image and text data, have emerged as a promising approach. It
showcases impressive learning abilities across different tasks with the need for
only a limited amount of annotated samples. While numerous techniques have
focused on developing better fine-tuning strategies to adapt these models for spe-
cific domains, we instead examine their robustness to domain shifts in the medical
image segmentation task. To this end, we compare the generalization performance
to unseen domains of various pre-trained models after being fine-tuned on the
same in-distribution dataset and show that foundation-based models enjoy bet-
ter robustness than other architectures. From here, we further developed a new
Bayesian uncertainty estimation for frozen models and used them as an indicator to
characterize the model’s performance on out-of-distribution (OOD) data, proving
particularly beneficial for real-world applications. Our experiments not only reveal
the limitations of current indicators like accuracy on the line or agreement on the
line commonly used in natural image applications but also emphasize the promise
of the introduced Bayesian uncertainty. Specifically, lower uncertainty predictions
usually tend to higher out-of-distribution (OOD) performance.

1 Introduction

Recent years have witnessed tremendous success of foundation models [1–3], which have greatly
impacted research in many domains, ranging from understanding language [4], to vision [5]. Such
models are pre-trained on massive datasets and have shown encouraging capabilities in performing
many tasks, even when only fine-tuned on a small number of samples [6]. Since then, foundation
models have presented unprecedented opportunities for researchers to explore more challenging and
impactful problems. Among these, medical image understanding [7] has been an attractive topic due
to its potential impacts on our society. However, because of the intrinsic differences between medical
and natural images, directly applying models pre-trained on natural images to the medical domain
may lead to unsatisfactory results [8–10]. Thus, it is imperative to investigate the transferability and
robustness of foundation models to unlock their full potential for real-world medical applications.
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Figure 1: Illustration of domain shift in medical segmentation. From left to right are pairs of liver (a),
prostate (b), and diabetic retina images (c) selected from different datasets.

In this work, we investigate the ability to generalize to unseen distributions of various deep learning
models, especially large foundation models, in the medical image segmentation task. To this end, we
first consider several popular architectures based on UNet and MedSAM. UNet and its derivatives,
including UNet++ [11] or TransUNet [12], have conventionally served as prevalent approaches
in medical image segmentation. In contrast, MedSAM [13] is a recent method that focuses on
fine-tuning the Segment Anything Model (SAM) [6]), which is one of the best publicly available
models for generic segmentation [14], on a specific medical dataset. We comprehensively evaluate
such models on various medical image segmentation tasks by training them on the source domain and
then performing evaluations on target domains, which come from different distributions as illustrated
in Figure 1. Across all datasets, the experiments showed that fine-tuned foundation models such
as MedSAM offer better generalization to unseen domains than traditional models pre-trained on
ImageNet. These results demonstrate the promising capabilities of foundation models for real-world
deployment.

For a reliable real-world deployment, however, one needs to estimate the model’s OOD performance
without actually training the model on the target domain. For example, consider a collection of
pre-trained models that can segment liver images; given a hospital in a different location, one would
like to select a model that will yield the best segmentation results for the patients at this location
without training all the models in the collection. However, the lack of labeled samples in the
target domain [15, 16] necessitates an effective strategy to model the OOD performance using only
unlabeled data. To investigate this problem, we first consider several popular indicators that have
shown promising results with natural images, such as the in-domain (ID) performance [15] or the
agreement with another network [17]. Interestingly, our findings show that none of such indicators are
applicable in the medical image segmentation tasks as they do not hold linear correlations to the OOD
performance as expected (Figure 4). This motivates us to introduce a tailored Bayesian uncertainty
estimator designed specifically for segmentation tasks, aiming to provide a more dependable indicator
for predicting out-of-distribution (OOD) performance. Our experimental results indicate that higher
uncertainty in the model’s predictions consistently reflects lower OOD performance. In summary,
we shed light on the challenges associated with accurately estimating OOD performance in medical
image segmentation tasks, underscore the limitations of conventional indicators applied in natural
image contexts, and demonstrate the promising results achieved through the proposed Bayesian
uncertainty as a surrogate estimator.

2 Methodology

2.1 Notations and Settings

We denote D = {(xi,yi)}Ni=1
i.i.d∼ S as a labeled training set of N samples which are independently

and identically distributed (i.i.d) sampled from a source domain S. Here, (xi,yi) represents a pair
consisting of an image (flattened to become a vector) xi ∈ Rm and its label yi ∈ Rm. We introduce
a deep network denoted as Φ(.; θ) : Rm → Rm, parameterized by θ, which maps the images from
the set xi to the desired outputs yi. The primary objective of our learning process is to train a model
Φ using the training dataset D where θ is possibly initialized from foundational models (SAM) or
pre-trained models like ImageNet, which are trained on large amounts of natural images. The trained
model will then be evaluated for accuracy when applied to samples from a different target domain
T . In our setup, the source and target domains, S and T , respectively, are chosen from datasets that
pertain to the same organ. However, these datasets experience domain shift issues due to variations in
scanner devices or acquisition conditions (Figure 1).
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Figure 2: Predicting OOD performance using uncertainties for a pool of frozen models. Each trained
network Φk(.; θ

∗) on a source domain is paired with an independent network δ(.; γ) which takes
both input images x and output ŷ = Φk(x; θ

∗) and produces uncertainty for each prediction ŷ of
Φk(.; θ

∗) in a target domain. The uncertainty values are extracted to estimate a correlation to OOD
performance in the target domain for each model.

2.2 Prompt-based Segmentation

We examine the generalization capabilities of SAM for a prompt-based segmentation scenario. We
follow the MedSAM method [9] to freeze the image and prompt encoder layers; only mask decoder
layers are learned during the fine-tuning phase. The prompt layers use box-based prompts generated
by rectangles covering ground-truth regions perturbed with random offsets. We then train it with
training data in the single source domain S and take the trained network to predict the test set of the
target domain T . Implementation details are presented in Section A.1 Appendix.

2.3 Performance Prediction on Out-of-Distribution under Uncertainty Perspective

Our research proposes a new perspective to explore the relationship between in-distribution (ID) and
OOD performance by quantifying the model’s uncertainty in the target domains. Unlike previous
research [15–17], which mainly focused on image classification tasks and proposed indicators
to correlate ID and OOD linearly, our settings in medical image segmentation tasks highlight a
crucial difference: none of the previously suggested indicators are applicable in our domain, as
demonstrated in Figure 4, where relatively modest Pearson correlation coefficients are observed.
This underscores the need for a different approach specific to medical image analysis to capture
such complex relationships. Our focus delves into these challenges and provides a proof of concept,
indicating that leveraging Bayesian techniques for uncertainty estimation in frozen models can
effectively forecast model performance in out-of-distribution scenarios, eliminating the need for
labeled samples.

Formulation: Given a trained model Φ(, ; θ∗), for an input xi ∈ T , our goal is to model a
distribution of P(ỹ|xi) rather than a point estimate ŷi = Φ(xi; θ

∗). While Bayesian deep learning-
based approaches [18] can provide such uncertainty estimations, they require predefined architectures
and have to train models from scratch [19, 20]. However, in our context, accessing complete training
data during the pre-trained stage is not feasible, as seen in foundation models, and training costs can be
prohibitively high. To tackle this challenge, we turn to the latest post-hoc techniques [18, 21–25] for
estimating uncertainty in tasks such as image translation, image enhancement, and depth prediction
in self-driving cars. This technique has recently been adapted to active learning research [23] and
Vision-Language Models [25]. We tailor these methods for medical segmentation, where regions of
interest are often small and surrounded by similar tissue structures. We depict our method in Figure 2.

In particular, we construct an probabilistic model δ(.; γ) to estimate uncertainty for the frozen
model Φ(.; θ) by producing an independent multivariate Gaussian distribution P

(
ỹ; {µi,diag(σ

2
i )}
)

parameterized by {µi,σ
2
i } = δ({ŷi,xi}; γ) for every input-output pair {xi, ŷi}. This distribution

conveys information about the possible values of the reconstructed output ỹi and the uncertainty σ2
i

of the prediction. We seek to optimize the uncertainty estimator to maximize the data likelihood:
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In order to reconstruct output of Φ(, ; θ) from δ(.; γ), we can extend Eq.(4) to:

γ∗ = argmin
γ

N∑
i=1

m∑
j=1

(yij − µij)
2

2σ2
ij

+
log σ2

ij

2
+ λ∥µi − ŷi∥2 (5)

where λ indicates the hyper-parameter controlling the trade-off between maximum likelihood and
reconstructed output contributions. After optimizing Eq.(5) on samples of source domain S, we then
can compute uncertainty for predictions ŷt = Φ(xt; θ

∗) with xt ∈ T by:

Uncertainty(ŷt) = σ2
t ∈ Rm, where {µt, σ

2
t } = δ({ŷt,xt}; γ∗). (6)

Generalized Uncertainty with Heavy-Tailed Distribution: Note that Eq. (3) can be seen as a
product of univariate Gaussians N (µij , σ

2
ij) modeling distributions at the per-pixel level. Therefore,

one can extend them to generalized Gaussian distributions [26] GGD(µij , αij , βij) with scale αij

and shape βij coefficients used to model heavy-tailed distribution at pixels which usually occur due
to the presence of noises or artifacts [22, 24, 25]. The uncertainty for the prediction of xt ∈ T in this
case is computed as:

{µt, βt,αt} = δ({ŷt,xt}; γ∗); βt = [βt1, ..., βtm] ;αt = [αt1, ..., αtm] (7)

Uncertainty(ŷt) =

[
α2
t1Γ
(
3β−1

t1

)
Γ
(
β−1
t1

) , ...,
α2
kmΓ

(
3β−1

tm

)
Γ
(
β−1
tm

) ]⊤
∈ Rm. (8)

where Γ(z) =
∫

inf

0
xz−1 exp(−x)dx, ∀z > 0 is the Gamma function.

2.4 Comparison to Existing Models for Post-hoc Uncertainty Quantification
Our formulation is similar to that of existing approaches [22, 24, 25] in that we also estimate the
uncertainty of the frozen model Φ(.; θ∗) by training an auxiliary network δ(.; γ) with the same objec-
tive. However, instead of conditioning only on the output ŷi = Φ(xi; θ

∗), i.e., Uncertainty(ŷi) ∼
δ(ŷi; γ

∗), we propose a model for uncertainty quantification δ(.; γ) driven by both ŷi and the orig-
inal image input xi for the medical segmentation by Uncertainty(ŷi) ∼ δ({ŷi,xi}; γ∗). This is
motivated by the following observations.

First, in segmentation settings, the outputs ŷi produced by the frozen models are simply binary
masks and, therefore, there is no surrounding context for δ(.; γ) to learn the maximum likelihood
conditions as in Eq.(4). In other words, the model tends to reconstruct only the output of frozen
models Φ(, ; θ∗) by minimizing ∥µi − ŷi∥2 while tending to over-fit the remaining components in
Eq.(5). This is essentially different from other methods [22, 25, 24] designed for image enhancement,
image translation, or depth estimation, wherein outputs ŷi are continuous signals and have high
mutual information with input images xi.
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Second, under a probabilistic view, we have:
P (Uncertainty(ŷ), ŷ |x) = P (Uncertainty(ŷ) | ŷ,x) · P (ŷ |x) . (9)

Both our model δ(; γ) and existing methods estimate P (ŷ|x) by reconstructing the output of the
frozen model ŷ = Φ(x|θ∗) trained during the pre-training step. However, the remaining factor
P (Uncertainty(ŷ) | ŷ,x) is learnt by utilizing pairs of {ŷ,x} in δ(; γ) while other methods approx-
imate P (Uncertainty(ŷ) | ŷ,x) ≈ P (Uncertainty(ŷ) | ŷ). This approximation fails, however, if
ŷ does not contain sufficient information about the input x as is the case in the segmentation settings.

Finally, instead of computing averaging uncertainty values as prior works, we utilize Otsu’s parameter-
free thresholding algorithm [27] on the uncertainty matrix. This identifies pixel groups with the
highest uncertainty, allowing us to measure their areas. Our approach, particularly effective for small
regions of interest in segmentation tasks, exhibits a stronger correlation to OOD scenarios.

Table 1: Performance comparison in domain-shift of prostate segmentation. Results are reported
in average 3D IoU score with three training times. The BMC and BIDMC datasets are selected as
source domains, and the remaining datasets are used as target domains. Arrows ↑ and ↓ indicate the
increase/drop performance between target and source domains.

UNet (R50) Unet ++ (R50) Unet (Eff. Net) UNet ++ (Eff. Net) TransUNet MedSAM

Sa
m

e-
D

om
. BMC 76.77 ± 0.47 75.99 ± 1.21 77.86 ± 1.12 77.63 ± 1.00 65.61 ± 2.72 91.38 ± 0.69

RUNMC 77.92 ± 1.39 78.62 ± 0.24 79.33 ± 0.92 79.79 ± 0.36 66.17 ± 1.64 83.75 ± 0.87
BIDMC 71.44 ± 1.28 73.12 ± 0.41 75.55 ± 0.66 74.42 ± 0.45 49.30 ± 8.22 85.04 ± 1.80
HK 71.34 ± 0.85 70.76 ± 1.48 70.45 ± 1.43 69.69 ± 3.50 44.58 ± 4.49 82.36 ± 1.78

C
ro

ss
-D

om
.S

→
T BMC → RUNMC 63.37 ± 1.85 62.74 ± 2.67 58.29 ± 5.09 56.34 ± 5.43 21.51 ± 2.28 85.23 ± 1.19

(↓ 13.4) (↓ 13.3) (↓ 19.6) (↓ 21.3) (↓ 44.1) (↓ 6.1)
BMC → BIDMC 51.22 ± 16.52 55.18 ± 3.78 46.35 ± 9.48 43.21 ± 7.95 4.67 ± 0.47 84.73 ± 1.05

(↓ 25.5) (↓ 20.8) (↓ 31.5) (↓ 34.4) (↓ 60.9) (↓ 6.6)
BMC → HK 56.11 ± 4.93 55.34 ± 6.01 34.61 ± 6.66 36.11 ± 5.29 13.11 ± 4.66 83.40 ± 0.44

(↓ 20.7) (↓ 20.7) (↓ 43.3) (↓ 41.5) (↓ 52.5) (↓ 8.0)

BIDMC → BMC 27.07 ± 1.67 24.86 ± 9.09 45.33 ± 6.39 42.41 ± 7.27 6.40 ± 1.33 90.77 ± 0.69
(↓ 44.4) (↓ 48.3) (↓ 30.2) (↓ 32.0) (↓ 42.9) (↑ 5.7)

BIDMC → RUNMC 4.41 ± 0.69 6.37 ± 1.41 20.81 ± 9.45 18.12 ± 11.04 4.19 ± 0.54 81.27 ± 1.05
(↓ 67.0) (↓ 66.8) (↓ 54.7) (↓ 56.3) (↓ 45.1) (↓ 3.8)

BIDMC → HK 52.83 ± 2.62 50.16 ± 2.09 47.59 ± 1.52 48.23 ± 4.30 24.64 ± 4.94 81.19 ± 0.92
(↓ 18.6) (↓ 23.0) (↓ 28.0) (↓ 26.2) (↓ 24.7) (↓ 3.9)

3 Experiment Results
3.1 Datasets and Implementations

We experiment on three segmentation tasks, including Diabetic Retinopathy (DR) grading-related
lesion segmentation in 2D fundus images, liver structure segmentation from 3D CT scans, and
prostate segmentation from 3D MRI data. Table 5 in the Appendix provides details about each task,
including information about the source and target domains, aiming to explore challenges related to
domain shifts. We use the default training, testing split in each dataset if available; otherwise, we
randomly select 80% total samples for training and 20% remaining for testing. On 3D segmentation
problems, we reformulate them as independent 2D slice segmentation and merge results to a single
3D volume to compare with ground truths.

The large vision model SAM [6] is bench-marked by utilizing the MedSAM method [13] to fine-tune
on a specific medical downstream task. It is important to emphasize that the SAM model was not
previously pre-trained with extensive medical images, aligning with the approach taken by pre-
trained ImageNet models [28]. We also compare SAM against popular supervised methods such as
TransUNet with ViT-16 backbone [29], U-Net [30] and U-Net++ [11] with ResNet50 (R50) [31],
and Efficient-Net b0 (Eff.Net) [32]. All weights are initialized from ImageNet [28]. Details for
uncertainty network δ({ŷ,x}; γ∗) are presented in Appendix.

3.2 Quantitative Performance on Cross-domain

We report the performance of various model architectures on different medical modalities in Tables 1,
2, and 3. Each model was initially trained and evaluated within the same domain. Subsequently,
training is conducted on the source domain S, and evaluation is performed on the target domain T ,
adhering to the cross-domain S → T setting. Across all scenarios, MedSAM consistently demonstrates
superior in- and out-of-domain performances, significantly surpassing other models. This noteworthy
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Table 2: Performance comparison in domain-shift of DR lesion segmentation. Results are reported
in average 2D Dice score with three training times. Arrows ↑ and ↓ indicate the increase/drop
performance.

Same-Domain Cross-Domain S → T

IDRID FGADR IDRID → FGADR FGADR → IDRID
UNet (R50) 35.72 ± 1.35 49.46 ± 1.07 13.51 ± 5.56 (↓ 22.21) 31.76 ± 1.61 (↓ 17.7)
Unet ++ (R50) 32.36 ± 3.70 48.73 ± 1.42 10.42 ± 2.19 (↓ 21.9) 30.60 ± 1.31 (↓ 18.1)
Unet (Eff.Net) 34.18 ± 2.00 48.78 ± 0.59 12.72 ± 1.24 (↓ 21.5) 33.61 ± 1.29 (↓ 15.2)
UNet ++ (Eff.Net) 36.70 ± 1.61 49.88 ± 0.85 20.51 ± 1.41 (↓ 16.2) 32.49 ± 2.08 (↓ 17.4)
TransUNet 15.28 ± 1.62 46.59 ± 0.80 11.58 ± 11.04 (↓ 3.7) 22.52 ± 2.39 (↓ 24.1)
MedSAM 37.76 ± 1.37 58.49 ± 0.29 44.63 ± 1.42 (↑ 6.9) 39.24 ± 0.62 (↓ 19.25)

Table 3: Performance comparison in domain-shift of liver segmentation. Results are computed by
average 2D Dice score in three training times. Arrows ↑ and ↓ indicate the increase/drop performance.

Same-Domain Cross-Domain S → T

FLARE LiTS FLARE → LiTS LiTS → FLARE
UNet (R50) 94.35 ± 1.16 95.69 ± 0.09 82.28 ± 4.41 (↓ 12.1) 95.57 ± 0.39 (↓ 0.1)
Unet ++ (R50) 96.08 ± 0.40 95.84 ± 0.12 72.51 ± 5.97 (↓ 23.6) 95.41 ± 0.45 (↓ 0.4)
Unet (Eff. Net) 95.11 ± 0.18 95.86 ± 0.23 68.91 ± 7.06 (↓ 26.2) 95.04 ± 0.63 (↓ 0.8)
UNet ++ (Eff. Net) 95.23 ± 0.98 95.57 ± 0.40 67.32 ± 3.27 (↓ 27.91) 95.0 ± 0.95 (↓ 0.6)
TransUNet 92.01 ± 0.78 92.22 ± 3.22 61.69 ± 1.17 (↓ 30.3) 93.2 ± 1.68 (↑ 1.0)

MedSAM 92.47 ± 0.02 97.80 ± 0.01 97.53 ± 0.03 (↑ 5.1) 92.17 ± 0.24 (↓ 5.6)

achievement highlights MedSAM’s robust OOD generalization capabilities, proven effective across
both balanced (prostate modality) and imbalanced (diabetic retinopathy lesion and liver modalities)
datasets. Further detailed analysis is available in the Appendix. To our latest knowledge, we first
examine the robustness of the SAM model under domain shift in medical segmentation tasks, given
models are fine-tuned on medical source domains [33, 34].

3.3 Estimating Out-of-Distribution Performance via Uncertainty Perspective

We now investigate different indicators to characterize the models’ OOD properties. We consider
both popular indicators used in the natural image domains, such as the ID performance [15], the
agreement [17], and our proposed Bayesian uncertainty.

Figure 3 illustrates a strong correlation between uncertainty and OOD performance in three settings
of prostate segmentation (Table 1), underscoring that elevated uncertainty values tend to align with
diminished OOD performance. Additionally, when comparing different models on the same dataset,
the OOD performance gaps between these models are found to be correlated with the gaps in
their uncertainties. However, it is important to highlight that uncertainty only approximated the
true error in this context. As a result, even when two models exhibit similar OOD performances,
there may still be some subtle differences in their uncertainties, reflecting nuanced variations in
their predictive capabilities. This phenomenon presents an interesting future research direction for
accurately estimating a model OOD performance.

Comparing with Other Correlations: Figure 4 reports the correlations between the OOD per-
formance and the ID performance or the ID agreement when using BMC as the source domain and
BIDMC as the target domain. By varying the training configurations, such as learning rates, epochs,
etc., we plot the OOD performance against the ID indicator for each model. Afterward, we compute
Pearson correlation coefficients between the OOD performance and ID indicators. This analysis
aims to substantiate whether linear correlations, as proposed in previous studies [15, 17], are indeed
observed. Nevertheless, none of these indicators proves effective in adequately characterizing the
OOD performance, as they only yield relatively low Pearson correlation coefficients. Consequently,
we can infer that the currently employed natural image indicators are not well-suited for our specific
medical image segmentation task.
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Source: BMC; Target: HK Source: BMC; Target: RUNMC Source: BMC; Target: BIDMC 
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Figure 3: Visualization of uncertainty and OOD performance on three cross-domain experiments in
prostate segmentation. Uncertainty exhibits a strong correlation with OOD performance, indicating
that higher uncertainty values tend to correspond to lower OOD performance.
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Figure 4: OOD performance/agreement versus ID performance/agreement on BMC and HK datasets
(left) and on BMC and BIDMC datasets (right).

Comparing with Uncertainty Baselines: We furthermore compare our approach against two
different baseline groups, including Bayesian identity mapping [22] and perturbing the original
images to gauge the uncertain level for the SAM model. The former group, known as BayesCap [22],
calibrates the uncertainties of a pre-trained model without the need to train itself on a large-scale
dataset. The latter is based on test-time modification techniques [35–37]. Herein, we employ two
types of modifications: test-time data augmentation (TTDA) [35, 36] and dropout [38] before the final
prediction [39, 40]. Two classes of data augmentation are adapted for baselines, including pixel-wise
noise (TTDAp) and color jittering (TTDAc). Table 4 illustrates various methods’ performance in
three cross-domain prostate segmentation settings. The results are presented as mean square errors
between the uncertainty values, estimated using the Otsu thresholding algorithm, and the actual errors
of the model. Notably, our approach consistently outperforms others, attaching the top records across
all three Out-of-Domain (OOD) settings.

4 Conclusion

Table 4: Comparison among uncertainty approaches
measured by mean squared error. Smaller is better.

Method BMC → RUNMC BMC → BIDMC BMC → HK
Our 0.012 0.011 0.018
BayesCap 0.015 0.017 0.021
TTDAp 0.247 0.326 0.387
TTDAc 0.212 0.248 0.291
DropOut 0.197 0.227 0.271

In this study, we first conducted a systematic
investigation into the performance of the foun-
dation model SAM under domain-shift seg-
mentation tasks. Our findings reveal that this
foundation model demonstrates better general-
ization capabilities than other methods initial-
ized from pre-trained ImageNet. Additionally,
we show the correlation between model un-
certainties and their out-of-distribution perfor-
mance; thereby, lower uncertainty predictions

tend to reflect a higher performance in OOD. To achieve this, we constructed a post-hoc estimation
approach tailored for pre-trained deterministic models. These models have demonstrated the ability
to consistently generate well-calibrated uncertainty estimates across various segmentation scenarios,
proving their utility in aiding experts during the decision-making process. One limitation of our
algorithm is that the uncertainty can only approximate the true errors; therefore, it may not be suitable
to compare models whose performances have small margins. In future work, we plan to improve this
issue as well as explore the proposed method in a broader range of foundation methods with diverse
settings to gain better insights into the behaviors of the proposed algorithms.
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Supplementary Material for “On the Out of Distribution
Robustness of Foundation Models in Medical Image

Segmentation"

A Background

A.1 SAM Architecture

SAM [6] was introduced by Meta AI to improve segmentation performance across a wide range of
images. SAM utilizes a transformer-based architecture [41], which has shown impressive achievement
in both natural language processing [42] and computer vision [29]. In general, SAM is a Vision
Transformer (ViT)-based model, which consists of three components: an image encoder, a prompt
encoder, and a mask decoder. The image encoder is based on ViT [29], which is pre-trained with
masked auto-encoder (MAE) [43]. Two sets of prompts can be considered, including sparse prompts
(points, boxes, text) and dense prompts (masks). To represent the first two prompts, points, and boxes,
SAM employs positional encoding [44] combined with learned embeddings. The text prompt is
encoded by the pre-trained text-encoder CLIP [45]. The mask prompt has the same spatial resolution
as the input image, and it is encoded using convolutions and summed element-wise with the image
embedding. The mask decoder uses a lightweight network consisting of two transformer layers and a
dynamic mask prediction head with an Intersection-over-Union (IoU) score regression head. SAM is
trained in a supervised learning manner on a large-scale SA-1B dataset with over 1 billion masks
from 11 million natural images using a linear combination of Dice loss [46] and Focal loss [47].

A.2 Implementation Details

We use MedSAM to fine-tune the SAM model on a specific medical downstream task. The Adam
optimizer is utilized for training networks with a combination of Dice loss and Cross-entropy.
The learning rates for problems are selected from a set of {1e−4, 3e−4, 5e−4, 1e−5} depend on
validation performance.

To gauge the extent of uncertainty arising from the foundational models, we utilize a deep architecture
named δ({ŷ,x}; γ∗), inspired by the ResNet family [31] with 18 convolutional layers. In our
experiment, we use Eqs. (7),(8) for training with βt fixed as 2m. The initial input for the model δ is
a joint feature vector constructed by concatenating the original image x with the prediction mask
ŷ after they have passed through two different convolutional layers. Additionally, the output of the
model δ is also combined with the aforementioned joint feature vector. These combined features
then undergo processing through distinct convolutional operators, ultimately producing parameters
representing uncertainty distributions as described in Eq.(6). In the end, the uncertainty model δ is
trained with Adam optimizer [48] with the learning rate of 1e−4 in 50 epochs and cosine annealing
strategy [49] for the learning rate warm-up.

B Datasets

Table 5 overviews used dataset in our experiment along with the modality and image types. Each task
has at least two datasets, one for a source domain and the remaining for a target domain.

Table 5: Overview datasets used in our experiment.

Task Objects Datasets Modality # Images

DR Lesion
Segmentation HE, SE, EX, MA FGADR [50] 2D Fundus 1842

IDRiD [51] 2D Fundus 81

Liver
Segmentation Liver FLARE [52] 3D CT 50

LiTS [53] 3D CT 130

Prostate
Segmentation Prostate

BMC [54] 3D MRI 30
BIDMC [54] 3D MRI 12
RUNMC [54] 3D MRI 30

HK [54] 3D MRI 12
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C Experiment Details & Analyses

C.1 Further Analysis on Cross-domain Performance
The performance comparisons are presented in Tables 1, 2, and 3 for three different medical modalities:
Prostate, DR, and Liver, respectively. For each dataset, we report the performance on both Unet-based
models (including Unet (R50), Unet++ (R50), Unet (Eff.Net), Unet++ (Eff.Net)), and SAM-based
model (i.e., MedSAM). Each model was initially trained and tested within the same domain. It is then
trained on source domain S and tested on target domain T under the cross-domain S → T settings.

Table 1 demonstrates that MedSAM not only outperforms other models but also exhibits superior
generalization with minimal performance gaps between the same domain and cross-domain.

Four datasets (BMC, BIDMC, RUNMC, and HK) on Prostate modality are well-balanced in terms of
the number of images. Thus, the domain shift has been clearly observed, as shown in Table 1. On
the other hand, the DR Lesion datasets (FGADR and IDRiD) and Liver datasets (FLARE and LiTS)
suffer from heavy class imbalance, as indicated in Table 5. Notably, the Liver datasets consist of 3D
CT Scans processed slide-by-slide, with FLARE having 3,080 slides and LiTS having 25,660 slides.
In Table 2, MedSAM achieves state-of-the-art performance with small domain gaps. Due to the large
imbalance between LiTS (25,660 slides) and FLARE (3,080 slides), models trained on LiTS, whether
Unet-based or SAM-based, demonstrate better generalization compared to those trained on FLARE,
as demonstrated in Table 3, except MedSAM. While MedSAM shows a great improvement on small
datasets such as FLARE (i.e., FLARE → LiTS), its generalization is dropped on large dataset LiTS.

C.2 Qualitative Results

Figure 5: A visual demonstration on MedSAM’s performance in the same- and cross-domain. The
two on the left depict the true mask and MedSAM’s prediction mask in the same domain (FLARE).
The other two display the true mask and MedSAM’s prediction mask in an out-of-domain scenario
(FLARE → LiTs). Best views in color with zoom.

Figure 6: A qualitative comparison among various foundation models. Respectively, from left
to right, the top row demonstrates the original image, the true mask for that image, MedSAM’s
prediction mask, the reconstructed mask from the uncertainty model, and the error map between the
true mask and MedSAM’s prediction mask. The bottom row ranks the uncertain levels of different
foundation models from the most uncertainties (leftmost) to the fewest uncertainties (rightmost),
whereas the fewer, the better. Following this, the prediction mask derived from MedSAM has the
fewest uncertainties.
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In Figure 5, we present a selection of predictions generated by the MedSAM model in both same
and cross-domain settings, showcasing the segmentation results for lung, prostate, and soft exudates.
Given the prompt-based nature of MedSam, we simulate bounding boxes-based prompts as [9]. Our
observations indicate that MedSAM is capable of producing satisfactory masks for prostate structures
and DR lesions (shown in the second and bottom rows) despite the challenging conditions of small
object sizes and domain shifts. However, when applied to the LiTS dataset, MedSAM tends to exhibit
tendencies of over-segmenting boundaries or missing structures at the bends of objects.

We offer illustrative examples of uncertainty estimations generated by our algorithm, showcased in
Figure 6, across various trained models. It can be seen the MedSam model has the highest relevant
uncertainty regions compared to the Error map among models.
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