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ABSTRACT 
For machines to efectively assist humans in challenging visual 
search tasks, they must diferentiate whether a human is simply 
glancing into a scene (navigational intent) or searching for a target 
object (informational intent). Previous research proposed combining 
electroencephalography (EEG) and eye-tracking measurements to 
recognize such search intents implicitly, i.e., without explicit user 
input. However, the applicability of these approaches to real-world 
scenarios sufers from two key limitations. First, previous work 
used fxed search times in the informational intent condition - a 
stark contrast to visual search, which naturally terminates when the 
target is found. Second, methods incorporating EEG measurements 
addressed prediction scenarios that require ground truth training 
data from the target user, which is impractical in many use cases. We 
address these limitations by making the frst publicly available EEG 
and eye-tracking dataset for navigational vs. informational intent 
recognition, where the user determines search times. We present 
the frst method for cross-user prediction of search intents from 
EEG and eye-tracking recordings and reach 84.5% accuracy in leave-
one-user-out evaluations - comparable to within-user prediction 
accuracy (85.5%) but ofering much greater fexibility. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI). 
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Figure 1: Examples of the visual scenes we created for our 
study. In total, we created 120 unique scenes. 
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1 INTRODUCTION 
Visual search is ubiquitous in daily life. For example, searching 
for a desired chocolate bar on a supermarket shelf or the wrench 
in a cluttered workshop. Approaches that can automatically - and 
without explicit user input - infer humans’ search targets have the 
potential to assist humans and avoid unnecessary frustration or 
delays [4, 32]. For an assistive system to efectively help humans in 
visual search tasks, it has to solve one key problem before even con-
sidering which target the user might be searching for: the system 
needs to be able to recognize that the user is searching at all (i.e., 
having an informational intent) and not simply looking at the scene 
with no such purpose in mind (called navigational intent in the 
literature) [17, 18, 33]. Previous studies on the recognition of nav-
igational versus informational intent from EEG and eye-tracking 
data proved the general feasibility of this task [17–19, 30]. However, 
they sufer from limitations concerning the study design and the 
prediction scenarios that reduce their applicability to the real world. 
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Using fxed time limits (usually 5s) in visual search tasks is a 
common practice in previous studies [19, 30], as it allows for better 
control over the experiment and ensures that all users complete the 
task in a consistent amount of time. However, this approach does 
not allow for the evaluation of unrestricted search duration, where 
user has no time constraints. This type of design allows for a more 
naturalistic approach to studying visual search behavior. It can 
provide insight into how participants prioritize search strategies 
and allocate their attention over time. 

Concerning the prediction scenario, previous studies on multi-

modal navigational vs. informational intent recognition from EEG 
and eye-tracking are limited to cross-user scenarios where data 
from a given user can appear both in the test- and training sets [30]. 
In contrast, practical scenarios often require a model to apply to 
unseen target users without needing to collect training data. A 
fnal but crucial limitation to achieve progress in search intent 
recognition based on EEG and eye-tracking is the need for a publicly 
available dataset that will provide us valuable insights into real-
world search behavior and help us generalize our intent recognition 
models across a larger group of users. 

Our work addresses these shortcomings by proposing a novel 
EEG- and eye-tracking dataset for navigational vs. informational 
intent classifcation where the search duration depends entirely 
on the time it takes to fnd the target. We intentionally select the 
industrial workplace scenarios where visual search often helps 
workers quickly and accurately identify equipment, components, 
and tools, which can improve efciency, safety, and productivity. 
Furthermore, we propose the frst multi-modal approach to the 
best of our knowledge for navigational vs. informational intent 
prediction in a strict leave-one-user-out evaluation scenario. Our 
experiments reveal that feature selection is crucial in achieving 
high performance across users, unlike within-user prediction. Our 
specifc contributions are threefold: 

(1) We present MindGaze
1
, the frst publicly available dataset for 

informational vs. navigational intent prediction with a large 
variety of diferent workplaces in Unity [15] (see Figure 1 
for examples). The dataset consists of EEG and eye-tracking 
recordings of 15 participants, performing 3600 trials. 

(2) We present the frst approach for cross-user (leave-one-user-
out) prediction of navigational vs. informational intent from 
EEG and eye-tracking, revealing that appropriate choice of 
features plays a crucial role in cross-user prediction. 

(3) We conduct extensive evaluations for within-user and cross-
user scenarios and compare diferent multi-modal fusion 
strategies (early, late, and hybrid fusion). Subsequently, we 
perform experiments with the smaller windows of 0.5s, 1s, 
1.5s, and 2s to show the potential for near real-time intent 
prediction applications. 

2 RELATED WORK 
The implicit (i.e., without explicit user input) prediction of user 
intents are of great interest in human-machine interaction (HMI), 
as it can help to adapt the behavior of machines without the over-
head and discomfort associated with explicit input. Implicit intent 

1
https://doi.org/10.5281/zenodo.8239061 

Table 1: Datasets for search intent recognition. Availability 
shows whether the dataset is publicly available or not. Size is 
a product of the total number of users, scenes shown to each 
user, and intents. NA indicates missing information. 

Reference Availability Users Modality Size 

Kang et al. [19] ✗ 10 EEG 500 
Jang et al. [18] ✗ 52 Eye 668 
Huang et al. [16] ✗ 13 Eye 276 
Liang et al. [23] ✗ 18 Eye NA 
Jang et al. [17] ✗ 100 Eye 2400 
Park et al. [30] ✗ 8 EEG + Eye 400 

Ours [MindGaze] ✓ 15 EEG + Eye 3600 

recognition systems often rely on challenging-to-interpret measure-

ments like eye-tracking, pupil dilation, or EEG [25, 40]. Previous re-
search worked on implicitly predicting web users’ click intents [34], 
search targets [4, 32], improving the performance of Motor Imagery 
task[8] their next focus of attention [26, 36, 39], or choice of ingredi-
ents [16] when preparing a meal. In this paper, we focus on the task 
of distinguishing between navigational intent and informational 
intent, a pre-requisite to assist humans when searching for a target 
object in cluttered environments [19]. In the following, we discuss 
previous work on this task. Subsequently, we compare datasets 
for navigational vs. informational intent recognition recorded in 
previous work. 

2.1 Navigational versus Informational Intent 
Recognition 

While predicting the target of visual search is an increasingly pop-
ular task in implicit intent recognition [4, 32, 35, 37], few works ad-
dressed the prerequisite of any practical support system for search 
target prediction, namely the recognition of navigational vs. infor-
mational intent [18, 19, 30]. 

Kang et al. [19] performed EEG-based classifcation of naviga-
tional and informational intents in everyday images. Their study 
setup presented an image in the navigational intent condition for 
5s, followed by the informational intent condition (search task) on 
the same image for a fxed search time of 5s. The authors analyzed 
the diferences in phase-locking value (PLV) to classify intents in a 
within-user prediction scenario. The results showed severe over-
ftting with a signifcant gap between the train (> 99%) and test 
accuracy ( 57.1% to 77.4%). 

Using the same concept of sequential navigational and informa-

tional intent tasks, Jang et al. [18] classifed human implicit navi-
gational and informational intent based on the eyeball movement 
pattern and pupil size variation characteristics in a visual search 
task. For evaluation, authors used 25 users for training and other 27 
users for testing, reaching a mean accuracy of 85.26% with an SVM 
classifer. In a follow-up work [17], the authors performed hierar-
chical classifcation to further diferentiate states in task-oriented 
visual searches, such as intent generation, intent maintenance, and 
intent disappearance. Authors collected data from 100 users and 
used 40 random samples for training and 60 for testing, reaching 
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Figure 2: (Left) Navigational scan path, (Right) Informational scan path, search target: Screwdriver 

90.36% with an SVM classifer. In both studies [17, 18], users had 
to search for diferent numbers of objects in indoor- and outdoor 
scenes, e.g., the cup and bottle in an indoor image or all humans 
in an outdoor image. Although [17, 18] did not explicitly mention 
fxed search times, they used the same experimental setup as [19], 
which has a fxed amount of time (5s) to perform the search task. 

In a follow-up work to [18], Park et al. [30] proposed a multi-

modal approach combining EEG and eye-tracking features while 
following the same experimental design principle as in [19], i.e., 
using 5s for both navigational and informational intent conditions. 
The authors neither followed a pure within-user nor a pure cross-
user evaluation approach. They trained their model on several users, 
but samples from the same user could appear both in training-
and the test set. With an early fusion approach, they improved 
classifcation accuracy by 5% over uni-modal baselines. While these 
results indicate the utility of a multi-modal approach, a comparison 
between diferent fusion methods (early, late, and hybrid fusion) 
was not presented. Furthermore, the applicability of their approach 
is limited by the fxed search times and by not employing a strict 
cross-user prediction scenario, i.e., where data from a single user 
can only be either in the train- or in the test set. 

In contrast to previous work, search times in our study are en-
tirely determined by the time it takes participants to fnd the target. 
Furthermore, we, for the frst time, study multi-modal prediction 
of navigational vs. informational intents in a strict cross-user eval-
uation scenario. 

2.2 Datasets for Navigational versus 
Informational Intent Recognition 

We provide an overview of the datasets used by previous works on 
navigational vs. informational intent recognition in Table 1. Most 
datasets consist of eye-tracking recordings exclusively [16–18, 23], 
only two datasets involving EEG recordings were presented in 
previous work [19, 30], one of them also containing eye-tracking 
recordings [30]. The number of users in eye-tracking datasets is 
usually higher than those in datasets with EEG recordings (8-10 
users), likely due to the time-consuming procedure required to set 
up EEG recordings. The number of trials varies signifcantly across 
previously recorded datasets, ranging from 276 to 2400 trials. With 
3600 trials our novel EEG and eye-tracking recordings dataset has 
a much higher number of trials on informational vs. navigational 
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Figure 3: (Left) Distribution of search times for all users. All 
search times larger than 6s are accumulated in the rightmost 
bar, where M is the max duration. (Right) Search durations 
for individual tools. 

recognition than any previous dataset. We recorded 15 users, mak-

ing it the largest dataset for navigational vs. informational intent 
recognition with EEG recordings regarding the number of users. 
Most importantly, none of the previously recorded datasets for nav-
igational vs. informational intent recognition is publicly available, 
severely limiting progress on this task. 

3 DATASET 
In the following, we describe the data recording and descriptive 
statistics on the dataset. We provide detailed statistics at the dataset 
website (see section 1). 

3.1 Data Recording 
Participants. We recruited 15 volunteers (5 female and 10 male) 

aged between 20 and 35 years old (µ = 27.46 , σ = 4.22 ). All partic-
ipants had normal or corrected to normal vision, and none were 
exposed to the study design before. The study was approved by our 
institution’s Ethics and Hygiene Board2. 

Hardware Setup. To display visual stimuli, we used a monitor 
with a resolution of 1920 x 1080 and screen brightness of 300 cd/m2. 
We used the LiveAmp 64 channel system3 

by Brain Products to 

2
https://erb.cs.uni-saarland.de/

3
https://brainvision.com/products/liveamp-64/ 
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Table 2: List of extracted features with PyEEG and added statistical features 

Feature name Description 

Power spectral intensity distribution of signal power over frequency
bands: delta, theta, alpha, beta, and gamma 

Petrosian Fractal Dimension ratio of number of self-similar pieces versus
magnifcation factor 

Hjorth mobility and complexity mobility represents the proportion of the
standard deviation of the power spectrum
Complexity represents the change in frequency 

Higuchi Fractal Dimension computes fractal dimension of a time

series directly in the time domain 
Detrended Fluctuation Analysis designed to investigate the long-range

correlation in non-stationary series 
Skewness measure of asymmetry of an EEG signal 
Kurtosis used to determine if the EEG data has peaked

or fat with respect to the normal distribution 
Minimum, Maximum, and Standard deviation measure of variability of an EEG signal 

record the EEG signals with a sampling frequency of 500 Hz. Elec-
trodes were placed according to the 10-20 international electrode 
placement system [1]. To record eye-tracking data, we used wire-
less Tobii pro fusion4 

attached to the monitor’s lower bezel with 
a sampling frequency of 250 Hz. The device was calibrated at the 
start of the experiment for each participant, using two coordinate 
systems. One is a 2D system that spans the monitor with (0, 0) in 
the top right corner of the experiment setup monitor screen and 
(1, 1) in the bottom left. The second is a 3D coordinate system for 
the experiment room, which measures the distance from the eye to 
the eye-tracker. EEG and eye-tracking data were synchronized via 
particular time-locked events, for example, the start and end of the 
navigational and informational stimulus. 

Stimuli. We designed 120 realistic industrial scenes in Unity to 
simulate industrial environments, such as assembly units, manufac-

turing and production facilities, industrial labs, garage and repair 
workshop, and many more (see Figure 1 for examples). While craft-
ing the scenes, we portrayed diferent clutter layers through the 
chaotic arrangement of parts of machines, tools, workbench, and 
others, as evident in Figure 1. We incorporated various tool loca-
tions (inside a cupboard, on the foor, and in some unexpected areas) 
and orientations in the industrial scenes to create diferent levels of 
complexity. We used fve tools - Hammer, Pliers, Saw, Screwdriver, 
and Wrench - as our target stimulus. 

Procedure. Participants were given a general introduction to the 
study, where we explained the experiment’s purpose and proce-
dure and discussed the anonymity and privacy of their collected 
data. Next, we gathered participants’ consent and asked them to 
complete a demographic questionnaire. Participants were seated in 
a comfortable chair such that the distance between the user and the 
screen was 60cm. We mounted the EEG cap on their head, flling 
the electrodes with gel. Following common practice [13] for noise 
reduction, we kept electrode impedances below 25 kΩ throughout 
the experiment. Overall, the preparation time was about 30 min. 
Our experimental design followed previous research [17, 18, 30], 
which presents the scene frst in the navigational intent condition, 

4
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion 

followed by the search task (informational intent condition). This 
approach mirrors a typical workplace scenario where individuals 
often start searching for items within a scene that is already fa-
miliar to them. In particular, a single recording of the experiment 
consisted of 3 steps. In Step 1, we presented the scene for 5s. The 
participant glanced over the scene without knowledge of the target 
tool. In Step 2, we show the target tool for 5s. In the fnal Step 3, 
the participant searches for the displayed target tool in the scene 
until the tool is found. Once the participant fxated on the target 
tool for more than 1s, a red highlight appeared around the tool, 
which changed to green in the case of prolonged fxation of 1s , 
indicating that the tool was successfully located. The 120 unique 
scenes were split randomly into four equal sessions, with breaks 
in-between sessions. The sequence of the industrial scenes and the 
target objects are randomized with an average experiment duration 
of 90 min per participant. 

3.2 Descriptive Statistics 
We collected the data from 15 users who viewed 120 scenes each. 
The data synchronization is performed based on the available times-

tamps. We pre-processed the collected dataset and fltered out 
scenes (an average of 18 scenes per user) due to technical issues 
with EEG and Eye-tracking data recording. Figure 2 showed the 
scan paths of an example participant. In the navigational condi-
tion, Figure 2 (Left), the users’ attention is spread across the scene. 
In Figure 2 (Right), the user performs a more focused search for 
fnding the target, which is a Screwdriver. Unlike existing stud-
ies [18, 19, 30], the search times in our informational intent con-
dition were entirely determined by the time participants took to 
fnd the target. To illustrate the importance of this choice, Figure 
3 (left) visualizes the distribution of search times. The search time 
follows a left-skewed Gaussian distribution with a peak between 
2s and 3s. While the probability diminishes continuously for larger 
search times. Overall, it is evident that the variation in search times 
is large, supporting our approach of not setting a fxed search time 
in contrast to previous work [19]. Figure 3 (right) describes the 
search time with respect to fve diferent target tools for all users. 
The search time appears to be connected with the size of the tool. 
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For example, Screwdriver, Wrench, and Pliers have comparable 
sizes and hence, comparable search times. 

4 METHODS 
In the following, we detail pre-processing and feature extraction 
pipelines for EEG and eye-tracking data and present our classi-
fcation and multi-modal fusion approaches. Figure 4 showed an 
overview of data collection, signal processing, and classifcation. 

4.1 Pre-processing 
Eye data pre-processing. As humans extract visual information 

during fxations, visual search tasks are commonly analyzed based 
on fxations [4, 35]. We used the I-VT flter, a velocity-threshold 
fxation detection approach [29]. Overall, we follow the seven-step 
approach taken by [38]: Gap fll-in helps replace missing samples, 
which might occur due to unforeseen disturbances causing short 
gaps in the data. Eye selection averages the position data from the left 
and the right eye. We applied Noise reduction to smooth out the noise 
while preserving the features based on the moving median method. 
We then used the Velocity calculator to associate each gaze sample 
with a velocity. To classify the sample as either a part of fxation 
or not, we applied the I-VT classifer. Subsequently, we employed 
Merge adjacent fxations to correct erroneously split fxations due 
to noise. Lastly, using Discard short fxations, we discard fxations 
which are too short to be relevant in visual search. 

EEG data pre-processing. We applied high-pass flters at a cutof 
frequency of 1 Hz to clean the EEG data, followed by a notch flter 
between 48 Hz and 52 Hz [28] and a low-pass flter at a cutof 
frequency of 40 Hz [20]. Then bad channels were removed and 
interpolated using signals in good locations based on the spherical 
interpolation method. In the next step, we referenced channels to a 
common average reference [24]. To reduce the correlation between 
electrodes, we executed independent component analysis using the 
second Order Blind Identifcation (SOBI) algorithm [12], followed 
by subsequent automated IC_Label rejection (muscle, heart, and 
eye components with a 95% threshold). Lastly, we extracted specifc 
time windows from the continuous EEG signal [22], with reference 
to the stimulus onset in the pre-processed data. We took equal 
duration for Navigational and Informational Intent within each 
sample, a prerequisite of one of the feature extraction methods 
(Common Spatial Pattern). We followed the same approach for 
other feature extraction methods to ensure a fair comparison. 

4.2 Feature Extraction 
We used EEG and eye-tracking to extract feature sets from naviga-
tional and informational components of each trial, enabling us to 
tailor our approach for optimal results. 

EEG based features. We used two diferent feature extraction 
methods for EEG signals. Firstly, we use PyEEG, an open-source 
Python module for EEG feature extraction [2] in the frequency and 
time domain. Additionally, we included statistical features, and in 
total, we extract 15 features per channel, resulting in 960 features 
(64 channels * 15 features). Table 2 shows the extracted features for 
each EEG channel. As the number of PyEEG features is much larger 
than our extracted gaze features, we applied principal component 
analysis (PCA) for dimensionality reduction, similar to [34], we 

select the principal components where the explained variance is 90%. 
Secondly, we used Common Spatial Pattern (CSP) to extract features 
from EEG data in a maximally discriminative manner [7, 11]. We 
used default parameters from the MNE toolbox [14], resulting in 4 
spatial features. 

Eye-tracking features. Table 3 shows the list of features adapted 
from the existing state-of-the-art [3, 6]. Features are based on 
fxation events, saccadic eye movements, and the scanned area. 
Some features are time-normalized by the total time covered by 
the provided gaze data. We compute total_time as the diference 
between the recording’s last and frst timestamp. After extracting 
the features, we follow a similar strategy as in [3] to reduce fea-
ture multi-collinearity by performing hierarchical clustering on the 
feature’s Spearman rank-order correlations. We set the distance 
threshold to 0.2 and use one feature per cluster i.e., fixn_dur_avg, 
fixn_dur_sd, scan_hv_ratio, fixn_dur_sum, scan_speed_h, 
fixns_per_box_area, avg_sacc_length, scan_speed_v. 

4.3 Classifcation and Fusion Techniques 
In our study, we use three popular classifcation algorithms, in-
cluding Support Vector Machine (SVM), Random Forest (RF), and 
Naïve Bayes (NB), which are widely used in EEG- and eye-tracking 
studies [18, 19, 30, 41]. Further, we explored three distinct fusion 
mechanisms: early, late, and hybrid strategies. For every fusion ap-
proach, we frst performed a min-max scaling on the input features 
to harmonize the scale of features within- and across modalities. 

Early fusion. This is the simple concatenation of EEG- and eye 
feature representations and inputs them as a single vector into the 
classifer. It aims to exploit dependencies between features. The 
input format from both modalities must be temporally compatible 
so that it is possible to combine them. This fusion technique is com-

mon in previous studies on navigational vs. informational intent 
classifcation [30]. 

Late fusion. This strategy trains classifers for individual modali-

ties - i.e., an EEG classifer with EEG features as input, and an eye 
tracking classifer with eye tracking features as input. To fuse the 
outputs of the modality-specifc classifers, we trained an additional 
classifer producing the fnal decision. 

Hybrid fusion. The fusion happens at the shared representation 
layer from late and early fusion. It was successfully used in emotion 
recognition [10, 27] and multimedia event detection [21], to name a 
few. In addition to the two uni-modal classifer outputs in late fusion 
it also utilizes the output of the early fusion classifer described 
above. It then trains an additional classifer that predicts the fnal 
decision based on these three classifer outputs (uni-modal EEG, 
uni-modal eye, multimodal early fusion). 

For all fusion approaches and fusion stages, we evaluated dif-
ferent classifers (SVM, NB, RF) in our experiments. SVM always 
performed best in these experiments, so we chose it as our classifer 
for all modalities and fusion stages. 

5 EVALUATION 
We present classifcation results for cross-user and user-specifc pre-
diction and evaluate diferent feature sets and multi-modal fusion 
methods. In the cross-user scenario, we perform leave-one-user-
out cross-validation. In the within-user scenario, we report mean 
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Figure 4: Overview of our approach to implicit classifcation of navigational versus informational intents. 

Table 3: Overview of eye movement features based on fxation events, saccadic eye movements, and the scanned area 

Feature Description 
fx_n Number of fxations 

fxation- fxn_dur_sum Sum of fxation durations 
based fxn_dur_avg Mean of fxation durations 

fxn_dur_sd Standard deviation of fxation durations 
scan_dist_h 
scan_dist_v 
scan_dist_euclid

saccade-
scan_hv_ratio

based 
avg_sacc_length 
scan_speed_h 
scan_speed_v 
scan_speed 

Sum of horizontal amplitudes of all saccades, normalized by a factor w, i.e., screen width 
Sum of vertical amplitudes of all saccades, normalized by a factor h, i.e., screen height 
Sum of Euclidean distances of normalized amplitudes of all saccade 
Ratio of horizontal to vertical amplitudes: scan_dist_ h/scan_dist_v 
Average saccade amplitude: scan_dist_euclid/(fx_n - 1) 
Horizontal saccade velocity: scan_dist_h/scan_time 
Vertical saccade velocity: scan_dist_v/scan_time 
Saccade velocity: scan_dist_euclid/scan_time 

box_area Area spanned by summed saccade amplitudes: scan_dist_h × scan_dist_v 
box_area_per_time The box_area normalized by the scan time: box_area/scan_time

area-
fxns_per_box_area Number of fxations per scanned area: fxn_n/box_area 

based 
hull_area_per_time The hull area normalized by the scan time: hull_area/scan_time 
fxns_per_hull_area Number of fxations per convex hull area: fxn_n/hull_area 

accuracy averaged over 10 random train-test splits to estimate the 
generalization performance for each user. For each train-test split, 
we perform feature selection (see Section 4.2) and parameter tuning 
via grid search cross-validation only on the train data and use the 
test set only for prediction. In all evaluation scenarios, the random 
baseline is at 50% accuracy. 

5.1 Cross-user Prediction 
We present cross-user prediction results for the leave-one-user-out 
evaluation scenario in Figure 5a. The best approach relies on PyEEG 
and eye-tracking features joined by early fusion, reaching 84.5% 
accuracy. This is a signifcant increase over eye-tracking features 
with 60.6% accuracy and a moderate increase over PyEEG-only 
features with 81.3% accuracy, documenting the efectiveness of a 
multi-modal approach. Interestingly, the CSP features performs far 
worse than the PyEEG dataset. Unlike PyEEG, CSP performs below 
eye-tracking features, even in each multi-modal scenario. There are 

no substantial diferences between late and hybrid fusion strate-
gies. Only early fusion showed an increase over the mono-modal 
EEG baseline. Figure 5a showed the error bars with 95% confdence 
interval. We performed a paired t-test, and the calculated �-value 
of 6.1� − 07 is less than the signifcance level � = 0.05, showing that 
the choice of features (PyEEG vs. CSP) is signifcant. To compare 
the diference between the uni-modal Eye based classifer and multi-

modal classifers (Eye and PyEEG), we performed three pairwise 
t-test with the adjusted �-value of 0.0167 after Bonferroni correc-
tion. For eye, we obtained �-values of 4.8�−08, 4.0�−07, and 7.7�−08 
for early, late, and hybrid fusion, respectively, indicating signif-
cant improvements. Comparing uni-modal PyEEG features with 
multi-modal approaches (Eye and PyEEG), we obtained �-values of 
0.02, 0.26, and 0.22 for early, late, and hybrid fusion, respectively, 
showing no signifcant efect. We computed three paired t-tests for 
comparing diferent fusion methods with the adjusted � value of 
0.167 after Bonferroni correction. The results showed the diference 
between early and late fusion (�-value = 1.0� −03), early and hybrid 
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Figure 5: (a) Comparison of modalities and fusion strategies for cross-user conditions using the best overall classifer (SVM) (b) 
Comparison of modalities and fusion strategies for within-user conditions using the best overall classifer (SVM). Error bars 
indicate 95% confdence interval. 

fusion (�-value = 6.6� − 04) is signifcant whereas late and hybrid 
fusion (�-value = 6.6� − 1) showed no signifcant efect. 

5.2 Within-user Prediction 
In Figure 5b, we present results for within-user prediction. In line 
with the cross-user prediction scenario, the best method for within-
user prediction was an early fusion of eye-tracking and PyEEG 
features, reaching 85.5% accuracy. This is a substantial increase over 
eye-tracking features with 63.2% accuracy and a slight increase over 
PyEEG-only features with 83.4% accuracy. While the best method 
relies on joining eye-tracking- with PyEEG features, CSP features 
also perform well with an accuracy of 81.6% for early fusion with 
eye-tracking features. While there is an advantage for early fusion 
over late or hybrid fusion, the diferences in fusion approaches are 
only moderate. Figure 5b showed the error bars with 95% confdence 
interval. We performed a paired t-test, and the calculated �-value 
of 2.0� − 03 is less than the signifcance level � = 0.05. We have 
sufcient evidence that the choice of features (PyEEG vs. CSP) 
is signifcant. To compare the diference between uni-modality 
(Eye, EEG-PyEEG) and multi-modality fusions, we performed a 
pairwise t-test with the adjusted �-value of 0.0167 after Bonferroni 
correction. For eye, we obtained �-values of 1.8� − 29, 1.8� − 24, and 
2.0� − 27 for early, late, and hybrid fusion, respectively, showing 
that the improvements are highly signifcant. For EEG-PyEEG, we 
obtained �-values of 5.0� − 04, 4.0� − 03, and 0.15 for early, late, and 
hybrid fusion, respectively, showing that the improvement for early 
and late fusion is highly signifcant. We computed three paired 
t-tests for comparing diferent fusion methods with the adjusted � 
value of 0.167 after Bonferroni correction. The results showed the 
diference between early and late fusion (�-value = 1.1� − 06), early 
and hybrid fusion (�-value = 6.3� − 05) is signifcant whereas late 
and hybrid fusion (�-value = 2.9� − 1) showed no signifcant efect. 

5.3 Near Real-time Intent Prediction 
We evaluate the infuence of smaller search durations on user per-
formance to understand better whether our approach can be used 
in near real-time intent prediction with the best confguration of 

EEG features and fusion methods. We select four diferent win-
dow sizes, from 0.5s to 2s, as post 2s duration, most of the users 
can locate the target, see Figure 3 (left). Monitoring the search 
performance and enabling proactive support to minimize search 
delays in real-time would be benefcial within these window sizes. 
To make a fair comparison across diferent window sizes, we take 
the same samples and therefore exclude samples where the search 
duration is less than 2s. Figure 6a showed the results for cross-user 
prediction, where 1.5s window achieves the best mean accuracy of 
91.8%. Moreover, within-user follows a similar trend, as shown in 
Figure 6b, achieving the best mean accuracy of 90.1%. Interestingly, 
early fusion improves over mono-modal inputs in both prediction 
scenarios across all window sizes, with a much higher increase in 
within-user conditions. To compare the diference between uni-
modality (Eye, EEG-PyEEG) and multi-modality fusions for the 
best-performing window size of 1.5s and for cross-user prediction, 
we performed a pairwise t-test with the �-value of 0.05. We ob-
tained �-values of 1.0� − 09 and 0.18 for eye and EEG, respectively. 
Therefore, the improvement of early fusion over eye-tracking is 
highly signifcant. For similar analysis in the case of within-user 
prediction, we obtained �-values of 1.9� − 31 and 3.2� − 10 for eye 
and EEG, respectively. Therefore, the improvement of early fusion 
over eye-tracking and EEG is highly signifcant. 

6 DISCUSSION 
In the following section, we discuss the obtained results and focus 
on our method’s performance and potential applications. 

6.1 Achieved Performance 
We presented the frst method to the best of our knowledge for 
cross-user prediction of navigational vs. informational intent, reach-
ing an accuracy of 84.5%. While this is comparable to the accuracy 
we reached for within-user prediction 85.5%, it is a highly promising 
result, allowing for much larger fexibility in application scenar-
ios. In particular, when deploying an intent prediction system in 
an industrial context, collecting user-specifc training data might 
not be feasible, highlighting the importance of efective cross-user 
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Figure 6: (a) Comparison with shorter time windows in cross-user condition with the best classifer (SVM), feature extraction 
(PyEEG), and fusion method (Early). (b) Comparison with shorter time windows in within-user condition with the best classifer 
(SVM), feature extraction (PyEEG), and fusion method (Early). Error bars indicate 95% confdence interval. 

prediction. Using the CSP features extracted from EEG, we could 
not reach accuracies beyond 60%. With PyEEG features and feature 
selection, however, we reached a much higher accuracy of 84.5% 
when combined with eye-tracking features. There was no such 
substantial diference between EEG feature sets for within-user 
prediction. Thus, a key takeaway from our results is that cross-user 
prediction requires careful feature selection. 

6.2 Applications 
The ability to infer users’ search intents by combining eye-tracking 
with the EEG data helps researchers study perceptual, attentional, 
or cognitive processes in more realistic situations as it aims to 
understand users’ search intents without the need for them to com-

municate these intents verbally. By presenting the frst method for 
cross-user prediction of navigational vs. informational intent, we 
pave the way for exciting new applications in other domains, such 
as VR-based gaming, where it can be used to provide a more immer-

sive and interactive experience. For example, if the user searches 
for an object in a game, the system can adjust the game environ-
ment to make it more challenging based on the user’s intent. The 
prime motivation of our work is applications in industrial work 
scenarios where workers are often faced with the task of fnding a 
tool in a cluttered scene. Once informational intent is recognized 
for a user, a support system can help to fnd the desired tool. To 
know which tool the user is looking for, at least two approaches are 
conceivable. First, the support system could maintain a model of 
the user’s current task and infer the tool the user most likely needs 
next to accomplish their task. Second, the prediction of informa-

tional intent could be followed by search target prediction [4, 32], 
informing the system about the tool the user is looking for. Apart 
from directly supporting humans in visual search, informational vs. 
navigational intent prediction could also be used to quantify how 
much time users spend in visual search. Repeated long search times 
may indicate that the work environment needs to be simplifed or 
tidy for efcient work. 

6.3 Limitations 
While our novel dataset and cross-user prediction approach repre-
sent a signifcant step towards recognizing navigational and infor-
mational intent in the real world, some limitations remain. While 
using virtually created work scenes allowed us to include a large va-
riety of visual environments in our data collection, a laboratory ex-
periment always implies a domain gap to the real world. Especially 
the analysis of EEG signals is challenging in real-world environ-
ments due to motion artifacts and noise [9]. However, researchers 
are developing wearable dry EEG electrodes devices to improve 
the overall reliability and applicability of EEG signal analysis in 
real-world scenarios and advanced signal processing techniques 
like continuous contact impedance monitoring [5] and Gaussian 
Elimination Canonical Correlation Analysis [31]. Although we uti-
lized classical classifcation and multi-modal fusion techniques to 
distinguish between navigational and informational intent recogni-
tion, which were widely used in the current state-of-the-art, given 
the size of the dataset, it would be interesting to observe the per-
formance of deep learning architecture on this dataset. 

7 CONCLUSION AND FUTURE WORK 
We proposed the frst publicly available EEG- and eye-tracking 
dataset for informational vs. navigational intent recognition and a 
multi-modal approach for classifying intents for within-user and 
leave-one-user-out scenarios. Our dataset improves over previous 
recording procedures using a concrete application scenario with 
fully user-defned search times. We thoroughly analyzed the dataset 
by evaluating it for within-user and cross-user scenarios and com-

paring diferent shorter time windows to demonstrate the potential 
for near real-time intent recognition. The presented statistical anal-
ysis highlights the importance of selecting appropriate features and 
fusion methods. Future work should consider diferent scenarios to 
predict informational and navigational intent, including hospitals, 
retail, and even people’s private spaces. Even after recognizing 
navigational vs. informational intent, the identity of the object the 
user searches for is not apparent. For such scenarios, future work 
should investigate how to integrate navigational and informational 
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intent classifcation with search target prediction to help the user 
and reduce search times most efectively. 

ACKNOWLEDGMENTS 
This work is funded by the German Ministry for Education and Re-
search (BMBF), grant number 01IW20003. Philipp Müller is funded 
by the German Ministry for Education and Research (BMBF), grant 
number 01IS20075. 

REFERENCES 
[1] Jayant Acharya, Abeer Hani, Janna Cheek, Parthasarathy Thirumala, and Tammy 

Tsuchida. 2016. American Clinical Neurophysiology Society Guideline 2: Guide-
lines for Standard Electrode Position Nomenclature. The Neurodiagnostic Journal 
56 (10 2016), 245–252. https://doi.org/10.1080/21646821.2016.1245558 

[2] Forrest Sheng Bao, Xin Liu, and Christina Zhang. 2011. PyEEG: An Open Source 
Python Module for EEG/MEG Feature Extraction. Comp. Int. and Neurosc. (2011), 
406391:1–406391:7. https://doi.org/10.1155/2011/406391 

[3] Michael Barz, Omair Shahzad Bhatti, and Daniel Sonntag. 2022. Implicit Estima-

tion of Paragraph Relevance From Eye Movements. Frontiers in Computer Science 
3 (2022). https://doi.org/10.3389/fcomp.2021.808507 

[4] Michael Barz, Sven Stauden, and Daniel Sonntag. 2020. Visual Search Target 
Inference in Natural Interaction Settings with Machine Learning. In ACM Sym-
posium on Eye Tracking Research and Applications (ETRA ’20 Full Papers). Article 
1, 8 pages. https://doi.org/10.1145/3379155.3391314 

[5] Alexander Bertrand, Vojkan Mihajlović, Bernard Grundlehner, Chris Van Hoof, 
and Marc Moonen. 2013. Motion artifact reduction in EEG recordings using multi-

channel contact impedance measurements. In 2013 IEEE Biomedical Circuits and 
Systems Conference (BioCAS). 258–261. https://doi.org/10.1109/BioCAS.2013. 
6679688 

[6] Nilavra Bhattacharya, Somnath Rakshit, Jacek Gwizdka, and Paul Kogut. 2020. Rel-
evance Prediction from Eye-Movements Using Semi-Interpretable Convolutional 
Neural Networks. In Proceedings of the 2020 Conference on Human Information 
Interaction and Retrieval. 223–233. https://doi.org/10.1145/3343413.3377960 

[7] Soumyadip Chatterjee, Saugat Bhattacharyya, Amit Konar, D. N. Tibarewala, 
Anwesha Khasnobish, and Ramadoss Janarthanan. 2013. Performance Analysis 
of Multiclass Common Spatial Patterns in Brain-Computer Interface. In Pattern 
Recognition and Machine Intelligence - 5th International Conference, PReMI 2013. 
115–120. https://doi.org/10.1007/978-3-642-45062-4_15 

[8] Shiwei Cheng, Jialing Wang, Lekai Zhang, and Qianjing Wei. 2020. Motion 
Imagery-BCI Based on EEG and Eye Movement Data Fusion. IEEE Transactions 
on Neural Systems and Rehabilitation Engineering PP (12 2020), 1–1. https: 
//doi.org/10.1109/TNSRE.2020.3048422 

[9] Yu Mike Chi, Yu-Te Wang, Yijun Wang, Christoph Maier, Tzyy-Ping Jung, 
and Gert Cauwenberghs. 2012. Dry and Noncontact EEG Sensors for Mobile 
Brain–Computer Interfaces. IEEE Transactions on Neural Systems and Rehabil-
itation Engineering 20, 2 (2012), 228–235. https://doi.org/10.1109/TNSRE.2011. 
2174652 

[10] Yucel Cimtay, Erhan Ekmekcioglu, and Seyma Caglar-Ozhan. 2020. Cross-Subject 
Multimodal Emotion Recognition Based on Hybrid Fusion. IEEE Access 8 (2020), 
168865–168878. https://doi.org/10.1109/ACCESS.2020.3023871 

[11] Charles S. DaSalla, Hiroyuki Kambara, Makoto Sato, and Yasuharu Koike. 2009. 
Single-trial classifcation of vowel speech imagery using common spatial patterns. 
Neural Networks 22, 9 (2009), 1334–1339. https://doi.org/10.1016/j.neunet.2009. 
05.008 

[12] Arnaud Delorme and Scott Makeig. 2004. EEGLAB: an open source toolbox for 
analysis of single-trial EEG dynamics including independent component analysis. 
Journal of Neuroscience Methods 134, 1 (2004), 9–21. https://doi.org/10.1016/j. 
jneumeth.2003.10.009 

[13] Thomas C Ferree, Phan Luu, Gerald S Russell, and Don M Tucker. 2001. Scalp elec-
trode impedance, infection risk, and EEG data quality. Clinical Neurophysiology 
112, 3 (2001), 536–544. https://doi.org/10.1016/S1388-2457(00)00533-2 

[14] Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel 
Strohmeier, Christian Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri 
Parkkonen, and Matti S. Hämäläinen. 2013. MEG and EEG Data Analysis with 
MNE-Python. Frontiers in Neuroscience 7, 267 (2013), 1–13. https://doi.org/10. 
3389/fnins.2013.00267 

[15] John K Haas. 2014. A History of the Unity Game Engine. https://api. 
semanticscholar.org/CorpusID:86824974 

[16] Chien-Ming Huang, Sean Andrist, Allison Sauppé, and Bilge Mutlu. 2015. Using 
gaze patterns to predict task intent in collaboration. Frontiers in Psychology 6 
(2015). https://doi.org/10.3389/fpsyg.2015.01049 

[17] Young-Min Jang, Rammohan Mallipeddi, and Minho Lee. 2014. Identifcation of 
human implicit visual search intention based on eye movement and pupillary 

analysis. User Modeling and User-Adapted Interaction 24, 4 (2014), 315–344. https: 
//doi.org/doi/10.1007/s11257-013-9142-7 

[18] Young-Min Jang, Rammohan Mallipeddi, Sangil Lee, Ho-Wan Kwak, and Minho 
Lee. 2014. Human intention recognition based on eyeball movement pattern and 
pupil size variation. Neurocomputing 128 (2014), 421–432. https://doi.org/10. 
1016/j.neucom.2013.08.008 

[19] Jun-Su Kang, Ukeob Park, V. Gonuguntla, K.C. Veluvolu, and Minho Lee. 2015. 
Human implicit intent recognition based on the phase synchrony of EEG signals. 
Pattern Recognition Letters 66 (2015), 144–152. https://doi.org/10.1016/j.patrec. 
2015.06.013 Pattern Recognition in Human Computer Interaction. 

[20] Marius Klug and Klaus Gramann. 2021. Identifying key factors for improving ICA-
based decomposition of EEG data in mobile and stationary experiments. European 
Journal of Neuroscience 54, 12 (2021), 8406–8420. https://doi.org/10.1111/ejn.14992 

[21] Zhen-zhong Lan, Lei Bao, Shoou-I Yu, Wei Liu, and Alexander G Hauptmann. 2014. 
Multimedia classifcation and event detection using double fusion. Multimedia 
tools and applications 71, 1 (2014), 333–347. https://doi.org/10.1007/s11042-013-
1391-2 

[22] Warren J Levy. 1987. Efect of epoch length on power spectrum analysis of the 
EEG. Anesthesiology 66, 4 (1987), 489–495. https://doi.org/10.1097/00000542-

198704000-00007 
[23] Yongqiang Liang, Wei Wang, Jue Qu, and Jie Yang. 2019. Application of Eye 

Tracking in Intelligent User Interface. Journal of Physics: Conference Series 1169, 
1 (feb 2019), 012040. https://doi.org/10.1088/1742-6596/1169/1/012040 

[24] Kip Ludwig, Rachel Miriani, Nicholas Langhals, Michael Joseph, David Anderson, 
and Daryl Kipke. 2009. Using a Common Average Reference to Improve Cortical 
Neuron Recordings From Microelectrode Arrays. Journal of neurophysiology 101 
(03 2009), 1679–89. https://doi.org/10.1152/jn.90989.2008 

[25] Päivi Majaranta and Andreas Bulling. 2014. Eye Tracking and Eye-Based Human– 
Computer Interaction. 39–65. https://doi.org/10.1007/978-1-4471-6392-3_3 

[26] Philipp Müller, Ekta Sood, and Andreas Bulling. 2020. Anticipating Averted 
Gaze in Dyadic Interactions. In Proceedings of ACM International Symposium on 
Eye Tracking Research and Applications (ETRA). 1–10. https://doi.org/10.1145/ 
3379155.3391332 

[27] Shahla Nemati, Reza Rohani, Mohammad Ehsan Basiri, Moloud Abdar, Neil Y. 
Yen, and Vladimir Makarenkov. 2019. A Hybrid Latent Space Data Fusion Method 
for Multimodal Emotion Recognition. IEEE Access 7 (2019), 172948–172964. 
https://doi.org/10.1109/ACCESS.2019.2955637 

[28] Judith F Nottage and Jamie Horder. 2016. State-of-the-art analysis of high-
frequency (gamma range) electroencephalography in humans. Neuropsychobiol-
ogy 72, 3-4 (2016), 219–228. https://doi.org/10.1159/000382023 

[29] Anneli Olsen. 2012. The Tobii IVT Fixation Filter Algorithm description. https: 
//api.semanticscholar.org/CorpusID:52834703 

[30] Ukeob Park, Rammohan Mallipeddi, and Minho Lee. 2014. Human implicit intent 
discrimination using EEG and eye movement. In International Conference on 
Neural Information Processing. Springer, 11–18. https://doi.org/10.1007/978-3-
319-12637-1_2 

[31] Vandana Roy, Shailja Shukla, Piyush Kumar Shukla, and Paresh Rawat. 2017. 
Gaussian elimination-based novel canonical correlation analysis method for 
EEG motion artifact removal. Journal of Healthcare Engineering 2017 (2017). 
https://doi.org/10.1155/2017/9674712 

[32] Hosnieh Sattar, Sabine Müller, Mario Fritz, and Andreas Bulling. 2015. Prediction 
of search targets from fxations in open-world settings. In 2015 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR). 981–990. https://doi.org/10. 
1109/CVPR.2015.7298700 

[33] Mansi Sharma, Maurice Rekrut, Jan Alexandersson, and Antonio Krüger. 2023. 
Towards Improving EEG-Based Intent Recognition in Visual Search Tasks. In 
Neural Information Processing: 29th International Conference, ICONIP, Proceedings, 
Part III. Springer, 604–615. https://doi.org/10.1007/978-3-031-30111-7_51 

[34] Gino Slanzi, Jorge A. Balazs, and Juan D. Velásquez. 2017. Combining eye track-
ing, pupil dilation and EEG analysis for predicting web users click intention. 
Information Fusion 35 (2017), 51–57. https://doi.org/10.1016/j.infus.2016.09.003 

[35] Sven Stauden, Michael Barz, and Daniel Sonntag. 2018. Visual Search Target 
Inference Using Bag of Deep Visual Words: 41st German Conference on AI, 2018, 
Proceedings. 297–304. https://doi.org/10.1007/978-3-030-00111-7_25 

[36] Julian Steil, Philipp Müller, Yusuke Sugano, and Andreas Bulling. 2018. Fore-
casting User Attention During Everyday Mobile Interactions Using Device-
Integrated and Wearable Sensors. In Proceedings of ACM International Conference 
on Human-Computer Interaction with Mobile Devices and Services (MobileHCI). 
1–13. https://doi.org/10.1145/3229434.3229439 

[37] Florian Strohm, Ekta Sood, Sven Mayer, Philipp Müller, Mihai Bâce, and Andreas 
Bulling. 2021. Neural Photoft: Gaze-based Mental Image Reconstruction. In 
Proceedings of IEEE International Conference on Computer Vision (ICCV). 245–254. 
https://doi.org/10.1109/ICCV48922.2021.00031 

[38] Julia Trabulsi, Kian Norouzi, Seidi Suurmets, Mike Storm, and Thomas Zoëga 
Ramsøy. 2021. Optimizing fxation flters for eye-tracking on small screens. 
Frontiers in neuroscience (2021), 1257. https://doi.org/10.3389/fnins.2021.578439 

[39] Nigel G. Ward, Chelsey N. Jurado, Ricardo A. Garcia, and Florencia A. Ramos. 
2016. On the Possibility of Predicting Gaze Aversion to Improve Video-Chat 

353

https://doi.org/10.1080/21646821.2016.1245558
https://doi.org/10.1155/2011/406391
https://doi.org/10.3389/fcomp.2021.808507
https://doi.org/10.1145/3379155.3391314
https://doi.org/10.1109/BioCAS.2013.6679688
https://doi.org/10.1109/BioCAS.2013.6679688
https://doi.org/10.1145/3343413.3377960
https://doi.org/10.1007/978-3-642-45062-4_15
https://doi.org/10.1109/TNSRE.2020.3048422
https://doi.org/10.1109/TNSRE.2020.3048422
https://doi.org/10.1109/TNSRE.2011.2174652
https://doi.org/10.1109/TNSRE.2011.2174652
https://doi.org/10.1109/ACCESS.2020.3023871
https://doi.org/10.1016/j.neunet.2009.05.008
https://doi.org/10.1016/j.neunet.2009.05.008
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/S1388-2457(00)00533-2
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://api.semanticscholar.org/CorpusID:86824974
https://api.semanticscholar.org/CorpusID:86824974
https://doi.org/10.3389/fpsyg.2015.01049
https://doi.org/doi/10.1007/s11257-013-9142-7
https://doi.org/doi/10.1007/s11257-013-9142-7
https://doi.org/10.1016/j.neucom.2013.08.008
https://doi.org/10.1016/j.neucom.2013.08.008
https://doi.org/10.1016/j.patrec.2015.06.013
https://doi.org/10.1016/j.patrec.2015.06.013
https://doi.org/10.1111/ejn.14992
https://doi.org/10.1007/s11042-013-1391-2
https://doi.org/10.1007/s11042-013-1391-2
https://doi.org/10.1097/00000542-198704000-00007
https://doi.org/10.1097/00000542-198704000-00007
https://doi.org/10.1088/1742-6596/1169/1/012040
https://doi.org/10.1152/jn.90989.2008
https://doi.org/10.1007/978-1-4471-6392-3_3
https://doi.org/10.1145/3379155.3391332
https://doi.org/10.1145/3379155.3391332
https://doi.org/10.1109/ACCESS.2019.2955637
https://doi.org/10.1159/000382023
https://api.semanticscholar.org/CorpusID:52834703
https://api.semanticscholar.org/CorpusID:52834703
https://doi.org/10.1007/978-3-319-12637-1_2
https://doi.org/10.1007/978-3-319-12637-1_2
https://doi.org/10.1155/2017/9674712
https://doi.org/10.1109/CVPR.2015.7298700
https://doi.org/10.1109/CVPR.2015.7298700
https://doi.org/10.1007/978-3-031-30111-7_51
https://doi.org/10.1016/j.inffus.2016.09.003
https://doi.org/10.1007/978-3-030-00111-7_25
https://doi.org/10.1145/3229434.3229439
https://doi.org/10.1109/ICCV48922.2021.00031
https://doi.org/10.3389/fnins.2021.578439


ICMI ’23, October 09–13, 2023, Paris, France Mansi Sharma, et al. 

Efciency. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking 
Research & Applications. 267–270. https://doi.org/10.1145/2857491.2857497 

[40] Thorsten Zander, Jonas Brönstrup, Romy Lorenz, and Laurens Krol. 2014. Towards 
BCI-Based Implicit Control in Human–Computer Interaction. 67–90. https://doi. 
org/10.1007/978-1-4471-6392-3_4 

[41] Minrui Zhao, Hongni Gao, Wei Wang, and Jue Qu. 2020. Research on Human-

Computer Interaction Intention Recognition Based on EEG and Eye Movement. 
IEEE Access 8 (2020), 145824–145832. https://doi.org/10.1109/ACCESS.2020. 
3011740 

354

https://doi.org/10.1145/2857491.2857497
https://doi.org/10.1007/978-1-4471-6392-3_4
https://doi.org/10.1007/978-1-4471-6392-3_4
https://doi.org/10.1109/ACCESS.2020.3011740
https://doi.org/10.1109/ACCESS.2020.3011740

	Abstract
	1 Introduction
	2 Related Work
	2.1 Navigational versus Informational Intent Recognition
	2.2 Datasets for Navigational versus Informational Intent Recognition

	3 Dataset
	3.1 Data Recording
	3.2 Descriptive Statistics

	4 Methods
	4.1 Pre-processing
	4.2 Feature Extraction
	4.3 Classification and Fusion Techniques

	5 Evaluation
	5.1 Cross-user Prediction
	5.2 Within-user Prediction
	5.3 Near Real-time Intent Prediction

	6 Discussion
	6.1 Achieved Performance
	6.2 Applications
	6.3 Limitations

	7 Conclusion and Future Work
	Acknowledgments
	References



