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Abstract

Industry 4.0 has brought about tremendous changes
in equipping machinery and factory setups with sensors
and bridging the gap between the digital and the
physical world. Process mining has proven to be
a valuable tool for analyzing industrial workflows,
gathering models, and checking the conformance
of executions. However, faults that occur seldom
in industrial processes cannot be easily learned by
applying machine learning methods. Explicit nominal
models can help to close this gap. The given approach
shows how nominal product, resource, and process
models can be used in a physical twin environment
to enhance process mining tasks and related error
root cause analysis. In this scenario a model
factory serves as physical twin of a real-life factory.
The paper concludes with a depiction of a potential
proof-of-concept.
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1. Introduction

1.1. Problem Statement

Industry 4.0 has brought about radical changes in
equipping machinery and factory setups with sensors
and bridging the gap between the digital and the
physical world. Process mining has proven to be
a valuable tool for analyzing industrial workflows,
gathering models and checking the conformance of
executions. However, faults that occur seldom in
industrial processes cannot be easily learned by applying
machine learning methods.

Hence, we opt for an approach that seeks to combine
machine learning with nominal models to overcome the

learning problem while trying to address the learning of
rare cases with a physical twin model of an Industry
4.0 factory to implement a rapid test environment
for provoking rare faults and training the underlying
machine learning models much faster.

1.2. Goal

The goal of this paper is to develop and demonstrate
a novel approach for dealing with rare class learning
phenomena in cyber-physical process mining. We
will outline a conceptual framework that concentrates
on evaluating the outcome of cyber-physical processes
along with their constituent root causes that may reside
in the process data itself, or machine and product data
accordingly.

With an exemplary use case for series production, we
highlight some problems that make a pure simulation
approach on synthesized data difficult and provide a
small-scale model factory setup that allows for rigorous
experimentation on rare cases. This is especially
important when the root causes and effects of such faults
are not known and prevent the creation of an accurate
simulation model. We describe this setting from the
algorithmic and physical setup and conclude the paper
with an outlook on its evaluation.

1.3. Methodology & Structure

This paper follows Design Science Research (DSR)
methodology. According to Hevner’s design guidelines,
we design an artifact (cf. Guideline 1 of Hevner et al.,
2004) to explore the problem space. We will propose
possible avenues for evaluation (cf. Guideline 3 of
Hevner et al., 2004). As a fully automated approach is
not feasible in the cyber-physical environment, we aim
for rigorous experimentation in which we vary sensor



and algorithmic configurations (cf. Guideline 6 ”Design
as a search process” of Hevner et al., 2004).

According to Peffers’ DSR process model (cf.
Peffers et al., 2007), we are in an early stage of our
research, where we designed the artifact (cf. sections
5 and 6. We motivate the relevance in section 3, and
we give an outlook on how the evaluation could be
performed based on our prototype, which in this stage
should be seen as a proof-of-concept (cf. Nunamaker
et al., 2015) in Section 7. We conclude the paper
with a summary of the results, a discussion of current
limitations, and an outlook on future work.

2. Related Work

2.1. Predictive Process Monitoring in the
Internet of Things

Predictive Process Monitoring aims at monitoring
a current process instance and predict its current
or next steps - or the outcome of the process (cf.
Francescomarino et al., 2018). As a sub-discipline of
process mining it has the goal to predict the future
of an ongoing process execution. Many approaches
focus on atomic process logs and look at the mere
sequence of process steps. For the Internet of Things,
we do not have such logs available unless we specifically
enact operations by calling actuators, but we have to
derive those logs from sensor data with event abstraction
techniques. Hence, the prediction problem comes into
play even before assessing logs.

At the same time, detecting activities in the Internet
of Things is a complex task. Different sensors and
continuous data can be used for the detection and fusion
of these methods. However, uncertainty remains a
big problem in this context, where process knowledge
in models could help remove uncertainty and provide
improved quality results.

There has been considerable work on process mining
leveraging IoT data. Knoch et al. (Knoch et al., 2018.)
have demonstrated that sensor data could be used to
monitor manual work processes. Rebmann et al. even
demonstrated that the fusion of different sensors could
improve process mining capabilities (cf. Rebmann et al.,
2019). De Leoni and Pellattiero showed in recent work,
that certain aggregation steps might help to obtain better
results in the process mining process (cf. de Leoni and
Pellattiero, 2022).

2.2. Mining of Rare Cases

The majority of process-mining-related
contributions do not focus on rare cases. From a
methodological standpoint, process mining approaches

allow identifying such cases by measuring the
frequencies of process variants occurring in analyzed
data. A rare case contains a rather seldom sequence of
events caused by included rare events, an uncommon
order of events, or even both. An advanced definition
of a rare case might also consider relevant metrics.
Therefore, a case containing common events occurring
in an usual order might still be classified as rare when
metrics such as duration times deviate significantly
from comparative data. However, basic process mining
literature does not highlight rare case phenomena
as a focal point. Instead, they sometimes neglect
uncommon cases since the respective methods often
try to display high-frequency process patterns showing
usual, widespread procedures while also allowing to
analyze rare ones.

The application of process mining becomes more
specific when it’s put into context. Hence, organizations
might focus on rare cases as soon as their occurrence
critically impacts essential goals. Such circumstances
require appropriate analysis to identify, predict, and
affect their appearances. A typical field for those
applications is the need for early fault detection
in complex systems such as machines or industrial
environments where complex sensor data makes
machine learning techniques feasible. Dangut et al.
describe a comprehensive approach to focus on rare
cases in the context of predictive maintenance for
aircraft components (Dangut et al., 2021). They
present a log-based machine learning model to prevent
extremely rare failures and therefore have to deal
with imbalanced data sets. This challenge is also
fundamentally addressed by Ali et al. (Ali et al.,
2019). The authors perform a literature review
and systematically identify challenges in handling
imbalanced class problems using machine learning
algorithms during classification procedures. As a result,
they present approaches to deal with this problem and
list particular advantages and disadvantages. Park et
al. offer a hybrid solution to handle unbalanced data
from industrial processes (Park et al., 2019). Their
approach separates the detection problem to determine
rare events and the diagnosis problem to identify rare
fault events, resulting in a significant improvement in
accuracy. Overall, it can be stated, that rare case
mining is a known problem, yet there are not many
applications in process mining, and none in IoT-based
process mining.

3. Motivating Use Case

In order to demonstrate our approach, we opted for a
use case that fulfills the following requirements:



• R1 - High degree of automation: On the one
hand, like in most production-line settings, we
strive for an environment that is fully automated.

• R2 - Non-deterministic errors and failures:
However, many factors can contribute to
deviations in execution that cause execution
errors and production failures.

• R3 - Observable behaviour can be learned: For
the automatable and often occurring parts of the
use case process, machine learning approaches
can help traditional predictive process monitoring
approaches.

• R4 - Rare or non-occurring behaviour can be
described by nominal (process) models: The
overall goal is to have error flows that describe
how occurring failures can be communicated or
mitigated. Nominal product models can observe
product features and decide whether a failure is
happening or not.

Figure 1. Rare and unknown events in workflow

networks of processes

Figure 1 shows a process map generated from
exemplary data. It illustrates the addressed problem
and our hybrid solution approach. The presented graph
describes occurring events in chronological order. The
frequency of occurring events and the respective paths
are annotated and highlighted. Branches breaking
away from the “happy path” demonstrate that certain
circumstances during a process can lead to results of
particular interest. In this example, insufficient product
quality was determined in three individual process
instances. Here, the claim is now mainly on the causes to
allow predicting and avoiding such defects. Indications
of possible causes of defects can be found above all in

recorded sensor data of cyber-physical systems (CPS).
The example shows one case where the flaw’s reason
is an excessively high temperature. The significant
deviation of the measured value is already classified as
relevant and is therefore considered as a discrete event.
However, the figure also indicates that a significant
humidity deviation may have led to the defect in
another case. Regardless of whether sensor technology
for this influence is missing or specific measured
values were disregarded, circumstances of this unknown
event remain hidden. Compared to the simplified
example of Figure 1, the major problem of respective
real-world-environments is complexity. A CPS often
depends on a large number of sensors and measures
amounts of data accordingly. In this context, defining
and observing relevant events from complex sensor
data constellations are challenging due to uncertainties
regarding the completeness of considered influences and
causal dependencies leading to a specific constellations’
relatively rare occurrence.

DL Output Process Model

A D E

combined result

p=0.5 p=0.4 p=0.1

A E

X

A

c=0.96 c=0.92 c=0.3

e.g. rule-based
membership

x > 20
y < 5

a=E

result cannot be
safely predicted

Figure 2. Example for combining nominal process

models and ML-based process mining models

Figure 2 shows the probabilities for the next process
step and the corresponding process model. As it can
be clearly seen, the deep learning prediction algorithm
favors activity types A and D according to their high
probabilities (variable p). It predicts E only with
very small confidence (variable c). When looking at
the corresponding process model, we know that the
model only allows for activities A and E. Depending on
whether we have a normative or conformative execution,
D would be discarded then. So, for now, we could
conclude that A is the expected result. However,
including a further nominal model could hint that E is
the correct answer. As it can be seen, including process
model knowledge in the mining process can resolve
some but not all problems. Further nominal models we
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Figure 3. Motivating use case

have e.g. about machine and product states could help
to further improve those predictions. Moreover, such
models are invaluable, when the ground truth data is not
sufficient to safely predict the different activities.

Figure 3 depicts our sample use case we have chosen
to meet these requirements: In our case, a USB stick
is being assembled from regular and custom printed
LEGO® bricks. We have three major process phases that
our production process follows: First, a custom 3D brick
is printed, then it is transported with an autonomous
guided vehicle (AGV) towards the assembly plant,
where the parts are being picked and assembled.
Throughout this process, various rare exterior events and
conditions could arise and consequently cause faults.

This use case enables the construction of a physical
twin of the depicted production process to have a similar
technical setup with similar sensors on a much smaller
scale. Within this physical twin, we try to introduce rare
events by experimenting with exterior conditions like
humidity and lighting conditions, configuring different
wear-out stages in parts of the production line, and
confronting the AGV with unknown obstacles. By doing
so, we can induce such events and still learn from
their occurrence, especially in this LEGO® model
setting, as we assume that this can be transferred to
larger plants to derive the required learnings. As we
can see that some of the occurring events are rather on
the process side, whereas others relate to the production
resource itself (e.g., the press) or the product itself.
Having nominal models in place that describe the
product behaviour can hence help to handle unknown
and rare events even if the case base for machine

learning is insufficient.

4. Framework Design

4.1. Errors, Failures and Faults

The technical concept describes data generation
and analysis to investigate procedures for handling
rare classes. The interaction of sensors and actuators
shapes a production process where machines convert
particular material into a product. Products have certain
specifications and properties that can vary depending
on a separate order. We assume a regular production
process whenever a finalized product matches the
specifications of its order and all quality requirements.
If the characteristics deviate and issues are evaluated
as a product defect, we conclude a failure caused by
at least one fault. If the causal chain of fault, failure,
and defect occurs seldom or is partially unknown,
various problems arise in dealing with such cases. Our
contribution presents approaches and solutions for such
challenges. To mimic industry setups from reality where
rare cases of high interest occur, it’s crucial to include
several requirements for fault-failure-relations within
our physical twin:(i) Occurring faults still allow process
completion. (ii) Failures that have an impact on the
product quality become evident within data. (iii) Faults
to failures and failures to defects are n : 1 related. (iv)
Several faults can happen in sequence.

Meeting those requirements guarantee the need
for analysis since root causes and dependencies are
not obvious. Figure 4 shows a slice of respective



Figure 4. Fault-failure-defect-relation

fault-failure-defect-relations presenting a sample case
that is covered within our model-factory. The discovered
relation chains will be modeled with knowledge graphs
to enable quick querying of these aspects as run-time
(cf. Steinmetz et al., 2022 for a similar approach for
representing digital twin models in knowledge graphs).

Allowing this wide range of issues within
our processes is essential to have an appropriate
combination of physical environment generating data
accordingly to evaluate our solutions. However, the
focus for our research is finding appropriate solutions
to deal with rare and unknown fault classes which are
the minority of cases in industry and the twin we are
presenting.

4.2. Physical twins

Contrary to a mere digital twin, which mirrors the
functionality and state of a real physical entity in a
digital format, the model factory we developed also
mirrors the capabilities of the larger factory in the
physical sense. On the abstraction level of components
and their respective Skills the two factories are nearly
identical. The specific physical implementation differs
of course, but the input and output materials as
well as executed process steps are interchange able.
The machine, their machine capabilities and sensor
parameters are specified in an OPC-UA format (cf.
Sidorenko et al., 2021).

Figure 5. Physical and Digital Twins

4.3. Common Analytic Tasks for both
Physical Twins

Abstracting event logs for process mining from
sensor data: Generated data of addressed industrial
environments shows two major levels of abstraction.
First, the product specification determines individual
work steps and materials usage. Thus, for each product
type, a system controls the execution of tasks for
production. Crucial information can be recorded at this
level by logging relevant events and accurate timings. At
the more detailed level of abstraction, the sensor data of
integrated machines exist related to the task’s execution.
They control specific functionalities of machines and
are used for individual activities that are components of
the tasks above. In contrast to discrete documentation
of events of the rough process, sensor data basically
provide information permanently as a stream. Essential
data usage is the common consideration of recorded
events under consideration of the sensor data streams
for reconstructing individual production processes. In
particular, process sequences and associated sensor data
patterns are used for this purpose. By abstracting the
event logs using the Skill format, we abstract from the
specifics of the physical twins and create a common
signature that is comparable among the two physical
twins.

Analyzing the error root causes and cause-effect
chains: In the context of fault classes, the primary
interest is identifying a fault’s root cause(s). Here,
a major challenge of rare or unknown classes results
from the lack of reference data leading to limited
feasible machine learning methods. For these cases,
hybrid approaches will be introduced that incorporate
nominal models. This approach should lead to the fact
that irrelevant information can be excluded to redirect
the focus of machine learning procedures on crucial
aspects and thus enable better results in classification.
In addition, we will investigate whether a deliberate
provocation of faults can lead to additional reference
data for learning rare classes or the occurrence of



previously unknown classes.

4.4. Algorithms for IoT Process Mining

Based on the data that will be captured, the processes
should be analyzed in order to determine the activities
in which specific errors and faults occur and how likely
it is that a certain error will occur in a certain part
of the process. A majority of algorithms in process
mining are rather sequence-oriented and hence just
focus on the execution sequence of process activities.
In our scenario, however, other workflow data or
environmental conditions may have a significant effect
on the process outcome and hence cannot be entirely
covered by a pure analysis of the process flow.

Table 1 shows the different algorithms that are
envisioned to be tested in our model factory. One
crucial task is the activity detection of the next
process step. Conceptually, this comes down to a
multi-class classification of the next process label. As
a baseline many approaches in literature favor the use
of long short-term memory (LSTM) networks that are
especially a good fit for sequential data and which
are usually activity with a softmax function, i.e. the
individual label probabilities sum up to 1. As loss
function here, a sparse categorical cross entropy loss is
planned. A more advanced approach is the sequence
prediction which seeks to predict a whole execution
sequence of process activities. The sequence length
hence can be encoded by multi-step encoder-decoder
LSTMs. Here rectified linear units (ReLu) or sigmoid
are candidates for the activitation function, and per-class
binary cross entropy loss for the loss function. For
simple Error predictions we use similar methods as for
the activity recognition. Here, we predict the respective
errors based on the same input data. However, we use
a sigmoid function as an activation function here, as we
perform a multi-label classification as errors could occur
simultaneously.

These methods do not take into account the severity
of errors. Therefore we try to apply an approach
translated from risk management to this domain in the
following way:

scoreFault = pFault ∗ severityFault (1)

We can use this as a basic cost function for a Deep
Reinforcement Learning approach leveraging LSTMs
with policy gradients or deep Q-learning networks
(DQNs) (cf. Osband et al., 2016). This ensures
that nominal knowledge and the risk score can be
considered.

5. Monitoring, Actuation and Analysis in
the Model Factory

This section describes how our model factory
gathers, monitors, and analyzes the respective sensor
data. On a low level, the LEGO® sensors and
controllers have to be integrated on a local Raspberry Pi
4.0 device via Message Queueing Telemetry Transport
(MQTT) over a Mosquitto server (cf. subsection 5.1).
Furthermore, we provide an outlook in which software
and analytics components are already implemented and
envisioned in the future for our model factory (cf.
subsection 5.2).

5.1. Technical Integration of the Model
Factory

Considering the setup of the LEGO® factory’s
relevant hardware (cf. Figure 6), a server side instance
of a Process Engine manages the manually designed
business process. This instance acts as the control
authority for the factory. The next physical component
is a RaspberryPi 4 which is the central hub for a number
of LEGO® specific EV3 devices and non LEGO®

sensors, such as inertial measurement units (IMU) and
environmental sensors. The EV3 devices are physically
connected to the RaspberryPi and have their own local
network for communication. The EV3 devices are able
to run a limited amount of Python code and are capable
of supporting up to four sensors and up to four actuators.
They provide both signal transmission and power supply
to the connected devices. Communication between the
server side control authority, the RaspberryPi and the
EV3 devices is implemented using the MQTT protocol
whith the MQTT broker hosted on the RaspberryPi
so it is capable to access both the internal network
of the EV3 devices but also the network connecting
it to the server side. Furthermore, the Apache Kafka
event streaming platform is utilized to provide a
second means of communication to multiple decoupled
analytics components on the backend side. This allows
for targeted data transfer via a publish and subscribe
pipeline.

5.2. Software and Analytics Architecture

The software and analytics architecture as depicted
in Figure 6 shows which functionality is implemented or
planned in future iterations (yellow) in a server backend
or dedicated frontends.

For the backend server, a core part is the Process
Engine, which serves as a central entity to monitor,
control, and enact the different functionalities in the
depicted factory process. Hence, every operation
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Figure 6. Software Architecture of the LEGO® model factory

and thereby every state change of a component that
is physically executed is being reported back to the
Process for keeping track of the current execution state
(Process Monitoring). Furthermore the BPE enacts
functionalities by triggering Skills of said components
in the physical twin (Process Control). Skills represent
a standardised means of describing the capabilities
of a component, including possible input and output
parameters as well as error scenarios (cf. the used
specification format of Sidorenko et al., 2021). Specific
Skill-relevant knowledge can be evaluated in the Rule
Engine which is based on JBoss Drools and the graph
database neo4j for more complex reasoning tasks. The
signals in both directions are being exchanged via
Apache Kafka (Message Bus) and MQTT (LEGO®

and Sensor Integration Interfaces) respectively. As
BPE we use the widely available open source software
implementation jBPM. Process Predictions serve as
entry-point to provide process-related risk estimations
for faults, failures and defects. Future iterations plan to
involve Process Recommendations to provide feedback
to workers to handle or even prevent such events.

The LEGO® Model Factory Control and the
Real Factory Control both comprise interfaces to the
underlying, different sensor infrastructures via MQTT
protocols. Both controls have in common that they
pre-process and aggregate the sensor information into
dataframes and capture them via the Skill dataformat
and push them to the Message Bus.

As possible means for interaction with workers in
a later development stage it is planned to leverage the
capabilities of a head-up display (HUD) frontend or
a mixed reality interface. The HUD display is rather
directed to the operators controlling the machinery and
checking in from to time to get summarized depictions
of the factory state, whereas the Mixed Reality Interface
is envisioned for interactive fault analysis. Hence
it should also visualize errors and enable feedback
mechanisms of the worker in the future as well as
display the current execution state of the process. An
Interactive Tagging Tool serves as labelling source for
observations made on the Model Factory in order to
support supervised machine learning on the observed
phenomena.

6. Prototype Design

The physical prototype is a model factory that
mimics an industry environment. It is intended to
provide a source for data generation and can be used
to demonstrate several use cases in the context of rare
cases within IoT scenarios. The model factory’s current
setup contains 21 sensors and 18 actors that allow the
assembling of LEGO® parts according to a particular
product specification. The technical architecture which
is necessary to apply the control code and collect data
can be found in section 5. Using LEGO® components
for this purpose empowers our research to design a

Table 1. Algorithms for IoT Process Mining
Process Problem Activity detection / prediction (1 step) Sequence prediction Process Outcome Prediction Error Prediction
Base problem Multi-class classification Sequence of multi-class classifications Minimize risk score (cf. above) Multi-label classification
DL Type LSTM Multi-step encoder-decoder LSTM Deep Reinforcement Learning: LSTM with policy gradients / DDQN LSTM
Activation Function Softmax Rectified linear units (ReLU) / Sigmoid ReLU or variants Sigmoid
Loss function Sparse categorical cross entropy loss Per-class binary cross entropy loss Per-class binary cross entropy loss Per-class binary cross entropy loss



custom factory setup where rare cases basically can
occur. Such occurrences within a model factory become
visible in the physical process and data, while real-world
environments usually rely on data analysis only.

The factory consists of certain components that are
physically separated and fulfill different tasks. This
environment includes two material storages providing
several LEGO® bricks for assembling, a transportation
crane, a press combining two bricks, a quality check
for product evaluation, and a product storage for final
placement. Whenever an assembly is initiated, the
storages will provide bricks according to the respective
order. Next, the crane picks them up and puts them
into the press while the press prepares a unique frame to
precisely support the placement to achieve the intended
shape of the product. When both bricks are in position,
the press applies pressure to combine them and releases
the resulting product for transportation by the crane,
which takes it to quality assurance. Here, the product
is assessed according to its specification and visually
checked for physical anomalies. As a last step, the
crane picks up the product and puts it into the product
storage. This architecture is described in Figure 7 by
using HERAKLIT (cf. Fettke and Reisig, 2021).

A crucial feature of the factory is its ability to
create many product variants. While the lower brick
remains the same size, it can just have different colors.
The upper brick can differ in colors but also in three
possible sizes. Additionally, each upper brick type can
be assembled at three different positions on top of the
lower brick. Considering the shape variations and four
different possible colors for each brick, a total number
of 144 product variants result.

Whenever a product is ordered, the factory executes
the process automatically, allowing mass assembling
due to the CPS setup without manual tasks. Therefore,
the built-in sensors are essential to the infrastructure
since they control the execution of tasks. During
assembling, faults can occur, leading to product failures
that will be identified at the quality assurance. However,
the failure detection can only classify failure types,
where one type can result from different faults or
respective fault combinations. Hence, the recorded data
has to be investigated to clarify the failure’s root cause.
An example of such a scenario is a deviation in the
color of at least one brick. This flaw can easily become
identified by either a sensor or picture evaluation within
quality assurance. However, the root cause could result
from a faulty classification of bricks in storage locations,
a faulty provision of a material storage location to the
crane, a fault in reaching the correct stop location of the
crane resulting in picking a brick from a wrong storage
line, or any combination of those issues.

7. Evaluation Concept

Over the next few months, test runs are planned
with our factory setting in which we try to induce rare
events and evaluate different configurations of sensors
and algorithms. With many physical components,
complete automation is not possible, and the respective
evaluations have to be supervised by human operators.

• Divide and conquer: Divide the process into
different chunks of execution frequency. They
can be run separately and hence could provide
the necessary data input variations for the other
execution chunks.

• Build nominal models on baseline data: Record
a fair amount of baseline reference data, that can
be considered as ”good” instances, in order to
build a nominal model.

• Try to identify unknown faults through outlier
detection: Deviation models can help to detect
outliers from the norm and can be used for detail
inspections of the products, in order to verify
whether these outliers caused any observable
product faults.

• Synthesize and augment test data: The
recorded chunks can be synthesized, improved
and simulated using Monte Carlo methods.

• Simulate with rare portions of the process:
Use the above mentioned augmented data to
simulate the process and automate the test
execution for other parts. By doing so, you
ensure that more variety is in there as in
the standard probability distribution of process
executions. Here especially executions of
the Deep Reinforcement Learning algorithm as
described in Section 4.4 should be used to predict
the end-to-end probabilities of certain fault risks.

For our given use case, it makes sense to divide the
process for the parts of the 3D printer and the AGV as
these offer a wide range of variety and the execution
needs eager supervision and possibly intervention by
operators. Once those logs of the respective process
parts of the 3D printer and AGV can be synthesized,
the latter process part of the assembly can be tested in
a much quicker and automated manner.

The following conditions could be changed and
parametrized throughout execution in order to provoke
rare events:

• lighting: The lighting conditions can have an
effect on the optical recognition of the color



Figure 7. Conceptual and physical architecture of assembly stage

sensors. Light intensity and color might have
interference with certain colors of bricks.

• humidity: The room humidity has an impact on
the reliability of the 3D printer.

• room temperature: The room temperature has an
impact on the reliability of the 3D printer and the
quality of the resulting printed brick.

• product variants: It is not efficient to permutate
all 144 product variants, but permutating the form
variations for the ”press” component and the color
variations for the optical sensors is interesting to
provoke possible errors and faults.

In terms of evaluation metrics, not the overall
mining accuracy is paramount: As each process activity
is associated with a certain risk weight, the overall
system should optimize all activities’ weighted per-class
accuracy.

8. Conclusion

8.1. Core Results

Our approach has shown a concept for
experimenting physical processes for rare case
process mining. We developed a framework for series
production based on fault and failures that proposes to
evaluate process execution success based on the failure
rates actually achieved throughout execution. Hence,
rarely occurring process events that have a high impact
on this, have to be considered and weighted accordingly.
We explained our approach, how to use process mining
algorithms in combination with synthesized data and

manipulations in execution experiments in order to
provoke rare events. In a LEGO factory’s exemplary
production setting, we demonstrate how such data can
be obtained and integrated to perform real-time analysis
of these events.

8.2. Limitations

The approach is in the stage of implementation at
the moment, and we cannot offer a fully integrated
evaluation. However, we have achieved significant steps
in this development process. The choice of sensors
is neither exhaustive nor representative for industrial
settings, whereas other essential aspects, such as the
explainability of the results presentations to the user
and the assistance functionality towards them, are not
described in this paper.

8.3. Outlook and Future Work

Overall, actual large-scale experimentation is the
natural next step to evaluate the feasibility and value of
the presented approach. We are confident that it could be
applied and tailored to other scenarios in sensor-based
production and could inspire future work in that
direction. It has the potential to build cost-effective
models of factory setups that could be used as a base
to pre-train machine learning models in a much faster
and cost-efficient way as on the target factory settings.
Also, applications for worker-focused systems could be
conceivable (cf. Raso et al., 2018; Yigitbas et al., 2021),
which could prove to be quality-of-life improvements
for the day-to-day work in quality inspections.
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