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deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Declaration
I hereby confirm that the thesis presented here is my own work, with all assistance ac-

knowledged.

Saarbrücken, September 29, 2021



Abstract

Transcribing huge amounts of handwritten text is necessary to train supervised

machine learning models due to the variability of handwritten text. This however

is costly in both time and manpower. A common strategy to speed up annotation

processes is to use human-in-the-loop methods and giving supporting suggestions

to the annotator. In this thesis a combination of Transfer Learning and Active

Learning with uncertainty sampling is proposed to incrementally train a well per-

forming model that produces these suggestions after seeing only a few samples.

We compare this strategy to using Active Learning with random sampling and find

that uncertainty sampling leads to better suggestions and see a reduction in time

humans spend in the annotation process by more than a half. We also find, that

Active Learning converges at a better performance than conventional methods,

that learn from all training data at once.
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1. Introduction

Though there are more and more unsupervised approaches emerging, the great majority

of modern machine learning applications are powered by supervised machine learning

and require human feedback. Today, our intelligent devices are learning less from pro-

grammers who are hardcoding rules and more from examples and feedback given by

humans, programmer or not. Be it an in-home virtual assistant or a machine transla-

tion system, they all rely on thousands, sometimes millions of annotated samples - the

training data. Thus it is not surprising that one of the most widespread challenges for

machine learning applications today is data scarcity. Having access to only a limited

amount or no training data at all, makes the creation of usable supervised machine

learning models impossible. In times of big data the availability of data in general is not

always the problem anymore, but often there is an abundance of raw unlabeled data,

that can not be used for machine learning until labeled by a human. This special case of

data scarcity is called annotation scarcity. Common reasons why data is only scarcely

annotated are, that the annotation process is too costly in time, manpower or money.

This is typical for data where experts must do the labeling as in the medical domain, or

when the task is especially time consuming as is often the case for semantic segmentation

of images and handwritten text recognition.

One such example is annotating the Paquid dataset – a collection of over 12000 scans

of handwritten patient records and interviews [8] (see Section 3.1). Similar data is

used in current dementia research [18], but there is very little data available that is

in traditionally machine-readable form. Due to the scale of the Paquid dataset the

transcription of its contained text is sought after for training machine learning models.

However, as long as they are in the form of images of handwritten text they are useless

for such purposes. Since transcribing all 12000 relevant scans completely by hand is

fairly inefficient and the resulting cost would be not viable either, the obvious solution

is to (semi-) automatically transcribe the text contained in the images into digital text.

Offline Handwritten Text Recognition (HTR) systems transcribe text contained in scanned

images into digital text. In contrast to the more well-known Optical Character Recog-

nition, HTR does not focus on transcribing individual letters. Instead, it scans and

processes images of entire lines or words and tries to decode this data in sequence. The

input for HTR systems therefore usually has to be segmented separately in a previous

step, i.e., depending on the system, either the words or lines of handwritten text have to
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be isolated before being processed by the HTR model. The simplest method to extract

the lines is to place a simple rectangle (bounding box) for each localized line.

A system able to effectively recognize handwritten words should be able to deal with

the inherent variability of handwriting text. This variability not only comes from the

different writing styles across different individuals, but also shows in text written by

the same person at different times, with different writing materials (for examples see

Figure 5).

For HTR systems, and machine learning in general, most of the time the solution is

to just increase the amount of training data to account for all the different styles and

variants. However humans have the same problem as well. Some hand writings may be

easier to decipher than others and being unfamiliar with the text or even the language

it is written in may amplify the problem further. Annotations for HTR therefore are

typically costly on account of the duration of the process combined with the large amount

of data needed.

To minimize this cost, we need to both minimize the amount of labeled data that is

needed to train a machine learning model model and also minimize the time an annotator

needs to label the data. Fortunately there exist methods to achieve exactly that: Human-

in-the-loop machine learning techniques combine human and machine intelligence to

both help machine learning models with training more efficiently and also assist humans

in the annotation process. The cornerstones of human-in-the-loop machine learning

are sampling data that is advantageous for training the model, labeling them by a

human, using that data to train a model, and using that model to sample more data

to annotate. Its most common method is to use Active Learning (AL), a incremental

learning technique that decides which samples it should learn from next based on some

criterion. Through incrementally adding to the training data, the model then gets better

with each iteration until it can theoretically be used to predict the rest of the data fully

automatically. The most common sampling criteria are either to just choose samples at

random, or, more effectively, choose samples, for which the machine learning model is

uncertain about the correct label.

We now established how humans can help a machine learning model to learn more

efficiently, but maybe the model could help the human with labeling? To compute

uncertainty, the model has to generate predictions for all unlabeled data anyway. We

could then use these predictions as suggestions for the human annotator. That way, if at
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least some of the predictions are correct, the annotators only have to amend the wrong

predictions and therefore save time.

The topic of this thesis is to explore possible strategies how to annotate a dataset such as

the Paquid dataset efficiently using human-in-the-loop machine learning. The proposed

best strategy is using AL with uncertainty sampling. The model’s predictions for the

sampled items in each iteration are then used as suggestions in the annotation process.

There are three research questions that this thesis seeks to explore:

1. Does an HTR model trained with Active Learning produce better sug-

gestions in each iteration when using Uncertainty sampling than with

Random sampling?

We want to of course use Active Learning in the most effective way, so we need

to explore if uncertainty sampling is actually beneficial in an HTR context or if

random sampling gives similar results.

2. Do suggestions predicted by an HTR model trained with Active Learn-

ing with uncertainty sampling make the annotation process faster com-

pared to using only a pretrained model?

Since uncertainty chooses samples where the model is the least confident, the pre-

dictions for these samples must be expected to be the least correct ones. Of interest

is then, whether the suggestions even benefit the annotation process.

3. Does an HTR model trained with Active Learning converge at a better

performance than non-incremental learning methods?

Another interesting aspect is, whether the resulting models can be used not to

just produce suggestions, but to automatically correctly predict the rest of the

dataset. The AL models’ performance should improve with each iteration until

they converge at a certain point. The question would then be, how the performance

of AL compares to training a model with convential methods, i.e. using all training

data at once.

In the following chapters we will explore potential answers to these questions. First,

to establish a mutual understanding of the topic and the prerequisites, we will discuss

the related work, concerning annotation tools, HTR systems, and how Active Learning

and Transfer Learning were previously used with HTR. After that the systems and data

that was used for the experiments are introduced: In Chapter 4, the digitization- and
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annotation tool HUMAN is introduced. The mentioned Paquid dataset, a prime example

to show the challenges for HTR and human annotation alike, is presented in Chapter 3.1,

followed by the HTR system Pylaia in Chapter 5. The conducted experiments to find

answers to the research questions and their results are presented in Chapter 6 with their

implications on the research questions being explored in Chapter 7 Finally we conclude

the thesis with potential answers to the research questions and discuss the new questions

that arose from the findings of the experiments for future work.

2. Related Work and Prerequisites

2.1. Handwritten Text Recognition

Handwritten Text Recognition was as a matter of fact one of the first application scenar-

ios of neural networks. As early as 1998 Lecun et al. [17] proposed Convolutional Neural

Networks (CNN) to recognize handwritten digits from the MNIST dataset. These early

approaches largely depended on the use of Hidden Markov Models (HMM) to handle

the sequential nature of handwritten text [6]. These are nowadays largely outperformed

by using Recurrent Neural Networks (RNNs) not only in HTR but nearly all Natural

Language Processing tasks. Subtypes of RNNs, such as Bidirectional Long Short-Term

Memory (BLSTM) [12] or Multidimensional Long Short-Term Memory [14] have been

widely adopted by the handwritten text recognition community. However there still are

newer competitive approaches combining HMM with RNN [5, 3].

Formally, what these systems are trying to solve is the following optimization problem:

ŷ = argmax
y

P (y|x) (1)

Where ŷ is the output transcript, x is the input signal, represented as a sequence of

frames in an image, and y is a sequence of textual symbols typically characters. The

frames are typically a vertical column of pixels of a predefined kernel size, which are

passed through multiple CNN layers. The resulting sequence is then processed by one

or multiple RNN layers.

However, there is an inherent issue when trying to train HTR systems: How do we align

the pixel frames in an image with the corresponding transcript of the text contained in
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that image? This task is not as trivial as it may seem, because the input length of the

symbols in the image may vary in length and the frame size can not be dynamically adapt

to that. This problem is also well-known in Automatic Speech Recognition (AMR),

where people’s rates of speech varies and we have a continuous signal that has to be

mapped to text. Connectionist Temporal Classification (CTC) [15] offers an approach

to finding this alignment between input and output. The output of the RNN layers is a

2-dimensional CTC matrix containing all symbol probabilities for each frame.

Figure 1: Example for GBF Decoding for CTC: The network makes predictions for each
timestep (separated by red lines). Greedy Best First search computes the
sequence of labels with highest probability in each timestep. Then repeating
tokens are merged and empty tokens removed, resulting in the final output
text.

A CTC decoding algorithm maps these symbol probabilities to the final text. The most

standard decoder uses Greedy Best First search (GBF), choosing the token with highest

probability in each timestep. In the resulting sequence repeating tokens are first merged

and then any empty tokens removed. Figure 1 illustrates the full process in an example

As a side note, due to the relation to AMR, frames are conventionally called timesteps

in this context.

Beside GBF decoding, there are other approaches to calculate the final labeling from a

CTC matrix. Graves [13] introduced the token passing alorithm based on state machines.

Their algorithm searches for the most likely sequence of words in a dictionary by aligning

them with the CTC matrix and scoring word-transitions with a Language Model.

Other decoding approaches such as CTCWordBeamSearch [28] incorporate a combina-

tion of beam search with a Language Model. Beam search is a heuristic search algorithm

that explores a graph by iteratively expanding the most promising node in a set of can-

didates. In the case of HTR multiple candidates for the final labeling are calculated
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from the probabilities in the CTC matrix. These candidates are called beams. In each

iteration, each beam-labeling is extended by all possible labels and the beams from the

previous iteration to form a tree as shown in Figure 2. To avoid exponential growth

of the tree, only the beams with highest probability are kept after each iteration - the

number of beams to keep is named “beam width”. If two beam-labelings are equal, they

get merged by first summing up the probabilities and then discarding one tree.

Figure 2: Example of iteratively extending beam-labelings (from top to bottom) to form
a tree. Possible candidates are “a” and “b”. The beam width is 2 meaning all
except for the two best beams are removed (red cross) and equal labelings get
merged (blue arrow). (Figure taken from Scheidl et al. [28])

Scheidl et al. [28]’s CTCWordBeamSearch introduces a mechanism to score the beams in

each iteration with a word-level Language Model. It works by keeping track of the last

decoded word in the beam and predicting possible words based on the current character

sequence. A Bigram Language Model then computes scores based on the last word and

all possible words and the scores are summed up. The best beams are then found by

multiplying the beam probability with the Language Model score.

Examples for models that are based on the described CNN-RNN-CTC architecture are

SimpleHTR [27], Bluche et al. [4]’s model and Pylaia [25].
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Both the model by Bluche et al. [4] and SimpleHTR use computationally costly mul-

tidimensional LSTM layers. Puigcerver [25] found that using these multidimensional

LSTM networks may not be necessary for a good outcome. His finding suggests, that

“2D-LSTMs could be replaced by convolutional layers, at least at some extent in the

lower layers, reducing the required computational resources with no (or little) loss on

accuracy” [25]. A version of the framework Pylaia, that resulted out of these findings, is

now used together with the annotation tool Transkribus [22] (see Section 2.2). A more

detailed description of Pylaia follows in Chapter 5.

Nurseitov et al. [24] compared these 3 models for Russian and Kazakh handwriting

recognition. One of the tests was to classify handwritten city names, a related task

to recognizing animal names which was the focus of the experiments in this thesis. All

models performed well on the task, with Bluche et al. [4]’s model and SimpleHTR slightly

outperforming Puigcerver [25] due to overfitting.

2.2. Annotation tools

There are a plethora of annotation tools concerned with transcribing handwritten text

or semantic segmentation. Some interesting examples are listed in this section.

Trankskribus [22] is an annotation tool for handwritten text and is mostly used for

historical texts and manuscripts. The annotated data can then be uploaded to a server

and used to train an HTR model with Pylaia (see Section 2.1 and Chapter 5). This

model can then be used to directly annotate new data or give suggestions to human

annotators.

Yimam et al. [35] used WebAnno [11] to annotate named entities. The annotators were

shown predictions of a Named Entity Recognizer model with an f-score of 0.89. Showing

these suggestions made the annotation process 20% faster than when not showing them.

Nova [2] uses a Human-in-the-Loop approach to train machine learning models while

annotating. It allows to train and evaluate machine learning models, such as Support

Vector Machines or neural networks directly from the interface. There are two strategies:

(1) Session completion, where a model is trained on the first minutes of an annotated

sessions to predict the remaining session, and (2) session transfer, where a model is

trained on multiple sessions to predict completely unknown data.
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Supervisely1 is a commercial web platform for annotations of computer vision tasks. It

incorporates a variety of models and model pipelines to generate suggestions to help

annotators.

HUMAN [33] is another open source web-based annotation tool that uses modules to

cover a variety of annotation tasks on both textual and image data. Chains of these

modules are controlled by a deterministic state machine, making it a flexible and fast to

set up tool. The server-client structure and its modularity allow it to be easily used in

a human-in-the-loop system. As this is the tool that was used for experiments in this

thesis, it is described in more detail in Chapter 4

2.3. Human-in-the-loop machine learning for HTR

The large cost for annotations raises the question, if and how it is possible to combine

human and machine intelligence in the most efficient way to reduce this cost. Human-

in-the-loop machine learning represents one solution to this question. Its most common

techniques are to use Active Learning (AL) together with annotations. Machine learning

models almost always get more accurate with more labeled data. Active learning is the

process of deciding which data is used in the learning process. The most common

technique to find the most beneficial data for training a model is to let the machine

learning model itself decide which samples it should learn from next.

Figure 3 shows the Human-in-the-loop process in principle. Through incrementally

adding to the training data, the model gets better in each iteration until it can theoret-

ically be used to predict the rest of the data fully automatically. Therefore the general

term for this type of learning is “incremental learning”.

1https://supervise.ly (accessed: 15.12.2020)
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Figure 3: The Human-in-the-loop paradigm, employing Active Learning and human an-
notations to label data. (1) Predict labels for all unlabeled data in the data
pool. (2) Choose interesting samples. (3) Remove the chosen samples from the
data pool. (4) Human annotator labels the candidates. (6) The labeled data
gets appended to the training data. (5) The model retrains with this data.
Repeat from (1).

There are two dominant methods to choose the interesting candidates for training -

random sampling and uncertainty sampling. Random sampling, as the name suggests,

just chooses random samples from the pool of unlabeled data. Uncertainty sampling,

on the other hand, chooses unlabeled items that are near the decision boundary in the

current model. For a binary classification task, an uncertain item will have close to a

50% probability of belonging to either label. These items are most likely to be wrongly

classified, so they are the most likely to result in a label that differs from the predicted

label. The idea is, that after adding the labeled uncertain items to the training data

and continuing the training of the model, the decision boundary will be moved and the

model can distinguish better between the two labels. There are many ways to calculate

uncertainty. The three most common approaches according to Settles [29] are:

1. Least confidence sampling

The least confidence is the difference between the most confident prediction and

100% confidence. This is the easiest method to compute as we can just choose

samples for which the most probable label prediction had the lowest probability

compared with all other samples.
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2. Margin sampling

The difference between the two most confident predictions - for the label that the

model predicted, how much more confident was it than for the next-most-confident

label.

3. Entropy-based sampling

Entropy, also known as surprisal, is a metric in information theory, that represents

the amount of information needed to “encode” a distribution. As such, it is also

often thought of as a measure of uncertainty in machine learning. Entropy is

defined as

H(x) =
−
∑n

i=1 P (xi)log(P (xi))

log(n)

where n is the number of possible labels and P (xi) is the prediction probability

of label i. Thus in contrast to the other two sampling methods, entropy-based

sampling takes all probabilities for a prediction into account.

That leaves us with only one more question: How do we start the process? In the first

iteration, we do not yet have a model which could produce any predictions, so we can

not find uncertain items or show suggestions to the annotator. A common and recently

very popular technique to solve this is Transfer Learning.

Transfer Learning (TL) is the process of taking a machine learning model that was built

for one specific task and adapting it to another task. This is also known as domain

adaptation or pretraining models. Popular pretrained models that are commonly used

for TL include BERT[10] for NLP tasks or ImageNet[9] for Computer Vision tasks,

revolutionizing their respective fields over the last years. The way this typically works

is that the last layer or last few layers of a base model are refitted to output new target

label for the desired task. This is useful, when there is not enough data available to

achieve a high accuracy for a specific task, but there is enough data for a related task. As

a simple example, let’s assume that we are doing semantic segmentation on images and

want to identify cats and dogs and only have a small dataset containing images labeled

“cat”and “dog”. Let’s also assume we have an additional much larger corpus of labeled

images of zoo animals. We could then train a model on the larger zoo dataset which can

then classify “lion”, “wolf”, “elephant”, and so on really well and then continue training,

(also known as “retrain” or “fine tune”), the last layer with our very small corpus to

output the labels “cat” and “dog”. However when the output labels are the same in

both tasks, as is in HTR system which recognise the same characters, it is common to
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fine tune the complete model with samples from the target domain.

There are no large corpus pretrained models available out-of-the-box for HTR as they

are for Computer Vision or general NLP. It is however possible to train an HTR model

on a larger dataset of handwritten text ourselves. This base model can then produce

predictions for the Paquid dataset or any handwritten text, but these models typically

do not generalize well for new samples because of the mentioned inherent variability of

the data. Thus fine tuning with for example Active Learning is necessary to get a model

that produces actually helpful suggestions.

Following are some examples where Transfer Learning and human-in-the-loop methods

were used for HTR applications or similar problems.

There are two examples where Transfer Learning was successfully used for HTR: Aradil-

las et al. [1] tried to improve HTR for small training data sizes by applying TL. They

trained a HTR model with the CNN-LSTM-CTC combination, as described in Sec-

tion 2.1, using the IAM Dataset [21], one of the largest freely available labeled datasets

of handwritten text. They then retrained the model on the Washington Dataset, a

comparably small dataset of 565 text lines. They tried retraining with all combinations

of the last layers of the model, from just the last layer to all layers from beginning to

end. The results showed, that retraining nearly all layers yielded the best prediction

performance on the smaller Washington dataset and a massive boost in performance,

5% Character Error Rate (CER) with TL compared to 40% CER by learning only from

the Washington dataset. Cascianelli et al. [7] also tried learning on different larger scale

corpora, one of which was the IAM dataset, with the Pylaia HTR-system. Interestingly

they did not fine tune the model on the target corpus but tried adapting the model

directly and transcribe ancient italian manuscripts. The results of this were expectedly

fairly unsatisfactory, with CER of 70%.

Active Learning was occasionally used for HTR in the past: Romero et al. [26]’s approach

is one such example. They derive the final labels for handwriting through a probabilistic

finite-state automaton and compute the derivational entropy of all possible paths. Their

AL algorithm then chooses samples with the highest derivational entropy, obtaining

slightly a better WER than when using random sampling.

Malhotra et al. [20] presented an approach for AL and CTC in the related field of

Automatic Speech Recognition. They used the path probability of the decoded CTC

sequence as a uncertainty measure and selected the samples with the least confidence,
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normalized for length of the sequence. They also tried sampling randomly and found

uncertainty sampling consistently outperforming random sampling. Finally using AL

to not only benefit the model performance, but also support humans in the annotation

process by showing suggestions of the current model was proposed by Yang et al. [34]

for segmentation of biomedical images. However they did unfortunately not compare

the annotation times with or without these suggestions.

3. Data

To answer the research questions, parts of the previously mentioned Paquid dataset were

annotated. This corpus serves as a typical real-world example to show the challenges

both human annotators and HTR systems face. In this chapter, first the dataset itself

will be introduced and the challenges in annotating it will be described, followed by the

preprocessing steps that had to be performed before the experiments.

3.1. Corpus

The Paquid[8] cohort are 3777 individuals aged 65 years or older from France. A subset

of 2792 subjects was studied from 1988 until 2004 on the prevalence and the correlates

of clinically diagnosed dementia.

The study’s resulting dataset that I had access to consists of 12581 PDF and TIFF files

for 2615 test subjects, containing scans of filled in patient interview forms written on

paper. The subjects were interviewed at most seven times, depending on if and when

they dropped out of the experiment. This results in there being at least one and at

most seven relevant files per subject. They can contain a general anamnesis, a second

anamnesis specifically for dementia, and a series of cognitive tests used to diagnose

dementia, but may be missing any of these. These paper transcripts then were scanned

or in some cases saved via fax. The tests include Trail Making tests, drawing a complex

figure, and recounting words and characters in a specific order. There is one more test

which is of special interest for dementia research and the focus for this thesis: the Isaac’s

Set Test.
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Figure 4: An example page of the Isaac’s Set
Test with the categories “colors”
and “animals”

The Isaac’s Set Test is a test on verbal

fluency, where patients are asked to re-

cite the highest number of words they can

in 4 semantics categories (colours, ani-

mals, fruits and cities) in one minute. All

words are noted down by hand by an in-

terviewer into a prepared form. For each

category, after 15 and 30 seconds a ”/”

character is added in the transcript and

after 60 seconds the end of the test is

marked with ”//”. This thesis concen-

trated on annotating the transcripts of the

category “animal names” since it seemed

most promising for future dementia re-

search [18]. Keeping the data in one spe-

cific domain also simplifies the annota-

tion process and keeps potential Language

Models simple.

An example of how a page containing such

a transcript is typically structured can be

seen in Figure 4. The structure of the page containing the Isaac’s Set Test itself is

always similar, but the pages location within a document varies greatly. This is because

the structure of the document was changed over the several years of the study, leading

to 7 differently structured document types. However the document types are also not

consistent in themselves, as apparently often errors in the scanning process occurred,

with duplicate pages, and missing pages or whole sets of pages being commonplace.

The fast nature of the task additionally led to a lot of noise being introduced into

the transcripts. Since the interviewers had to write down text during the test, they

had to compromise in regards to readability. Abbreviations and spelling errors are as

commonplace as artefacts like struckthrough, underlined and boxed text. Combined with

the fact that there was an unknown number of interviewers, this results in a variety of

different writing styles.
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Figure 5: Text excerpts from the Paquid dataset.

This huge variability is demonstrated in Figure 5. It is a collage of excerpt lines and

words coming from different classes and authors in the dataset and presents a variety of

different artifacts and writing styles.

3.2. Preprocessing

The variability in document types made it non-trivial to find the correct page. However

it was possible to naively guess page numbers for each document type which was correct

for most documents. Extraction of that page from the document could be done by simple

bash scripts using ImageMagick’s [31] convert function. Sifting through the extracted

pages and filtering out all unwanted pages was completed in a few days of work. Of the

approximately 10000 pages that were extracted in this manner, 2000 were selected in

total for annotations in the experiments. This number was chosen to be able to complete

the annotations in the time frame of this thesis.

For the later described Baseline Experiment (see Section 6.1) for 300 of these 2000 pages

followed an initial paragraph and line segmentation. In a similar manner as the page

segmentation, for each document type, an area for the paragraph was discerned which

would be correct for most pages. The area of the paragraph was then split into four

parts horizontally to get the approximate areas of the lines. The line areas were then

extracted again using ImageMagick. All resulting segmentations were then used and

further processed in the Baseline Experiment.

This semiautomatic preprocessing took around a week of manual labor in total.
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3.3. Conclusion

The Paquid dataset is a prime example to show the difficulties with processing medical

texts and handwritten text in general. In this chapter we have seen the vast variability

in the writing styles and also between different document types. The extracted pages of

this dataset will be used as the unlabeled data for the experiments in Chapter 6.

4. A Tool for Digitization and Annotation: HUMAN

The annotation tool that was used for experiments in this thesis is the Hierarchical Uni-

versal Modular ANnotator (HUMAN) [33]. It is an open source web-based annotation

tool that uses modules to cover a variety of annotation tasks on both textual and image

data.

DSM

Database

AP

API

Administrators

GUI

Annotators

annotate

provides content causes transitions

provide
data

saves 
annotationscalls

returns

parses

creates

define

Figure 6: Architecture of HUMAN
(from Wolf et al. [33]).

This modularity makes it easy to adapt to

new annotation scenarios especially when

several dependencies exist between anno-

tations or when a single annotation task

does not capture the problem. Both of

this is the case when annotating data for

HTR, as segmentation annotations and

word annotations for the segmented lines

are needed.

As a web-based tool its architecture fol-

lows a basic client-server model (see Fig-

ure 6). In this model, clients and servers

exchange messages in a request–response

pattern, where the client sends a request

to which the server responds.

The client displays annotation modules in

a Graphical User Interface (GUI). It is

controlled by a Deterministic State Ma-

chine (DSM) which manages the order and transitions of the different modules. Through

the DSM the client can request new content from the server or send finished annotations
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to the server when an annotation instance is completed. The annotators interact with

the DSM and modules through the GUI to solve their annotation tasks.

During the setup of the system, administrators design an annotation protocol, which is

a JSON-style definition of the desired modules and their transition order. It thereby

represents a simplified version of the DSM. The real DSM and database are then auto-

matically created based on this protocol. This makes the tool very flexible and fast to

set up.

The server consists mostly of two parts: Firstly, a database, which is used to choose new

annotation instances to the client and saving finished annotations which are sent from

the client. The second part is a customizable API, which can be used to further process

annotations or send suggestions to the client to be shown to the annotator. For this, in

the annotation protocol, an API function name can be defined which must correspond

to an arbitrary function of the same name which defined in the API. This function will

then be called at the transition into that annotation module. The arguments of the call,

like images or annotations are predefined in the various annotation modules. The API

can be used for iterative learning: We could define a function to train models with new

annotated data from the database or automatically start classifications which are then

shown in the client’s GUI.

Because of its flexibility, the customizable API, which can be used for iterative learning,

and the fact that, as one of the creators of HUMAN I was already very familiar with

the codebase, it was decided to use this annotation tool for my experiments. However

some modules and functionalities had to be created or adapted to be able to efficiently

annotate handwritten text.

4.1. New modules and functionalities

HTR annotations consist of three tasks: Paragraph segmentation, line segmentation and

line annotation. Note that these are dependant on each other, as we want to segment

the lines inside the paragraphs and add word annotations for the content of each line.

The segmentations are realised with bounding boxes. A corresponding Bounding Box

module was already implemented in HUMAN, but the transition to other modules was

unreliable and the underlying functionality had to be rewritten.
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When loading the module an image is displayed in the background and, if available,

predicted Bounding Boxes are drawn in the foreground (see Figure 8). A click inside of

a box activates the box and adds anchor point in the corners and edges of the box as in

Figure 7. The box can then be resized via drag and drop on these points. The whole

box can be moved via drag and drop anywhere inside the box. When clicking outside

of any bounding box, any activated box will be deactivated again and when there is no

activated one a new box will be added at the clicked point. When finished a click on

“Continue” can save all bounding boxes and then transitions to the next module.

Figure 7: Example screenshots of the Bounding Box module for paragraph segmentation.

17



Figure 8: Example screenshots of the Bounding Box module for line segmentation

Bounding Box Labeling module To add labels to the lines’ bounding boxes another

module was needed, the Bounding Box Label module. For an example screenshot see

Figure 9. It needs a bounding box as input either from a Bounding Box module or from

the server API. Optionally the server can provide an ordered list of labels as suggestions.

These suggestions are then displayed as labels on top of the bounding box. These labels

can be individually marked by clicking on them or pressing Enter to move forward or

Shift+Enter to move backward. The text inside the labels can be changed via an input

field on the top right. To make it more convenient to find label texts, an autocomplete

functionality was added with suggestions containing the input text shown in a list below

the input field. The suggestions are taken from a predefined list of possible words. A

suggestion can be selected by clicking or cycled with Tab- or arrow-keys. Enter transfers

the selected item to the label and continues to the next label.
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Figure 9: Example screenshot of the Bounding Box Label module

There are two autocomplete methods that can be toggled with a button beside the input

box: A naive algorithm and fuzzy search. The naive algorithm only matches words that

start with exactly the same string as the input. Fuzzy search, also known as approximate

string matching, on the other hand, finds strings that match a pattern approximately

rather than exactly, as the naive algorithm used. This means it tries to match words

that contain the input somewhere but still keeps the order. For example “ptmus”

matches “hippopotamus” and “mll” matches “mandrill” and “millepede”. This proved

advantageous for annotating handwritten text, as some words were illegible. Fuzzy

search still works with only some characters or the parts of the word one could read

and still gives reasonable suggestions. The fuzzy search algorithm used in HUMAN is

based on FuzzyMatchv1 from the fzf project2. Its implementation into HUMAN was

completely provided by my colleague Max Depenbrock.

The buttons “< +” and “+ >” add a new label box to the left or right of the currently

activated box respectively. These labels have the initial text “/empty/” to mark them

2https://github.com/junegunn/fzf
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as empty. Similarly, if an annotator removes the text in the input field the text for

the label will be set to “/empty/”. To make it easier to track when a prediction was

corrected for each label both the prediction and the final annotation in pairs are saved.

When a box gets added via the buttons, the prediction is set to “/empty/”, to signify

adding the label. This makes it easy to track when a label was added or removed.

New functionalities To find out how the quality of the predictions impacts the time

needed for the actual annotations, this time naturally has to be measured. I therefore

implemented timers that measure the time spent in each module and save them together

with the annotations in the database. API functions to start training and classifications

which could be shown to the annotators were implemented but could unfortunately not

be used in practice. The annotation tool and HTR systems had to reside in different

server structures which could not easily interact with each other, so training, classifica-

tions and filling the database with new unlabeled data and predictions had to be done

via manually started scripts. All new modules and functionalities were uploaded to the

open-source project and are freely available on Github3.

3https://github.com/uds-lsv/human
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4.2. Module combinations

In this section, we discuss how the previously introduced modules can play together for

three different annotation tasks that can be used for handwritten text transcriptions.

Figure 10: Simplified state machine for
paragraph and line segmentation

Figure 11: Simplified state machine for line
annotations

Paragraph and line segmentation For this task the server would first choose an unla-

beled page to show to the annotator. This page would be displayed in the Bounding Box

Module with a prediction for its location being provided by the server (see Figure 7).

The annotator can then correct the bounding box and move to the next module, another

Bounding Box Module. In the transition, the page image is cropped to the annotated

paragraph bounding box and predictions for line segmentations inside of this paragraph

are computed by the server and displayed in the module. These again can be corrected

by the annotator (see Figure 8). When finished, the segmented paragraphs and lines

are sent to the server and saved in the database. The server then provides a new page

until none are left. A Graph of the simplified state machine for this task can be seen in

Figure 10.

Line annotation For line annotation (see Figure 11), the server chooses an unlabeled

line from its database. A previously segmented paragraph together with a bounding

box for the line and optional labels for the line are sent by the server and displayed in
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Figure 12: Simplified state machine
for paragraph and line
segmentation and line
annotations

the Bounding Box Label Module (see Figure 9). Af-

ter the labels for this single line are added or cor-

rected by the annotator, the line labels are sent to

the server and saved in the database.

Segmentation and annotation We can also ap-

pend the line annotation task to the paragraph and

line segmentation task. For this last task the anno-

tator first does paragraph and line segmentation as

in the paragraph and line segmentation task.

The resulting paragraph and lines however then

serve as input for the line annotation task. For

this we iterate over the segmented lines, compute

predictions for each and one by one display them

in the Bounding Box Label Module. After all lines

are labeled, the segmentations and line annotations

are saved on the server. For the state machine refer

to Figure 12

4.3. Conclusion

In this chapter HUMAN, a tool for digitization and annotation, was presented. It consists

of modules that can be chained together via a deterministic state machine for flexibility

and allows easy use in a human-in-the-loop machine learning context. To use HUMAN

for HTR annotations and digitization in general, two new modules were implemented

and additional functionalities for timings were implemented. Three setups were shown

which use these modules and were later used in the experiments in Chapter 6.

5. The Handwritten Text Recognition System Pylaia

In my experiments I used the HTR system Pylaia. In the following I first present the

architecture and overall functionality of the system. Then the necessary modifications

to make Pylaia suitable for Active Learning are described.
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5.1. Architecture

A visualisation of the architecture can be seen in Figure 13.

Figure 13: Architecture of Pylaia (from Puigcerver [25]). It consists of 5 Convolutional
Blocks which process pixel frames in an input image reducing dimensionality
in each block. These are fed into 5 Recurrent Blocks which process the frame
sequences into a CTC output matrix.

The Pylaia model consists of 5 convolutional Blocks followed by 5 recurrent blocks. In

our configuration, a convolutional block contains a two-dimensional convolutional layer

with a kernel size of 3×3 pixels, with both horizontal and vertical stride of 1 pixel. The

activation function for Batch normalization [16] is used after the convolutional layer in

order to normalize the inputs to the Leaky Rectifier Linear Units [19] (LeakyReLU)

activation function. Finally, the output is fed to a Maximum Pooling layer (Maxpool)

witch reduces the dimensionality of the input images.

The recurrent blocks are formed by bidi-rectional 1D-LSTM layers, that process the

input image columnwise in left-to- right and right-to-left order. The output of the two

directions is concatenated depth-wise. Finally each column is mapped to an output

label, so the output is a CTC matrix containing a label for each image frame.

To finally decode the output CTC matrix, Pylaia uses Greedy Best First Search as

described in Chapter 2.
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5.2. Modifications

To make Pylaia suitable for Active Learning with uncertainty sampling, some adjust-

ments had to be made to its decoding step. First, since the Greedy Best First Decoder

did not output the proabilities I computed the log probabilities and added them to the

output.

However, there is a problem with using the probabilities of CTC as is: The length of

a sequence influences the probability. The longer the sequence, inevitably the lower

the probability will be. To actually compare the path probabilities with each other to

compute uncertainty we have to normalize them for length.

As the model’s output is CTC as described above converts the feature sequence X of a

picture into N character sequences C. Then the length normalized probability is:

PLN(Ci|X) = P (Ci|X)1/length(Ci) ∀i = 1, 2, ...,N (2)

Note, that when when we use logarithmic probabilities in the CTC matrix, the formula

is more efficient:

ln PLN(Ci|X) =
ln P (Ci|X)

length(Ci)
∀i = 1, 2, ...,N (3)

In a small preliminary experiment I found, that beam search combined with a Language

Model could improve the final labeling accuracy considerably. Therefore an additional

Decoder was implemented, which uses the previously described CTCWordBeamSearch

by Scheidl et al. [28]. Both this Beamsearch-Decoder and the GBF-Decoder were used

in later experiments.

5.3. Conclusion

In this Chapter the architecture of the Pylaia HTR system was introduced. Then the

necessary modifications were presented, that were implemented into this system to enable

use for AL. This system then was used in experiments to find answers to our research

questions
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6. Experiments

To answer the research questions defined in Chapter 1 four experiments were performed.

The first question was, whether a model trained with Active Learning produces better

suggestions in each iteration when using uncertainty sampling than with random sam-

pling. For this, we annotated samples of the paquid dataset chosen by uncertainty sam-

pling following the human-in-the-loop paradigm. in an experiment we call uncertainty

sampling experiment (see Section 6.2). Then to compare this, the random sampling

experiment (see Section 6.3) followed a similar approach but the samples were chosen

randomly. In this experiment there were no human annotations, as the samples were

already labeled in the uncertainty sampling experiment.

However to train a model in the first place, we need a labeled validation dataset and to be

able to see if the model generalizes well for unseen data, we need a labeled test dataset.

Therefore a prerequisite was to first annotate a part of the Paquid data for this purpose.

A baseline model, which was trained on other handwritten text than Paquid was trained.

This model then was used to produce suggestions for annotating the validation and test

sets in the baseline experiment (see Section 6.1). This annotation process is then used

to answer the second research question - whether suggestions predicted with uncertainty

sampling make the annotation process faster than when using an adapted model as a

baseline.

For the final question of where the AL models converge compared to non-incremental

learning methods, two models were trained with all labeled data from the uncertainty

sampling experiment at once.

In the following we introduce the used metrics and the baseline model and then discuss

the annotation process with the baseline model. Afterwards the annotations with the un-

certainty sampling method are described, followed by the random sampling experiment.

Finally we show where the models converged.

Metrics Common metrics for an HTR system’s performance are Word Error Rate

(WER) and Character Error Rate (CER). WER and CER are derived from the Leven-

shtein distance. It is defined as:

WER =
S + D + I

N
(4)
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where S is the number of substitutions, D is the number of deletions and I the number

of insertions that are needed to transform a list of words into another. N is the number

of words in the target string. Note that conventionally deletion and insertion refer to

the way to get from the ground truth to the prediction. For an example, if the ground

truth is “cool cat” and the prediction is “cat”, then the corresponding edit-operation

is a deletion. Normally punctuation symbols are excluded for WER but for this thesis

they are tokenized and thus count as words.

CER works analogous to WER but instead, the operations to transform a character

string into another one are used, with N being the number of characters.

As an example, to transform the string “Batts are cool .” into “Cats are cool .”, on a

word level only one substitution (“Batts” → “Cats”) is needed so the WER would be

1/4 = 0.25. On a character level however we need one substitution (“B” → “C”) and

one deletion (one “t”) resulting in a CER of 2/15 ≈ 0.13.

For predictions for annotations additionally to WER and CER, accuracy and the time

needed to complete the annotation were measured.

Baseline Model The Baseline model was trained with the Pylaia HTR-system on the

IAM-Dataset[21] with the configuration and splits taken from the IAM-HTR example4.

The IAM-dataset is composed of 1539 scanned text pages, which are handwritten by 657

different writers and segmented into paragraphs and lines. The 10042 lines were split

into training, validation and test-sets of 6161, 966 and 2915 lines, respectively.

The optimizer used in training was RMSProp with an initial learning rate of 0.0003.

To prevent overfitting, early stopping after 20 epochs of not improving Validation-CER

was used. It trained for 119 epochs in total with the model at 99 epochs giving the best

results on both validation and test sets. The model achieved a WER of 0.267 and a

CER of 0.077 on the IAM test dataset.

4https://github.com/carmocca/PyLaia-examples/tree/0a9a2d0934ec1266350761da5b4b054cb4605193/iam-
htr
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6.1. Baseline experiment

In this experiment the baseline model was used to predict the transcriptions of line

images from the Paquid Dataset. The motivation for this experiment was threefold: i)

to use the resulting annotations as the validation and test datasets in later experiments.

ii) to make the annotators used to the tool and iii) to get a baseline for how much

time is needed at most for annotations to calculate the amount of data that could be

annotated during this thesis.

6.1.1. Design

Data During preprocessing of Paquid for 300 pages, the paragraphs and lines were seg-

mented semi-automatically by guessing which segmentation would be correct for most

documents of a certain type. These 300 were presented via HUMAN with the seg-

mentation and annotation setup to the annotators (see Section 6.2.1). With this

setup, first the paragraph and line segmentations of a document are corrected, then the

individual lines’ text is transcribed one by one.

For the label predictions, the images of the lines were extracted and enhanced with

imgtxtenh [32] a tool to clean noisy scanned images. The baseline model then transcribed

these enhanced images and the predictions were used as suggestions in HUMAN. This

approach soon showed a major drawback: The predictions were nearly unusable when

the automatic segmentation did not capture the lines well. Because of this it was decided

that the segmentations should be done in a separate step before the text annotations in

the next experiment.

Annotation There were three annotators including the author (in the following graphs

and tables named User 1). The other two annotators were research assistants employed

at DFKI. Every document was annotated only once, to save time. Since documents were

not split equally between the annotators, each user saw a different amount of documents.

The amount of documents, lines and words each user worked on can be seen in Table 1.
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6.1.2. Results

User Documents Lines Words

1 164 528 4263

2 64 204 1512

3 69 202 1678

All 297 934 7453

Table 1: Amount of annotated documents
and their contained lines and words
for each user. User 1 is the author.

Model performance The accuracy of

the model predictions was 0.048 with a

WER of 1.016 and a CER of 0.725. The

main reason for this was a large underpro-

duction of characters. This is most obvi-

ous when looking at the number of edit op-

erations: While there were 14555 substitu-

tions, there were 8863 deletions and 2257

insertions. A high number of substitutions

is expected when the model’s accuracy is

low, but the high number of deletions es-

pecially compared to insertions shows this

underproduction. This may sound counter-intuitiv at first, but as a reminder, deletion

refers to how we get from the ground truth to the prediction. The underproduction

however was mostly due to the initial line segmentations often capturing empty lines or

spaces between lines. When a line was segmented correctly, actually the opposite was

the case — then the model recognized more characters than actually were written in

that line.

Annotation Times The completion of this task took 18:40 hours overall. Of this time

the segmentations took 2:47 hours and the text annotations 15:53 hours in total.

Figure 14 shows the times each user took for annotations. The absolute times have to be

taken with a grain of salt however, because times varied significantly with the difficulty

of the task. This is why the figure shows the mean over batches of 15 annotations, to

normalize for this effect. The individual times per line were also capped at 10 minutes to

eliminate the cases where annotators left the annotation tool open while doing something

else. We can see signs that the annotators learned how to read the handwritten text

and use the annotation tool efficiently in the trendlines which decrease for all users be

it at different rates. This effect is sometimes also known as “priming”. However we also

see that the times did not converge yet so it is possible that the priming could further

decrease times with following annotations.
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Figure 14: Time needed to label one line normalized over batches of 15 lines in the
baseline experiment. Red dotted line is a trend line. User 1 is the author.

6.2. Uncertainty sampling experiment

In the second experiment we follow the human-in-the-loop paradigm to train a HTR

model which assists a human in the annotation process. The model produces incremen-

tally better by choosing which samples the human will annotate next via uncertainty

sampling. This experiment will be called “uncertainty sampling experiment” in the

following.

6.2.1. Design

Figure 15 shows the process of the uncertainty sampling experiment. It closely follows

the human-in-the-loop process outlined in Chapter 2.
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Figure 15: Outline of the uncertainty sampling experiment: (1) Predict labels for all un-
labeled data in the data pool. (2) Model produces predictions with GBF
Decoder. Choose 300 candidates via uncertainty sampling. (3) Remove
the chosen candidates from data pool. (4) Model produces predictions with
Beamsearch Decoder. (5) Human annotator corrects the predictions in HU-
MAN. (6) The corrected data gets appended to the training data. The model
retrains with this data. Repeat from (1) until data pool is empty.

One key difference to the previously described method is, that the predictions from the

model are shown to the annotator as suggestions. The annotators were the same as in the

previous experiment. The other difference is that in this experiment, we have two sets

of predictions for two different uses. The first set follows the human-in-the-loop process

and are predictions on all unlabeled data in the data pool with the fast GBF-Decoder.

These predictions are used to sample uncertain candidates. These uncertain candidates

are then predicted again, this time with the Beamsearch-Decoder which produced better

results but is considerably slower. Speed was one reason for this approach, but the main

reason was, that the model was trained and validated with the GBF Decoded. The

reasoning was, that the uncertainty sampling results would be more meaningful this

way, without any influences of a language model. As the uncertainty sampling method,

Least Confidence sampling was used, meaning that we chose 300 samples, for which the

prediction had the lowest probability. The baseline model was used as a starting point

for the first iteration, incrementally fine tuning it on Paquid data.

The pre-processed data described in Chapter 3.1 had to be further processed before

they could be used for AL. More precisely, there were still 1700 pages intended as
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the data pool, for which there were no paragraph and line segmentations yet. For

the paragraph and line segmentations, the paragraph and line segmentation setup in

HUMAN were used. These segmentations took around 21 hours for the three annotators.

Afterwards, the line images were again extracted with ImageMagick and enhanced with

imgtxtxenh [32]. Afterwards the resulting line images were split into data pool and

validation- and test datasets. The samples from the data pool are simultaneously the

training data when labeled and will be referred to as such in the following. The amount

of pages and lines in each dataset split can be seen in Table 2

Split Pages Lines

Data pool/Training 1693 5168

Validation 100 312

Test 197 613

Table 2: Amount of pages and lines in each dataset split.

6.2.2. Results

Training progress We can see the training progress in Figure 16. The impact of

each new batch of training data clearly shows in the drop of validation CER. In later

iterations however, this impact gets smaller and smaller, which also is reflected in the fact

that around epoch 450, early stopping would stop training after one iteration because

the validation CER would not drop further. Noteworthy is also, that we see signs of

overfitting in every iteration in validation loss slowly increasing in each iteration cycle.

This however must not necessarily be a bad thing, as we see both validation CER and

test WER and CER fall despite this fact. The loss’s slope also becomes less steep with

larger training data sizes in later iterations.
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Figure 16: HTR Model’s training and validation loss and CER during training in the
uncertainty sampling experiment. Dotted lines show the epochs where models
were used for predictions in each iteration. The thicker line around epoch 450
shows multiple iterations.

Performance on test data In this experiment, the Beamsearch-Decoder consistently

outperformed the GBF-Decoder in WER. Figure 17 shows the WER on the test dataset

in each iteration and illustrates well the advantages of the Beamsearch-Decoder.
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Figure 17: Comparison between GBF and Beamsearch decoders on test data in the un-
certainty sampling experiment.

Figure 18 shows the WER in each iteration in context with the WER edit-operations.

We see the test WER drop sharply in the beginning and relatively fast even out at

around 27%. The noticeable discrepancy between insertions and deletions mostly comes

from inconsistent placement of parenthesis in the test data. If the suggestion is “(chat)”

but the ground truth is “( chat )” then there is one substitutions operation from “(chat)”

to “chat” and two insertion operations for the parenthesis. This is why we do not see

this effect for Test CER in Figure 19.

33



Figure 18: WER and the WER edit-operations on testdata for each iteration in the
uncertainty sampling experiment.
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Figure 19: CER and the CER edit-operations on testdata for each iteration in the un-
certatinty sampling experiment.

Predictions for annotations Next we take a look at the performance of the predictions

that were used as suggestions in the annotation process. In Figure 20 we see the accuracy

and WER of the suggestions.
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Figure 20: Accuracy, WER and WER edit-operations for predictions for annotations in
the uncertainty sampling experiment.

We can see a steady drop in WER in the beginning after which it slowly converges at

around 0.5%. We see that the accuracy is closely correlated and rises as WER drops

peaking at around 95% after 13 iterations after which it converges. We see here, that

WER is a strong indicator for how high the accuracy and correspondingly how high

the annotation effort is. Noteworthy is the extremely high WER of 106% in the first

iteration. If we take a look at the edit-operations, we see that this is not only due to the

high number of substitutions - which is expected - but the nearly equally high number

of insertions. Equally noteworthy is that in the second iteration there are nearly no

insertions anymore but we see a rise in deletions, after which both the number insertions

and deletions becomes negligibly small. If we take a look at example predictions and

annotations (see Figures 21 and 22) for iteration 0 and 1, we see why this is the case.

In iteration 0, the model massively overproduces words - in the example there are only

two words in the ground truth, but eight in the prediction. However in iteration 1 we
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see that the model now slightly underproduces because valid words get merged with

numbers in between. We can also see the model starting to recognise mostly correct

substrings of words, however they are often slightly misaligned.

Prediction ibis ouistiti uf / rat uf mite Hermine

Annotation / poule

Figure 21: Example predictions and annotations for iteration 0

Prediction ... isard9pinson atele9tourterelle isard

Annotation ... lapin cheval vache taureau

Figure 22: Example predictions and annotations for iteration 1. Similar substrings in
prediction and annotation are colored the same

A mutual feeling of the annotators was, that these first two iterations seemed to be the

most difficult to decipher of all iterations. This could be, caused by the low accuracy,

by annotators not being proficient in reading the different handwritings yet and can be

counted as evidence, that uncertainty sampling chose lines that were difficult to decode

for the HTR model as well as for humans too.

Annotation durations This perceived difficulty of the first iterations can also be seen

in the mean times annotators needed for each iteration (see Figure 23)
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Figure 23: Mean time per line in seconds for each user. User 1 is the author.

The times are highest in the first few iterations and fall rapidly as the accuracy rises.

The relation between time and accuracy can be seen in Figure 24. We see the times

decrease relatively steadily over the course of the experiment, while the accuracy rises

massively in the beginning and then quickly evens out. This could be a sign, that the

annotators were still learning how to best perform the annotation task and makes it

unfortunately very hard to say how better suggestions had a benefit on the annotation

process.
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Figure 24: Accuracy of suggestions and mean time of all users per iteration

6.3. Random sampling experiment

To compare how Active Learning with uncertainty sampling behaves in comparison

to random sampling, a third experiment was conducted where the annotations were

simulated.

6.3.1. Design

The architecture for the random sampling experiment is essentially the same as described

in Figure 15 for the uncertainty sampling experiment. There are however two differences:

In step (2) the candidates are sampled randomly instead of finding uncertain ones.

Secondly, since for comparison the datapool had to be the same as in the uncertainty
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sampling experiment and the data was already annotated, the annotation process was

simulated and only the WER and CER on the new sampled lines in each iteration were

calculated.

6.3.2. Results

Figure 25: WER on test data for all Ran-
dom Sampling experiments using
the GBF-Decoder.

This experiment was conducted three

times in total to see how random sampling

performs on average. Figure 25 shows the

WER of all random sampling models on

the test set using the GBF-Decoder in

each iteration. We can see, that there is

little variation between the models over-

all, so for the rest of the evaluation we

only consider the mean over the values in

each iteration.

In Figure 26 we compare the mean WER

of the Random Sampling models between

GBF-Decoder and Beamsearch-Decoder.

(a) Test (b) Suggestions

Figure 26: Mean WER per Iteration between Decoders using Random Sampling.

We see that the Beamsearch-Decoder performs well for the first few epochs, but eventu-

ally, starting from iteration 7, it gets outperformed by the GBF-Decoder. The effect is
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apparent on both the predictions on the test set and in the produced suggestions. This is

in contrast to uncertainty sampling, were the Beamsearch-Decoder always outperformed

GBF.

In Figure 27 we compare the mean WER of the Random Sampling models with the

uncertainty sampling experiment. We see that the WER of the suggestions was a lot

better with Random sampling for the first two epochs. This could show, uncertainty

sampling chose mostly difficult lines in the beginning, as on test data, random sampling

performs only slightly better than uncertainty sampling. Both methods level off fast

after around four iterations, however the uncertainty sampling converges at around 27%

on test while random sampling converges to 35%. The WER for suggestions is similar -

random sampling levels off at around 30% while uncertainty sampling converges to 15%.

In this comparison both methods use the Beamsearch-Decoder.

(a) Test (b) Suggestions

Figure 27: Comparison of mean WER per iteration between random sampling and un-
certainty sampling using the Beamsearch Decoder.

However, if we compare the WER of uncertainty sampling and random sampling when

both use the GBF-Decoder on the test data 28, we find that they perform nearly the

same throughout.
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Figure 28: Mean WER on test data of Random Sampling experiments and WER of
Uncertainty Sampling, both using the GBF-Decoder.

6.4. Model Convergence

In the final experiment we explore how incremental learning compares to learning con-

ventionally with a fixed training set. For this two more model were trained with all

training data - one using Transfer Learning and one training from scratch. By compar-

ing these two models we can also explore the effect of TL on model performance. The

model settings again were the same as in all experiments. The baseline model trained

on the IAM-dataset again served as the base model for Transfer Learning.
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6.4.1. Results

The model trained from scratch with all training data at once, trained for 86 epochs

and achieved a WER of 27% on the test data. The transfer model which was pretrained

on the IAM-dataset also continued training with all training data at once and achieved

a WER of 26%. The massive improvement that fine tuning brought can be seen if we

compare this with the WER of 108% the Baseline model which was not fine tuned at

all. The Error Rates of all best models of each method tested in the experiments can be

seen in Figure 3

WER CER

Baseline 1.086 0.734

From scratch 0.276 0.127

Transfer Learning 0.265 0.119

Random sampling best 0.275† 0.094†

Random sampling mean 0.278† 0.102†

Uncertainty sampling 0.239 0.091

Table 3: Comparison of the performances of the best model on test data for each method.
†: achieved with GBF-Decoder

We find, that the best model iteration of training with AL with uncertainty sampling

outperformed all other methods. Random sampling converged at a WER similar to when

learning from scratch, but the CER was slightly better than with all non-incremental

methods and more comparable to uncertainty sampling.

7. Discussion

With the results of the experiments we can return to the research questions and consider

what evidence we have to answer them.
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Question 1: Does an HTR model trained with Active Learning produce better

suggestions in each iteration when using Uncertainty sampling than with Random

sampling? In our experiments Active Learning with uncertainty sampling consistently

produced better suggestions than random sampling when using the Beamsearch-Decoder.

However their performance with the GBF-Decoder was near identical. This raises the

question, why beamsearch performed better in one case but not the other. We can

speculate that the reason for this has to do with the change in entropy in the predictions

caused by uncertainty sampling. Either, there is a higher entropy when using uncertainty

sampling and therefore beam search has more chance to deviate and choose other paths

than GBF. This however would be very unexpected, as it would mean that uncertainty

sampling had the opposite effect than what was intended and made the model more

uncertain. Or, the second possibility, there is a higher prediction entropy when using

random sampling. This could lead to beam search choosing predominately wrong paths

as the language model scores would have a lot more influence.

To note is also, that in the context of these experiments AL is not used in the proper

sense. AL is designed to sample only a few lines that are helpful for the model from

a very big data pool, but in the experiment we exhaustively sampled from a relatively

small predefined set of lines until it was annotated completely. This exhaustive sampling

in all likelihood did not result in the best possible models for the task but had a practical

reason: Segmenting all Paquid data or training a segmentation model would have been

too time consuming and was not possible within the constraints of this thesis. We can

conclude, that uncertainty sampling outperformed random sampling and could probably

even perform better when sampling from a bigger data pool.

Question 2: Do suggestions predicted by an HTR model trained with Active Learn-

ing with uncertainty sampling make the annotation process faster compared to

using only a pretrained model? We found, that the times needed for annotation fell

rapidly for each annotator after the first few iterations when using AL, so the annotation

process got indeed faster. Also compared with the annotations with suggestions from

the baseline model, there was a considerable speedup from around 30, 40 and 80 seconds

to 10, 15 and 20 seconds for each user respectively.

However we have to take these values with a grain of salt, for multiple reasons: First,

for the experiment with the baseline model, the annotation task was slightly different,

as complete page was first segmented into multiple lines, which then all got annotated
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in one sweep. For the uncertainty sampling experiment these steps had to be sepa-

rated. Also the times in the experiment with the baseline model did not converge. This

means that times in the later experiment could still go down because the annotators just

got more proficient to read the hand-writings. Thirdly not all annotators did equally

many annotations in each iteration - sometimes one annotator even did none for a few

iterations, especially in the end when the annotation process was really fast.

Question 3: Does an HTR model trained with AL converge at a better perfor-

mance than non-incremental learning methods? The final experiment showed that

the best models from both AL variants performed better than the models trained with

non-incremental methods. However the best model trained with uncertainty sampling

performed slightly better than when random sampling. Also the TL model outper-

formed the model trained from scratch again confirming previous findings that Transfer

Learning benefits an HTR system’s performance.

8. Conclusion and Future Work

The Active Learning strategy in general proved a complete success. Both incremen-

tal strategies produced better suggestions and generalized better on unseen data than

when training non-incrementally from scratch or with transfer learning. Also uncer-

tainty sampling performed nearly equally as random sampling when using the GBF-

Decoder. However uncertainty sampling was a lot better when using beam search. This

to my knowledge has not been observed before and should be further explored in fu-

ture research, for example by testing the entropy for the prediction probabilities in each

method. Also it is possible that uncertainty sampling would perform better on a larger

training pool. This was not possible in the thesis because of the time consuming line

segmentation step, but could be explored with the rest of the Paquid dataset. Neverthe-

less we saw the times needed for annotations more than half for each annotator when

supported with suggestions produced with Active Learning. It is however possible, that

this speedup could come from external factors, such as the annotators getting more

proficient in their task so the results are inconclusive. This could be further explored

by eliminating most of the external factors by letting the same annotators label more

samples from the Paquid dataset.
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We could also confirm previous observations from Aradillas et al. [1] and Cascianelli

et al. [7] that a TL model could better generalize over the test data than when training

from scratch.

A known problem with confidence based sampling in general is sampling bias. Malhotra

et al. [20] used Least Confidence sampling for ASR and observed “that the application

of uncertainty sampling to ASR leads to generation of samples that have significant

speaker bias in the labeled set, i.e. some of the speaker groups are sampled considerably

more than the others”. Similarly, in the case of HTR when multiple handwritten styles

are observed, it could be the case, that previously unseen writers are predominantly

sampled. Because of time constraints in the thesis the properties of the data chosen

by uncertainty sampling were not thoroughly explored. Therefore we can not know if

there is any such bias for example for a specific writer, document type or the noisiness

of the document. This however would be interesting to investigate in the future. If

it turns out, that there is such a problem, there are multiple approaches to mitigate

sampling bias. Malhotra et al. [20]’s solution was, to implement a speaker recognition

algorithm to keep the speaker groups diverse. Another idea is proposed in Munro [23].

First a certain amount of uncertain data is sampled, and then clustered by K-means

or a similar clustering algorithm. Then from each cluster a small amount of centroids,

outliers and random items are sampled. This adds a certain amount of noise into the

sampling process and might be a valid strategy to combat sampling bias.

During annotations for this thesis, there came up many ideas to make the labeling process

more efficient and comfortable for the annotators. The most prominent was to introduce

other input methods and modalities than mouse and keyboard into the annotation tool.

Such a multimodal annotation tool could for example incorporate automatic speech

recognition methods so instead of typing a word a person could speak it instead. This

could even be combined with an eye tracking unit in place of a mouse. Annotators could

then look at a certain word, and read it out loud. Linking the word’s location in the

picture and the recognized utterance would then result in the annotation, enabling a truly

hands-free annotation process. Graphic tablets were used for some of the annotations

in this thesis, but they proved only slightly useful for the segmentation tasks. The

annotation tool could however be further optimised for their use. Having these various

modality options, additionally to mouse and keyboard, could further improve endurance

and health of the annotators and with that the quality of the annotations.

Regarding HTR-systems, with Transformer models replacing LSTM in almost every area
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of NLP, this will probably be the future for HTR as well. There are first models using

an end-to-end approach with the Transformer architecture already [27] - it would be

interesting to find out if AL is still a valid option for this new generation of models.

Automatic line segmentations were out of scope for this thesis but they are nevertheless

a key part of the HTR process. Parallel to the thesis experiments with layoutparser [30],

a toolkit for deep learning based document image analysis. The experiments results

were promising, but not sufficiently precise for HTR during the time of the thesis, so it

could not be used yet. For this model, again similar human-in-the-loop methods as in

this thesis could be used to gradually improve the segmentations. Another interesting

approach would also be to have a pipelined system where segmentation and HTR models

are trained in conjunction. There again active learning could be employed.

One of the bottlenecks in the experiments was the rather slow implementation of the

beam search decoder, however CTCWordBeamSearch [28], got an update near the end of

this thesis after which a speedup of around an order of magnitude was measured. With

this it may be feasible to experiment with using CTCWordBeamSearch not only for

predictions, but also directly in the training process. Truly incorporating beam search

into the end-to-end system could considerably improve the performance with human-in-

the-loop methods.

In conclusion we could show that Active Learning is a valid strategy to speed up the

annotation process considerably, with Uncertainty sampling outperforming random sam-

pling. The best models resulting from Active Learning also generalized better over un-

seen data than models trained conventionally on all data at once. This makes Active

Learning a valid strategy to train models not only to help with annotations, but to fully

automatically predict unseen data without human input.
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A. Appendix

A.1. Baseline Model

Figure 29: Baseline model training- and validation-loss and training- and validation-
CER. The dotted line shows the best epoch 99.
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A.2. Active Learning model performance

Iteration Word accuracy Correct Total words WER CER

0 0.031 69 2235 1.641 1.198

1 0.422 1021 2418 0.624 0.320

2 0.753 1825 2423 0.266 0.116

3 0.834 2038 2445 0.175 0.083

4 0.830 1887 2273 0.177 0.084

5 0.884 2083 2356 0.125 0.055

6 0.904 2047 2264 0.099 0.052

7 0.941 2203 2340 0.065 0.030

8 0.915 2038 2228 0.092 0.036

9 0.927 2112 2279 0.078 0.032

10 0.948 2098 2213 0.056 0.021

11 0.963 2054 2133 0.037 0.017

12 0.951 1981 2084 0.051 0.021

13 0.949 1892 1994 0.054 0.021

14 0.972 1741 1791 0.027 0.013

15 0.962 1457 1515 0.038 0.019

16 0.946 930 983 0.054 0.029

Table 4: Model performance of AL with uncertainty sampling for suggestions
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Iteration
Greedy Best First Beamsearch

WER CER WER CER

0 1.242 1.162 1.086 0.734

1 0.668 0.230 0.421 0.199

2 0.474 0.163 0.305 0.139

3 0.402 0.138 0.279 0.121

4 0.377 0.128 0.278 0.115

5 0.343 0.117 0.264 0.105

6 0.339 0.118 0.260 0.104

7 0.327 0.109 0.257 0.100

8 0.314 0.108 0.245 0.099

9 0.297 0.103 0.250 0.096

10 0.303 0.104 0.252 0.097

11 0.299 0.101 0.253 0.095

12 0.285 0.101 0.241 0.094

13 0.294 0.101 0.241 0.093

14 0.271 0.096 0.239 0.091

15 0.275 0.098 0.242 0.093

16 0.280 0.099 0.247 0.095

17 0.279 0.098 0.242 0.094

Table 5: Model performance of AL with uncertainty sampling on test-data with GBF-
and Beamsearch-Decoder
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A.3. Best model performances

WER CER

delete insert substitute delete insert substitute

Baseline 717 744 3006 3812 2674 10944

From scratch 81 244 814 975 477 1572

Transfer Learning 70 239 781 828 526 1489

Random sampling best 196 224 816 1184 586 1348

Uncertainty sampling 48 274 659 625 549 995

Table 6: Comparison of edit-operations of CER and WER on test data with baseline,
from scratch and Transfer Learning model and uncertainty and random sam-
pling using their respective best models.
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