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Abstract: The state of the art in 3D object detection using sensor fusion heavily relies on calibration quality, which is
difficult to maintain in large scale deployment outside a lab environment. We present the first calibration-free
approach for 3D object detection. Thus, eliminating the need for complex and costly calibration procedures.
Our approach uses transformers to map the features between multiple views of different sensors at multiple
abstraction levels. In an extensive evaluation for object detection, we not only show that our approach out-
performs single modal setups by 14.1% in BEV mAP, but also that the transformer indeed learns mapping.
By showing calibration is not necessary for sensor fusion, we hope to motivate other researchers following
the direction of calibration-free fusion. Additionally, resulting approaches have a substantial resilience against
rotation and translation changes.

1 INTRODUCTION

Environment perception is one of the pillars of ad-
vances in automated driving. Specifically, 3D object
detection is critical, as knowing the position of ob-
jects in the world relative to the ego vehicle is needed
for path planning and avoiding collisions.

As mission critical goals of automated driving are
safety and redundancy, this must be reflected in all ap-
proaches. Thus, many object detectors apply sensor
fusion to increase the average precision over single
modal approaches. For example the lidar samples a
far away object only with as few as 1-7 points, render-
ing it hardly detectable from lidar. In the camera im-
age, the same object typically spans an area of more
than 30×30 pixels and therefore can be recognized.

The current state of the art in 3D object detec-
tion uses calibration information in the form of a
transform- and projection-matrix. Since features are
projected from one view to the other, the calibration
needs to be very precise, as errors in the calibration
directly impact the quality of the predictions of the
model. For example an angular error of 1° results in
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a misalignment of 0.7m at a distance of 40 meters,
which is equal to the size of the typical bounding box
of a pedestrian.

Whilst in benchmark datasets high quality calibra-
tion is given, it is difficult to obtain and maintain high
quality calibration at a production scale. Since there
is variance in production, calibration must be done
per car. Furthermore, during the lifetime of a vehicle
deformations and thus changes in the calibration can
happen due to heat, vibration and even replacement
of sensors or defective parts. For calibration, typi-
cally special environments with markers are required.
If a vehicle has to be regularly re-calibrated in a spe-
cial environment, this poses a substantial challenge to
automated driving at scale.

Instead of improving calibration or introducing
continuous calibration during operation of the vehicle
adding complexity, we see the solution in eliminating
the need for calibration. Thus, we propose and con-
tribute:

• The new category of approaches doing
calibration-free sensor fusion for object de-
tection,

• a concrete implementation using transformers, ex-
ploiting the characteristics of self-attention,

• an analysis of the effectiveness, showing that the
fusion can actually be learned (see Figure 1).
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Figure 1: The attention for the highlighted grid cells (left)
are overlayed over the BEV lidar (right). Brighter val-
ues (yellow) mean more attention and dark (black) is no
attention. The cone corresponding to the grid cell has
a high attention, while the rest has low attention. Our
calibration-free approach learns the correspondence of im-
age and bird’s-eye-view (BEV).

2 RELATED WORK

Object detection for autonomous vehicles is a very ac-
tively researched field with many approaches. Thus,
we focus on the approaches, which we consider the
most influential and closely related to our work. We
further categorize the work in two groups: 3D object
detectors and transformers in detection.

2.1 3D Object Detectors

Monocular (RGB-only) 3D detection is popular due
to the cheap price of cameras. Approaches like
MergeBox (Gählert et al., 2018), (Mousavian et al.,
2017) and Direct 3D Detection (Weber et al., 2019)
are some of the first to push the performance enve-
lope for monocular detection. These early approaches
have difficulties with the depth perception due to the
inherent depth ambiguity of monocular data.

The current state of the art research like (Zong
et al., 2023), (Wang et al., 2023) and (Liu et al.,
2023a) focuses on temporal information and its ef-
ficient use for detection to partially overcome depth
ambiguity. However, their prediction quality still
lacks behind approaches using lidar.

PseudoLiDAR (Wang et al., 2019) discovered,
that convolution of depth information in the cam-
era view is sub-optimal and introduced a BEV lidar-
like representation for the depth map called PseudoL-
iDAR. Leading to our choice of BEV features as the
primary source for BEV object detection.

LiDAR-based detection overcomes the depth am-
biguity and achieves much higher mean average pre-
cision (mAP) than monocular approaches. PointPil-
lars (Lang et al., 2019) is one of the first approaches
for automated driving to combine point cloud pro-
cessing with efficient CNN backbones.

CenterPoint (Yin et al., 2021) successfully extends
the concept of CenterNet (Duan et al., 2019) to 3D ob-

ject detection. At the core, the bounding box predic-
tion is separated into two tasks: Predicting the center
point of the box and predicting the size and orienta-
tion. The prediction of the center point is done via a
heat map per object class and allows for easy and pre-
cise localization of objects independent of their orien-
tation.

The current state of the art researches temporal as-
pects (Koh et al., 2023), scene synthesis (Zhan et al.,
2023), focusing on hard samples (Chen et al., 2023)
and innovative kernels (Chen et al., 2023). Tech-
niques used here might be applicable in learned fusion
as well in future research.

Sensor Fusion for detecting objects uses both li-
dar and RGB. The goal of using multiple sensors is
better performance and robustness of the approaches
by leveraging the strengths of both sensors. Image
data is strong at initial recognition of objects, while
lidar is strong at precise localization of objects in 3D.

F-PointNet (Qi et al., 2018) first uses a 2D detec-
tor to then crop a frustum in the point cloud using the
calibration and predict the 3D object in that frustums
point cloud. PointPainting (Vora et al., 2020) predicts
segmentation masks using the camera and then col-
orizes the point cloud to predict the boxes there.

AVOD (Ku et al., 2018) projects anchors into the
views using the calibration to allow them to crop the
features and concatenate them. Then, proposals are
predicted which are projected into the views again.
Finally, the cropped fused features are used for pre-
cise bounding box prediction.

Differently, LRPD (Fürst et al., 2020) first uses
instance segmentation to generate proposals and then
projects the proposals to the views and fuses similar
to AVOD. It leverages RGB for initial recognition and
then both sensors for the fine localization.

Following the idea of explicit handling of sen-
sors, BEV Fusion (Liu et al., 2023b) transforms the
camera features efficiently to the bird’s-eye-view and
then stacks them with the lidar features to predict the
bounding boxes. The mapping is pre-computed using
the calibration.

All current sensor fusion approaches in 3D object
detection use calibration matrices. The most common
use is to map information from one view to another.

2.2 Transformers in Detection

Transformers as introduced by (Vaswani et al., 2017)
use self-attention at the core. The self-attention is a
dot product of the query and key vectors to create a
weight matrix called attention matrix. The attention
matrix is then multiplied with the values resulting in
a weighted sum of the values.



Detection Transformer (DeTr) (Carion et al.,
2020) very successfully applied transformers to ob-
ject detection by using the features of the convolu-
tional encoder as inputs to a transformer encoder and
decoder architecture. In contrast to common practice
in detection, DeTr predicts a set of bounding boxes
instead of predicting boxes for each pixel or grid cell
in the image. This makes the approach very general,
but more difficult to train.

TransFusion (Bai et al., 2022) applies the ideas of
DeTr to sensor fusion. It encodes the features using
regular backbones and then uses queries to decode the
bounding boxes. The queries are generated from a
heat map for the lidar initially and then in a second
step by projecting the center of a query to 2D in the
spatially modulated cross attention introduced by the
approach.

Cross-Modal-Transformer (CMT) (Yan et al.,
2023) is one of the best published approaches on
nuScenes (Caesar et al., 2020). The core concept is
very similar to DeTr. It first extracts the features from
camera and lidar using encoders. Then it concatenates
the features and applies a transformer decoder. The
queries are computed from 3D points which are pro-
jected to the respective views of the sensors. Thus
enabling the correlation with the position embedding
of the respective views. We found in preliminary ex-
periments, that the model does not converge if the cal-
ibration is omitted from this step.

Finally, TransFuser (Chitta et al., 2023) uses trans-
formers to fuse the features from the different views
for learning navigation in a simulated environment.
The approach does not use calibration in its fusion,
but it is limited to predicting a global output: The next
N waypoints. The TransFusion module introduced in
their approach is very flexible. However, their over-
all architecture produces global features unsuited for
object detection.

Even when using transformers object detectors
rely on calibration to map information from one view
to another. TransFuser not needing calibration can-
not be applied to object detection without substantial
modification.

3 APPROACH

Current state of the art approaches for sensor fusion
rely on calibration. Even approaches using transform-
ers still use calibration for fusion. It is very difficult to
successfully train a completely calibration-free fusion
approach, since ”object queries might attend to visual
regions unrelated to the bounding box to be predicted,
leading to a long training time for the network” (Bai

et al., 2022). Indeed, naively removing calibration
from existing transformer based approaches does not
work in our preliminary experiments. Hence, we fo-
cus on a simple model and approach that can manage
a stable training in a timely manner to show the pos-
sibility of training such calibration-free models.

Since training transformers to map between the
different views is already a hard problem, the rest of
the model is kept small and straightforward. We focus
on using transformers to correlate features between
the views and eliminating the calibration.

3.1 TransFuseDet

Giving a simplified overview over our approach, our
model consists of a fusion encoder, upsampling and
task-specific heads. We use two ResNets (He et al.,
2016) to encode lidar and camera respectively. Trans-
formers fuse the features at different abstraction lev-
els, similar to TransFuser (Chitta et al., 2023). How-
ever, unlike their approach, we keep the features of
BEV and camera view separated to keep the spatial
interpretation of the feature maps intact. This allows
us to do object detection.

The features which are separate but mapped via
transformer fusion are then upsampled to increase res-
olution and finally used in two CenterNet-Style de-
coders for BEV object detection on the BEV features
and 2D object detection on the features in camera
space. The main goal is BEV object detection, but
the 2D object detection can be viewed as an auxiliary
task to improve BEV performance, as we will show
in an ablation study.

Figure 2 gives an overview over our architecture
and the following sections explain more details on
how the transformer fusion works.

3.2 Feature-Extraction: Multi-View
Fusion via Transformers

To extract the features, we partially follow the
methodology of TransFuser (Chitta et al., 2023). We
first apply a convolutional block with pooling from
the ResNets to each of the modalities. Then, the fea-
tures extracted are fused by a transformer. However,
in order to apply a transformer, the features need to
be pooled, flattened and then concatenated from the
different views of the sensors. After the transformer,
the features must be split into the views, reshaped and
upscaled, so they can be added to the features of the
respective views.

Deviating from TransFuser, the fusion step is op-
tional after each block in the ResNet. In the ablation
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Figure 2: Our model is composed of three main components: First, the encoding block using TransFusion to fuse the features
without calibration. The block is repeated n = 4 times and the fusion (orange) is optional in each block. Second, the upsam-
pling block increasing the resolution of the feature maps. Upsampling is also repeated k = 3 times each time increasing the
resolution by a factor of two. Last, a task-specific head predicting the bounding boxes in BEV and 2D.

study, we experimentally derive an optimal configu-
ration.

Additionally, we introduce upsampling to increase
the resolution again, as the native output resolution of
the fusion encoder is too low for precise object detec-
tion. For upsampling we simply upscale the features,
concatenate them with the higher resolution features
and apply 1x1 convolutions.

3.2.1 Property of transformers allowing
calibration-free fusion

At the core of the fusion lies a transformer. The crit-
ical component of a transformer for fusion is the at-
tention, as it allows to correlate features independent
of their spatial location. For example, in our bird’s-
eye-view (BEV) representation the ego-vehicle is on
the left facing towards the right as shown by the little
arrow in Figure 2. Thus, if we have a car which is
far away in the scene, it might appear centered in the
camera view, but in the lidar bird’s-eye-view (BEV) it
is to the far right. Typically, calibration data would be
used to compute the corresponding positions in BEV
and camera view and then the features would be gath-
ered or projected to the other view. This is not done
in calibration-free fusion. Here, we leverage the prop-
erty of the dot product in attention to correlate similar
features independent of their position.

Scaled Dot-Product Attention (Vaswani et al.,
2017) consists of a dot product between the query Q
and the key K, scaled using the dimensionality dk of
the keys, and then weighting the values V by the re-

sulting (softmaxed) matrix.

Attention(Q,K,V ) = softmax
(

Q ·KT
√

dk

)
·V (1)

The dot product computes the similarity of two vec-
tors. This is exactly what we need to correlate fea-
tures. For example, our convolutional encoder finds a
pedestrian in the image at position xI , and in the lidar
at position xL. Then, the resulting features fxI and fxL
should have a similar semantic meaning, resulting in
a high value for the dot product and thus a high atten-
tion to the feature of the other view.

3.2.2 Pooling in Fusion Reducing
Computational Complexity

Transformers have a high computational cost in im-
age processing due to the high resolution. To ap-
ply a transformer on a feature grid, the features must
be flattened. Thus, a vector with shape H ×W ×C
must be flattened to a vector of shape (HW )×C to be
used as Q = K =V in self-attention. The resulting at-
tention matrix is of shape (HW )× (HW )×C, which
means H2W 2C values. So for example doubling the
input resolution squares the flattened vectors size and
quadratically increases the size of the attention ma-
trix, severely limiting the resolution that is practical
with respect to computational cost and learnable pa-
rameters.

For fusion, we concatenate two or more flattened
feature vectors before using them as Q, K and V in the
self-attention. Despite only linearly increasing com-
plexity combined with the quadratic scaling this fur-
ther increases the computational cost.



To limit cost there are two options: Reducing the
resolution of the input to the model or pooling the fea-
ture maps before using them in the fusion. Pooling the
feature maps allows to keep high resolution feature
maps and only sacrifice resolution in the fusion. For
object detection with CenterNet, a higher resolution
is beneficial. Higher resolution allows to distinguish
two objects near each other, since only a single object
per grid cell can be detected. Additionally, the loca-
tion of the maxima in the heat map can correspond
better to the true mode, since quantization errors are
smaller.

3.2.3 Upsampling

Since resolution has a big impact on the performance
of the CenterNet-style decoders, increasing output
feature resolution can be beneficial to the perfor-
mance. We use upsampling and combine the upsam-
pled features with the higher resolution and lower ab-
straction of earlier layers of the model. Following
common convention, features are upsampled by a fac-
tor of two and combined with the features of the previ-
ous encoding block. The combination of the features
is done via a concatenation along the channel dimen-
sion followed by a 1x1 convolution.

3.3 Detection Heads

The detector heads follow the methodology of Cen-
terNet (Duan et al., 2019) as it is a proven approach,
suitable for the feature maps created by our calibra-
tion free fusion. The heads predict a class confidence
and a bounding box for each grid cell in the feature
maps. Additionally, in the BEV case we predict a yaw
angle Θ.

Due to the jump in the angle from 360° to 0°, di-
rectly regressing it is not possible, as the derivative
would not be well defined at this jump. Thus, we fol-
low the convention of encoding the yaw angle Θ as
a class and an offset. Specifically, we split the angle
into 8 classes representing equally sized slices of the
value range from -22.5° to 337.5°. This leads to the
centers of each class being at 0, 45, 90, ... 270 and 315
degrees. The offset value range is then from -22.5° to
+22.5°.

To train the heads, we use a mean squared error
(MSE) over the entire grid map for the heat map loss
Lheat. Since the heat map is heavily biased towards no
objects (background), we split the loss computation
into background and foreground loss. These are then
summed using a weighted sum:

Lheat = w f gLmse, f g +wbgLmse,bg. (2)

For the box and yaw we only apply the losses on

the grid cells associated with a bounding box. For
other grid cells, no loss is computed. The bounding
box loss Lbbox is a smooth L1-loss and for the yaw we
use cross entropy for the class loss LΘ-cls and smooth
L1-loss for the offset regression loss L∆Θ.

Finally, for the BEV detection task the losses are
combined into a single loss L using a weighted sum,
where w denote the weights:

Lbev = wheatLheat +wbboxLbbox +wΘ(LΘ-cls +L∆Θ).
(3)

In the case of the 2D detection task, we use the same
loss without the yaw:

L2D = wheatLheat +wbboxLbbox. (4)

The two losses are then combined for the backpropa-
gation using a weighted sum of the BEV and 2D task
loss:

L = wbevLbev +w2DL2D. (5)

3.4 Implementation Details

Based on experimental studies, our model is trained
with an AdamW optimizer a learning rate of 1e-4 and
weight decay of 1e-4. The learning rate is reduced
using exponential decay of 0.99996 every two steps.
For the loss weights we use wBEV = 0.95, w2D = 0.05,
w f g = 0.9, wbg = 0.1, wheat = 10, wbbox = 1.0 and
wΘ = 0.2. The model performs best without random
rotations and offsets of the lidar, but horizontal mir-
roring is enabled for both lidar and camera.

We do not use extensive point cloud augmenta-
tion or aggregation of points from multiple frames.
This reduces our mAP significantly, but allows us to
clearly show what our approach contributes instead of
the influence of augmentation strategies.

4 EVALUATION

We evaluate our approach on the nuScenes
dataset (Caesar et al., 2020) since it provides
the required modalities, i.e. lidar and camera, while
having a sufficient size. NuScenes has 40.000 anno-
tated key frames in 1000 driving sequences, which
is sufficiently large for training a transformer-based
calibration-free model. However, we noticed during
preliminary experiments that larger transformer-
based calibration-free models have difficulties
converging on this dataset. Thus, we kept our model
small to show the possibility of calibration-free
fusion.

The frames provided by nuScenes contain 6 cam-
era images, 1 lidar scan and 5 radars. We only use



Table 1: Learned fusion outperforms its RGB-only or lidar-
only counterpart. The models are as identical as possible to
eliminate all other effects except for the learned fusion.

Method BEV mAP 2D mAP
RGB-only - 47.0
LiDAR-only 37.6 -
Learned Fusion [ours] 42.9 48.7

Table 2: Comparison of bird’s-eye-view mAP between
calibration-free fusion and much larger calibration-based
approaches, which cannot be applied without calibration.

Method Calib mAP
CMT (Yan et al., 2023) Yes 70.4
BEVFusion (Liu et al., 2023b) Yes 70.2
Learned Fusion [ours] No 48.8

the front and rear camera, as the side cameras have
many frames without objects, which yield little bene-
fit training the model. Additionally, using two instead
of six cameras reduces training time by a factor of
three.

4.1 Advantage over Single Sensor

Our approach introduces a new category of ap-
proaches next to camera only, lidar-only and
calibration-based fusion, we introduce calibration-
free fusion. Thus, comparability to existing ap-
proaches is limited.

From our approach we can simply derive a uni
modal variant by removing the fusion and the sub net-
work for the other modality. This allows us to show
the concrete benefit from calibration-free fusion over
single modality. However, due to the nature of our ap-
proach, it is not possible to add calibration. Thus, a di-
rect comparison of identical approaches showing the
potential advantage of calibration over calibration-
free is not possible.

Our approach is significantly outperforming its
two derivatives using single modality. This shows that
the fusion without calibration has a clear advantage
over no fusion. Table 1 shows that fusion is 14.1%
better than the lidar-only approach in BEV detection
and 3.6% better than then camera only approach. The
smaller gap for 2D detection makes sense as camera
information is generally considered sufficient for 2D
detection.

However, when comparing our approach to the
current best approach on nuScenes using calibration,
it is evident, that there is still a significant perfor-
mance gap (see Table 2). This gap is to be expected
from a completely novel approach using no calibra-
tion. As there is little prior work to build on, many

Table 3: The performance impact different fusion configu-
rations is measured. Adding fusions after the early layers of
the model does not improve performance in BEV.

Method Fusion BEV mAP 2D mAP
Learned Fusion 4 37.7 48.1
Learned Fusion 3,4 42.9 48.7
Learned Fusion 2,3,4 40.1 47.6
Learned Fusion 1,2,3,4 39.0 47.0
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Figure 3: Visualizing the attention matrix, so that it corre-
sponds to the grid cells in the image, shows that later fusions
have more focus. Early fusions are are uniformly distributed
and do not contribute to a good fusion.

simplifications were done in this first approach. How-
ever, we are confident, that further research adding
advanced data augmentations and training strategies
as well as scaling up the model can close the gap.

Without using any calibration information our ap-
proach learns to correlate the data from different
views. We believe that the calibration-free nature of
our approach and the advantage over single modal ap-
proaches make this a very promising new field in sen-
sor fusion for object detection.

4.2 Number of Fusion Layers

Our approach allows to have a fusion in 4 optional
places. In this study we evaluate which fusions yield
the best results. We can do a fusion after each of the
N last convolutional blocks in the ResNets. For ex-
ample fusions at 3 & 4 means there is a fusion after
the second last and last block in the ResNet of the
two modalities. In Figure 3, the first three fusions of
a model with all fusion blocks are shown.

In Table 3, we can see, that more fusion layers
than two does not have a positive impact on the per-
formance of the model. For example in the case of
four fusions the BEV mAP degrades by 3.9 mAP
(∼ 9%) compared to two fusions.

A possible explanation is that the feature vectors
correlated by our approach need a certain abstraction
level. Lower level feature maps lack the abstraction
and confuse the model. For example, a tire in an im-



Table 4: Random rotation and translation barely reduce the
mAP of the model. Even extreme movement of the lidar by
5.5 meters and rotating up to 15° only has a slight impact
on performance.

Rot. Trans. Mirror BEV mAP 2D mAP
0° 0m No 41.1 47.9
0° 0m Yes 42.9 48.7
0° 0.5m Yes 42.3 46.7

15° 0.5m Yes 41.3 47.1
15° 5.5m Yes 40.5 45.3

age might not be visible in the lidar at all, thus corre-
lating these low level features does not provide much
value. Adding this fusion means the model needs
to actively learn to ignore the features of a different
view. Inspecting the heat maps of the attention, we
noticed that the attention for the feature maps in the
earlier layers is low and unfocused, see an example in
Figure 3.

4.3 Sensor Displacement or Rotation

Since our model does not use an explicit calibration,
but correlates the features, it has a builtin robustness
against sensor displacement and rotation. To evaluate
this, we added random rotation and translation to the
input data of our model during training and testing
time.

In Table 4, it is visible, that the model with mirror-
ing performs best. However, adding random transla-
tion of up to 0.5m only reduces the mAP by 0.6 mAP
in BEV. Adding random rotations of up to 15° again
only reduces the mAP in BEV by 1.6. For context,
calibration-based approaches expect precision in the
range of 0.01m and less than 1° error. Finally, we
evaluate extreme translations up to 5.5 meters (row 5)
losing 2.4 mAP over the baseline (row 2). How-
ever, with an offset of 5.5 meters the sensor could
be mounted on a vehicle next to ours, showing the
extreme robustness to translation and rotation of the
sensors in our approach.

These results show, that our approach has strong
robustness against changes in the alignment of sen-
sors with respect to translation and rotation. The cor-
relation of features via the attention is crutial for this.
We see the potential to apply this approach to multiple
different vehicles without the need for modification.

4.4 Loss and Task Weighting

When training the approach there are hyperpareme-
ters regarding the weighting in the loss. We split the
weighting in two categories, task weighting and loss
weighting. In task weighting we evaluate the optimal

Table 5: Weighting the tasks differently affects perfor-
mance. BEV detection is the primary task reaching best
performance at 0.95 and 0.05 weighting.

wBEV w2D BEV mAP 2D mAP
0.20 0.80 38.1 45.3
0.50 0.50 41.8 49.4
0.80 0.20 42.1 49.7
0.90 0.10 40.7 47.4
0.95 0.05 42.9 48.7
0.99 0.01 41.9 44.0
1.00 0.00 40.5 0.0

Table 6: The weighting of the different loss components has
a significant impact on the performance. A high heat map
weight has strong impact on the BEV mAP. Our baseline
(row 3) is outperformed by a very high wheat (row 6).

wfg wbg wheat wΘ BEV mAP 2D mAP
0.80 0.20 10 0.2 43.5 46.8
0.90 0.10 2 0.2 39.3 45.3
0.90 0.10 10 0.2 42.9 48.7
0.90 0.10 10 1.0 44.2 50.7
0.90 0.10 20 0.2 42.8 49.4
0.90 0.10 50 0.2 48.8 49.0
0.95 0.05 10 0.2 41.5 47.3

balance between the 2D and BEV detection loss with
the goal of an optimal BEV mAP. In the loss weight-
ing we evaluate the impact of the weights for heat map
foreground w f g and background wbg and the weight-
ing of loss components using wheat and wΘ.

In Table 5 we can see that a higher weight to the
BEV loss increases performance. However, increas-
ing beyond 0.95 reduces the mAP again as the 2D loss
can be viewed as an auxiliary loss for the camera fea-
ture extractor.

Even without the 2D loss, the fusion model out-
performs single modality. In using only lidar achieves
a 37.6 mAP while fusion without the auxiliary loss
still achieves 40.5 mAP. Fusion alone contributes sub-
stantially to the performance and the auxiliary 2D
losss then further improves the effectiveness of fu-
sion.

The evaluation of the loss weights in Table 6
shows that increasing the heat map weighting in the
loss has a significant impact on the mAP. This can be
explained by the fact, that the correct location of the
center of a bounding box in the BEV is most impor-
tant to detection, since the size variation within an ob-
ject class is small. For example, all pedestrians have
almost the same size in BEV.
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Figure 4: Attention for objects visualized in bird’s-eye-
view. Depending on where in the image the object is, the
attention map is different. Nearby and far away objects have
very different attention as well as left and right. For some
objects the attention is focused, while for others it is diffuse.

4.5 Attention Map Analysis

Besides the quantitative analysis of our approach, we
visualized and analyzed the behavior of the attention
maps to gain understanding.

For the visualization we reformatted the attention
map of the two flattened vectors into a grid of atten-
tion images for each cell in the feature map. In the
Figure 3 the full matrix can be seen per layer. As
described in Section 4.2 the feature maps of earlier
layers are uniform and lack focus. Thus, for our sub-
sequent analysis, we focused on the feature maps of
fusion layers 3 and 4.

To validate that the attention has a meaningful in-
terpretation, we analyzed the attention maps of grid
cells containing objects. In Figure 4, we show the at-
tention for nearby, centered, left, right and far away
objects. Generally a correlation of the attention to the
region in the lidar can be seen. However, in some
cases the object attention lacks focus and is quite dif-
fuse. This especially happens for nearby objects cov-
ering large areas of the image.

Analyzing many of the attention maps, we noticed
a few trends: Firstly, especially the later attention lay-
ers focus their attention on cones and regions contain-
ing objects. Secondly, the attention of regions corre-
sponding to each other have a high attention for each
other. For example, the region at the horizon of the
image and the far away region in the lidar have a high
attention for each other.

We conclude from this observation, that the model
learns correlating features from the regions of the dif-
ferent views containing the same objects.

4.6 Qualitative results

To validate the plausibility of our results, we visual-
ized the BEV detections over the pointcloud input to
the model. This allows us to inspect the detections

and see strengths and weaknesses of the model.
Overall, the model performance is good (see Fig-

ure 5). The model predicts the position and orien-
tation of objects well. However, in some cases the
model has false positives for pedestrian objects as
well as false negatives for construction workers. The
issues with construction workers are to be expected as
they are an underrepresented class in the dataset.

As there is no specific shortcomings of the model
apparent, our fusion seems to be quite robust.

5 CONCLUSIONS

Overall, we introduce fully calibration-free sensor fu-
sion using neither intrinsic nor extrinsic calibration.
Eliminating the need for complex calibration proce-
dures in sensor fusion for object detection. As a
calibration-free sensor fusion in object detection, we
present an approach using transformers for correlat-
ing features between the views and then upscaling the
features to achieve the necessary resolution for pre-
cise object detection.

In the thorough evaluation, we show that
calibration-free sensor fusion is a promising field.
Concretely, we show that adding calibration-free fu-
sion increases performance over using a single modal-
ity. Further, we found that our approach is robust
against random translation and rotation, since the
model correlates the features without a calibration
matrix.

5.1 Limitations and Future Research

However, due to the complexity of the learning prob-
lem to correlate all features from the different views
with each other, the model has limitations. We iden-
tified two main limitations and propose directions for
further research to eliminate them.

First, the model complexity is a problem. The
transformer for the fusion requires many of parame-
ters and thus allows for a very limited resolution. This
leads to a gap in performance compared to the best
calibration-based fusion approaches. We expect that
approaches such as deformable-attention or a query
based approach like DeTr could help here.

The second limitation is the stability of the train-
ing. During early experimentation we were experi-
menting with a much larger DeTr style model, but
found the training to be too unstable. We attribute
this to the fact that learning a correlation between ran-
dom features at the beginning of the training is highly
unstable. Thus, advanced strategies for training and



Figure 5: Visualization of the BEV detections predicted by our model. The model has good prediction for most cars, but
has difficulties at the edges of the BEV lidar. It cannot detect all construction workers in image three, however construction
workers are underrepresented in the dataset. At night the detection of the cars is very good despite the low visibility.



especially pre-training could prove a very valuable di-
rection of further research.
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