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Abstract—This paper proposes a Differential Privacy approach
for adaptive service provisioning in mobile networks. With the
increasing demand for mobile services and the ever changing
network environment, network operators have to be able to
dynamically adjust their service provisioning to meet changing
user demands. However, this presents a challenge for preserving
user privacy while collecting data to inform these decisions. The
proposed approach uses Differential Privacy techniques to ensure
that user privacy is protected while still allowing for accurate data
collection and analysis. The approach also includes an adaptive
mechanism for adjusting service provisioning based on the col-
lected data, further improving the efficiency and effectiveness of
mobile networks.

Index Terms—Privacy, Differential Privacy, Context-Awareness,
Mobile Network, 5G, 6G

I . INTRODUCTION

Context Management (CoMa) has become one of the most
desired features for next-generation mobile networks. With the
advent of new wireless technologies such as 5G and 6G, the
need for efficient context management is increasingly important.

A context-aware mobile network can leverage context infor-
mation from multiple connected entities to better manage and
coordinate the interactions between different devices, networks,
and services, enabling efficient and effective utilization of
network resources as well as opening a door for new business
models and revenue streams for Mobile Network Operators
(MNOs) and better user experience for consumers.

However, the most prominent argument against context
awareness is the privacy of the users providing their real-
time context information. The acquisition of private informa-
tion, such as location data, browsing history, and personal
preferences, can lead to the exposure of sensitive information
that could be exploited for malicious purposes. Therefore, the
collection, storage, and processing of private data must be
done with extreme caution and with adequate safeguards to
protect users’ privacy and it is also critical to ensure that data
acquisition and processing comply with relevant privacy laws
and regulations, such as the General Data Protection Regulation
(GDPR) in Europe and the California Consumer Privacy Act
(CCPA) in the United States.

Differential Privacy (DP) can help mitigate the limitations
of collecting private data. DP is a mathematical technique that

allows for the collection and analysis of private data while
protecting the privacy of individuals by adding noise to the data.

One significant advantage of this technique is that it can
provide a measurable guarantee of privacy protection. By adding
noise to the data, it ensures that individual data points cannot
be re-identified, even by an attacker with access to all other
data in the dataset. This guarantee can increase users’ trust in
the network and its services, thereby mitigating the risks of
reputational damage and loss of user engagement.

Another advantage of DP is that it can enable data sharing and
collaboration without compromising privacy. By adding noise
to the data, DP allows for the sharing of sensitive data between
multiple parties while protecting the privacy of individuals. This
can enable new forms of collaboration and research that were
so far impossible due to privacy concerns.

DP can also address the ethical concerns regarding users’
consent and transparency in data collection practices. By adding
noise to the data, DP ensures that individual data points can-
not be traced back to specific individuals, thereby ensuring
anonymity and protecting users’ privacy. Additionally, DP can
enable users to control their data and revoke their consent to
data collection at any time, thereby increasing transparency and
empowering users.

This study explores how DP can be leveraged in mobile
networks to provide adaptive service provisioning based on
context data. The paper is structured as follows: Section II gives
a brief overview of the related work on this topic. Section III
provides a detailed description of the DP algorithm. Section IV
presents a proposed context management architecture, including
the context data acquisition and processing steps. Section V
focuses on the implementation and integration aspects, while
Section VI illustrates a variety of potential use cases. The paper
concludes in Section VII with a summary of the contributions
and suggestions for future work.

II . RELATED WORK

As part of the Open6GHub project in Germany, a Context
Management Architecture for Decoupled Acquisition and Distri-
bution of Information in Next-Generation Mobile Networks was
proposed in [1]. The architecture leverages a publish/subscribe
messaging model to ensure decoupling between providers and



consumers, addressing the network providers’ need for context
awareness in their networks.

A CoMa framework leveraging agent technology in 4G
mobile networks is introduced in [2]. The focus is on enabling
intelligent services that are context-aware, particularly in the
context of secure handovers. [3] proposed the adoption of a
reconfigurable context management system in wireless mesh
networks. [4] addresses the limitations of traditional opportunis-
tic routing by introducing a new protocol called Context-aware
Opportunistic Routing and [5], [6] proposed a context-aware
resource allocation system in distributed sensor networks and
cellular wireless networks respectively. A context-aware secu-
rity for 6G wireless using physical layer security is developed
in [7]. This work focuses on context-aware service provisioning
in mobile networks and proposes a private approach using DP
techniques.

III . D IFFERENTIAL PRIVACY

DP is a mathematical framework for ensuring the privacy
of individuals in datasets. It can provide a strong guarantee
of privacy by allowing data to be analyzed without revealing
sensitive information about any individual in the dataset. One
important application of DP in mobile networks is adaptive
service provisioning, which involves dynamically adjusting the
services provided to individual users based on their context
and behavior. DP algorithms provably resist identification and
reidentification attacks.

A. Different Concepts of Differential Privacy

There are four main formulations of the concept of DP, 𝜀-
DP [8] [9], (𝜀, 𝛿)-DP [10], Renyi Differential Privacy (RDP)
[11] and Gaussian Differential Privacy [12]. Each formulation
provides varying levels of privacy protection and flexibility.

1) 𝜀-Differential Privacy: A randomized algorithm A is 𝜀-
DP if, for any two neighboring datasets (datasets that differ in
only one individual’s data), 𝐷 and 𝐷′ and a set 𝑆 the following
is satisfied:

𝑃[A(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 × 𝑃[A(𝐷′) ∈ 𝑆] . (1)

This means that the probability of the algorithm outputting any
particular result is at most 𝑒𝜀 times greater for one dataset than
for the other. 𝜀-DP is the most common variant of DP and 𝜀 is
a privacy parameter that controls the level of privacy protection,
with smaller values of 𝜀 providing stronger privacy guarantees.
When 𝜀 is small, the presence or absence of any individual’s
data has a limited impact on the final query result. 𝜀-DP can be
achieved by any algorithm by applying the Laplace mechanism
[8] or the exponential mechanism [13].

2) (𝜀, 𝛿)-Differential Privacy: A more general and flexible
variant of DP is (𝜀, 𝛿)-DP. An algorithm A is (𝜀, 𝛿)-DP if,
for any two neighboring datasets, 𝐷 and 𝐷′ and a set 𝑆 the
following is satisfied:

𝑃[A(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 × 𝑃[A(𝐷′) ∈ 𝑆] + 𝛿. (2)

This means that the probability of the algorithm outputting any
particular result is at most 𝑒𝜀 times greater for one dataset

Figure 1. Differentially Private Data Query

than for the other, except with probability 𝛿. (𝜀, 𝛿)-DP can be
achieved through the application of Gaussian mechanism [10].

3) Renyi Differential Privacy: RDP represents a versatile
privacy paradigm that goes beyond the constraints of both 𝜀-DP
and (𝜀, 𝛿)-DP. By introducing a continuum of privacy guaran-
tees through the parameter 𝛼, RDP offers an unparalleled level
of generality and flexibility in privacy protection. The parameter
𝛼 in RDP enables the privacy level to be continuously adjusted,
accommodating varying degrees of privacy requirements.

A randomized algorithm A : D → R satisfies (𝛼, 𝜀)-RDP if,
for any two neighboring data sets 𝐷 and 𝐷′ it holds that

𝐷𝛼 (A(𝐷)∥A(𝐷′)) ≤ 𝜀. (3)

𝐷𝛼 is a form of distance function that measures the “distance”
between A(𝐷) and A(𝐷′). If A is (𝛼, 𝜀)-DP then

𝑃[A(𝐷) ∈ 𝑆] ≤ (𝑒𝜀 × 𝑃[A(𝐷′) ∈ 𝑆])1−1/𝛼
. (4)

In RDP the privacy loss is measured in terms of Renyi
divergence [14] between the distributions of the output of
neighboring datasets. RDP converges to 𝜀-DP when 𝛼 tends
to infinity, and when 𝛼 is set to 1, it corresponds to (𝜀, 𝛿)-DP
for some 𝛿. For more on RDP and DP in general, see [11].

In addition to these privacy definitions, there is a less popular
DP definition, Gaussian Differential Privacy [12] which works
well in hypothesis testing and makes privacy guarantees easily
interpretable.

B. General Approaches to Achieve DP and Applications

DP can be categorized into two types: Local Differential
Privacy (LDP) [15] and Global Differential Privacy (Global
Differential Privacy (GDP)) [16]. With LDP even if an adversary
gains access to an individual’s personal responses within the
database, they are still unable to obtain information about the



user’s private data. In contrast, GDP represents a DP model that
integrates a central aggregator with direct access to the raw data.

1) Local Differential Privacy: In LDP the data curator/cen-
tral aggregator, the person who is aggregating the dataset, does
not know the actual value, as users add noise to their own data
before sharing and thus privacy is protected, Figure 1. They do
not have to trust the data curator or the database owner. With
LDP, since each user must add noise to their own data, the total
noise is much larger and typically would need many more users
to get useful results. Practical applications include:
• RAPPOR: Google uses LDP to collect data from users, such

as the other running processes and Chrome home pages they
visit. This data is used to improve the performance of Google
products and services, without compromising the privacy of
individual users [17].

• Private Count Mean Sketch: Apple uses LDP to collect
emoji usage data, word usage, and other information from
iPhone users (iOS keyboard). This data is used to improve
the accuracy of predictive models, such as the keyboard’s
auto-correct feature, without compromising the privacy of
individual users [18].

• Privacy-preserving aggregation of personal health data
streams: [19] develops a novel mechanism for privacy-
preserving collection of personal health data streams. The
data is collected at fixed intervals, and LDP is used to protect
the privacy of individual users. This allows researchers to
study large datasets of personal health data without compro-
mising the privacy of the individuals involved.
2) Global Differential Privacy: In GDP the noise is added

to the query outputs of a database, specifically at the end of the
process before sharing the results with a third party. A trustwor-
thy data curator carries out noise addition and has access to the
original raw data in the database. The primary advantage of this
approach is that it maintains accuracy while requiring minimal
noise addition, even with a low privacy parameter 𝜀. However,
a significant challenge lies in establishing trust between users
and the data curator and this is especially difficult. Additionally,
the global model centralizes all data, raising the risk of breaches
if the aggregator is hacked and data is leaked. It’s important
to note that if the database owner, who also functions as the
data curator, can be trusted, the primary distinction between
local and global DP is that the latter yields more accurate results
with equivalent privacy protection. GDP was adopted in the
Census Bureau Adopts Cutting Edge Privacy Protections for
2020 Census [20].

DP is applicable in many domains including data anonymiza-
tion, and secure queries but also Machine Learning (ML). In
ML, especially Deep Learning, there are two main techniques
to achieve DP, Differential Privacy Stochastic Gradient Descent
(DP-Stochastic Gradient Descent (SGD)) and Private Aggrega-
tion of Teacher Ensembles (PATE).

C. Differential Privacy Stochastic Gradient Descent
DP-SGD combines the principles of DP with the popular

optimization algorithm, SGD [21]. It enables privacy-preserving
learning by adding noise into the gradient updates during the

training process. With the noise addition, DP-SGD ensures that
the updates to the model’s parameters are sufficiently random.
This protects the privacy of individual data points while still
allowing effective model training. DP-SGD satisfies (𝜀, 𝛿)-DP;
it ensures that an individual data point’s presence in the training
dataset will not significantly impact the model’s output or final
decision.

D. Private Aggregation of Teacher Ensembles

PATE is another differentially private ML framework [22]. It
works by first training an ensemble of teacher models on disjoint
subsets of the sensitive data. Each teacher model is trained
independently, so no individual’s data is shared with any other
individual. The knowledge of teacher ensembles is transferred to
a student model by letting the teachers vote for the label of each
record from an unlabeled public dataset. The voting process
is done in a way that adds noise to the teacher’s predictions,
making it difficult to learn anything about the individual data
points that were used to train the teacher models. The amount
of noise that is added to the teacher predictions is controlled by
the privacy budget 𝜀, it is 𝜀-DP. The larger the privacy budget,
the less noise is added, and the more accurate the student model
will be. However, a larger privacy budget also means that it is
less likely that the student model will be differentially private.

DP emerges as a promising technique in many domains. It
can be useful in addressing privacy concerns and establishing a
balance between context management and privacy preservation
in mobile wireless communication.

IV. CONTEXT MANAGEMENT FRAMEWORK

Many consider context-awareness in mobile networks to be
a cornerstone feature that can provide centralized user and
device data handling, ensuring optimized resource allocation,
and delivering personalized experiences through insights into
user behavior, network conditions, and application needs. This
feature enables seamless mobility between network technolo-
gies, enhances security, and enables dynamic adaptation based
on real-time context. Such an intelligent framework empowers
efficient service provisioning, network automation, and scala-
bility, making it a key element in shaping the future of mobile
connectivity and services.

A. Context Management Process

Following are the different phases involved in a Context
Management System (CoMaS):
1) Context Acquisition: It involves gathering context data

from diverse sources, such as devices, apps, and users, using
sensors, probes, or any existing techniques.

2) Context Storage: Involves centralizing and structuring con-
text info in a repository using database systems and indexing
technologies, while defining data models and relationships.

3) Context Processing: Compasses analyzing context infor-
mation for valuable insights using ML, data mining, and
analytical methods, facilitating meaningful results genera-
tion.



4) Context Dissemination: It involves the exchange of context
data with relevant systems using protocols, Application Pro-
gramming Interfaces (APIs), and communication methods
to accurately deliver data to intended recipients.

5) Context Utilization: This phase involves the use of context
information to support various applications and services
within or outside the network.

6) Context Evaluation: Compasses appraising the quality of
the CoMaS process and context data. This phase utilizes
metrics, benchmarks, and issue resolution to gauge CoMa
system performance and effectiveness.

7) Context Maintenance: Continuous maintenance and up-
dates to the CoMaS system. This includes capturing, storing,
processing, and sharing new context data, while also retiring
outdated or irrelevant context information.

B. Context Data Model

Context data can be classified into four major categories:
• Device Context: refers to information about the character-

istics and capabilities of a particular device, such as its
hardware and software specifications, connectivity status, and
location.

• Network Context: refers to information about the charac-
teristics and state of the network, including its topology,
bandwidth, and performance.

• User Context: refers to information about the preferences,
habits, and characteristics of the user, such as their location,
language, and personal preferences.

• Application Context: refers to information about the specific
application or service being used, such as the type of data
being transmitted and the requirements of the application.

C. Context Management Architecture

The diagram in Figure 2 represents a high-level architecture
of a CoMaS. The architecture facilitates context information
acquisition and delivery between entities via a publish/subscribe
communication model. This communication model is highly
scalable and provides a decoupled mechanism for data distri-
bution [23]. The broker enables context providers to publish
information, while consumers subscribe to relevant topics. Ad-
ditionally, consumers can issue queries to the broker to retrieve
specific context information.

The Context Providers represent diverse sources of data
such as sensors, mobile devices, applications, or even networks.
Context Consumers on the other hand represent applications
or systems reliant on context, subscribing to the relevant in-
formation they require. This architecture enables third-party
consumers to query context data for specific use cases.

By utilizing state-of-the-art reasoning and machine learning
techniques, the system can extract additional knowledge from
the raw data collected from different entities to provide valuable
input to the control system that makes all major decisions, such
as resource allocation and system shutdown.

V. IMPLEMENTATION AND INTEGRATION

While a CoMaS can offer numerous benefits for network
optimization and service personalization, it raises as mentioned
in Section I legitimate concerns about user data privacy and
security. As users contribute their context data ranging from
location and behavior patterns to personal preferences, there’s
a potential for misuse, unauthorized access, or breaches. This
accumulation of sensitive information in a centralized system
can lead to concerns about surveillance, data leakage, and
unauthorized profiling. Establishing a balance between reaping
the advantages of context-driven networks and safeguarding
user privacy becomes paramount, necessitating robust measures
like data anonymization, user consent frameworks, stringent
security protocols, and compliance with privacy regulations to
ensure that the benefits of CoMa do not come at the expense of
individual privacy and trust.

We see DP as a viable solution to alleviate the privacy restric-
tions associated with a CoMaS. DP can be applied to various
stages of CoMaS to protect user privacy while maintaining the
utility of the collected data. Here are specific areas within CoMa
where DP can be applied:
• Context Acquisition: Local DP (Figure 3) can be applied

at the point of data collection on mobile devices. It can be
used to protect sensitive information such as location updates,
user movement patterns, network status, and user preferences
before sending data to the network.

• Context Processing: Global DP (Figure 4) can be used when
processing queries related. Practical DP for SQL Queries like
FLEX developed at Uber [24], [25] can be used by the Broker
to maintain the privacy of the response even when providing
context-related answers to Context Consumers.

• Context Utilization: DP can be integrated when managing
and analyzing user profiles and preferences. Techniques like
DP-SGD and PATE [21], [22] can be used to protect indi-
vidual preferences and behavior patterns while still allowing
for personalized services. In addition, DP can be used to
ensure fair resource allocation based on aggregated network
conditions and user requirements.

In essence, DP can be applied at multiple stages of CoMa
where sensitive user data is collected, processed, aggregated,
or queried. The aim is to ensure that even in the presence of
powerful adversaries, individual user information remains sta-
tistically indistinguishable and the privacy of users is preserved.
This can help communications service providers comply with
privacy laws and regulations such as GDPR.

VI. USE CASES AND APPLICATIONS

Context-aware service provisioning in mobile networks offers
a wide array of practical use cases that enhance the user experi-
ence, optimize resource allocation, and improve the efficiency
of network operations. Here are some notable use cases:
• Location-Based Services: Context-aware provisioning en-

ables precise location tracking of mobile users. This infor-
mation is invaluable for delivering location-based services
such as personalized advertising, local business recommen-
dations, and geofencing for security or marketing purposes.



Figure 2. Context Management Architecture

Figure 3. Local Deferential Privacy

Figure 4. Global Deferential Privacy

Differential privacy enables the generation of context-based
heatmaps by adding carefully calibrated noise to the aggre-
gated location and sensor data, ensuring that individual users’
precise information remains private. This noise obscures
any sensitive details, making it statistically challenging to
pinpoint an individual’s exact data. As a result, the heatmaps
reveal valuable patterns and trends in user behavior or en-
vironmental conditions while guaranteeing strong privacy
protection, aligning with privacy regulations and user trust.

• Quality of Service Optimization: Context-awareness allows
mobile networks to adapt their service quality based on
factors like network congestion, device capabilities, and user
preferences. This ensures that critical applications like video
streaming or online gaming receive the necessary bandwidth
and low latency while conserving resources for less demand-
ing tasks.

• Context-Aware Security: Mobile networks can leverage
contextual information like device behavior, location anoma-

lies, and user activity patterns to detect and respond to
security threats more effectively. For example, unusual login
attempts from an unfamiliar location may trigger additional
authentication steps.

• Energy-Efficient Communication: Context-aware service
provisioning can optimize energy consumption in mobile
devices. By considering factors like battery status and device
usage patterns, the network can schedule data transfers dur-
ing periods of lower power consumption, extending device
battery life.

• Seamless Handovers: Mobile users often move between
different access points (e.g., WiFi, cellular) while in motion.
Context-aware provisioning ensures smooth handovers by
considering factors like signal strength, network availability,
and user preferences to minimize service disruption during
transitions.

• Emergency Services: During emergency situations, context-
aware provisioning can prioritize emergency calls and data
traffic, ensuring that critical communication services are
available and responsive when needed most.

• Predictive Maintenance: In the Internet of Things (IoT)
domain, context-aware service provisioning can be used to
monitor and maintain connected devices more effectively. By
analyzing contextual data from sensors, network operators
can predict equipment failures and schedule maintenance
proactively.

• Traffic Management and Congestion Control: Context-
aware provisioning assists in traffic management by dynami-
cally rerouting traffic during network congestion or accidents.
It considers real-time traffic conditions, user preferences, and
alternative routes to optimize traffic flow.

• Personalized Recommendations: Utilizing user behavior,
location, and preferences, context-aware services can deliver



personalized content recommendations. This can apply to
content streaming, news, shopping, or even suggesting nearby
points of interest.

• Smart Transportation: Context-aware provisioning plays a
crucial role in intelligent transportation systems. It enables
real-time traffic updates, route optimization, and public trans-
portation information dissemination, enhancing the overall
commuting experience.

• Healthcare and Remote Monitoring: In healthcare, context-
aware service provisioning supports remote patient monitor-
ing. Wearable devices and sensors collect patient data, which
is analyzed in real-time to provide medical professionals with
relevant information and early warning signs.

• Smart Cities: Context-aware services contribute to the de-
velopment of smart cities by optimizing resource utilization,
traffic flow, energy consumption, and public safety. Examples
include smart street lighting, waste management, and environ-
mental monitoring.
In all these use cases and applications, techniques like DP are

essential in preserving privacy.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this paper introduces a novel approach cen-
tered on DP for the dynamic adaptation of service provision-
ing in mobile networks. As the demand for mobile services
continues to surge, and network conditions evolve constantly,
network operators face the critical task of flexibly aligning
their service offerings with changing user needs. However, this
imperative to adjust services presents a challenge in terms of
safeguarding user privacy while collecting essential data for
informed decision-making. The proposed approach addresses
this challenge by leveraging DP techniques, ensuring the preser-
vation of user privacy without compromising the accuracy
of data collection and analysis. This dual-pronged strategy
not only enhances the efficiency and effectiveness of mobile
networks but also reinforces the commitment to protecting user
privacy in an era of rapidly evolving mobile services and it
represents a logical progression toward creating a user-friendly
and participatory environment.
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