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A B S T R A C T

Accurate crop yield prediction is of utmost importance for informed decision-making in agriculture, aiding
farmers, industry stakeholders, and policymakers in optimizing agricultural practices. However, this task is
complex and depends on multiple factors, such as environmental conditions, soil properties, and management
practices. Leveraging Remote Sensing (RS) technologies, multi-modal data from diverse global data sources
can be collected to enhance predictive model accuracy. However, combining heterogeneous RS data poses a
fusion challenge, like identifying the specific contribution of each modality in the predictive task. In this paper,
we present a novel multi-modal learning approach to predict crop yield for different crops (soybean, wheat,
rapeseed) and regions (Argentina, Uruguay, and Germany). Our multi-modal input data includes multi-spectral
optical images from Sentinel-2 satellites and weather data as dynamic features during the crop growing season,
complemented by static features like soil properties and topographic information. To effectively fuse the multi-
modal data, we introduce a Multi-modal Gated Fusion (MMGF) model, comprising dedicated modality-encoders
and a Gated Unit (GU) module. The modality-encoders handle the heterogeneity of data sources with varying
temporal resolutions by learning a modality-specific representation. These representations are adaptively fused
via a weighted sum. The fusion weights are computed for each sample by the GU using a concatenation of
the multi-modal representations. The MMGF model is trained at sub-field level with 10 m resolution pixels.
Our evaluations show that the MMGF outperforms conventional models on the same task, achieving the best
results by incorporating all the data sources, unlike the usual fusion results in the literature. For Argentina,
the MMGF model achieves an 𝑅2 value of 0.68 at sub-field yield prediction, while at the field level evaluation
(comparing field averages), it reaches around 0.80 across different countries. The GU module learned different
weights based on the country and crop-type, aligning with the variable significance of each data source to the
prediction task. This novel method has proven its effectiveness in enhancing the accuracy of the challenging
sub-field crop yield prediction. Our investigation indicates that the gated fusion approach promises a significant
advancement in the field of agriculture and precision farming.
1. Introduction

Phenomena observed on the Earth have complex interactions, and
hence their observation requires a multi-faceted measurement ap-
proach. For instance, the development of a farm crop is affected by
human practices, weather conditions, soil structure, and other aspects.
To cover some of these interacting factors, the availability of diverse
and rapidly increasing Remote Sensing (RS) sources (Camps-Valls et al.,
2021) has enabled multiple observations for an object of study. In
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the machine learning (ML) domain, this scenario is called Multi-Modal
Learning (MML; Li et al. (2022)). However, in RS-based applications,
the modalities can be rather heterogeneous. The differences in spatial
and temporal resolution could be significant, and establishing the
complementary and supplementary information between sensors for a
predictive task is non-trivial (Mena et al., 2024).

In this paper, we focus on the challenging machine learning task
of multi-modal crop yield prediction. The crop productivity can be
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influenced by, but not limited to, environmental conditions, soil prop-
rties, and management practices. Therefore, the effectiveness of the
redictive models relies on how well it combines the task-related
nformation from the multi-modal data. The standard approach in the
elated research involves extracting a set of domain-specialized features
rom each modality, concatenating and feeding them to a single model,
uch as classical ML models (Bocca and Rodrigues, 2016; Cai et al.,

2019; Maimaitijiang et al., 2020). Recent research has used deep neural
etworks (Gavahi et al., 2021), such as Convolutional Neural Networks
CNNs) and Recurrent Neural Networks (RNNs). Additionally, some
orks (Maimaitijiang et al., 2020; Chu and Yu, 2020; Shahhosseini
t al., 2021) use a feature-level fusion strategy, where encoders are

used to learn a new set of features for each modality, before merging
them. In this way, the fusion is done at the intermediate layers of neural
etwork models instead of at the input layer. However, these tech-
iques use a static fusion function (such as concatenation or average
perators), which ignores the variable impact that each modality has
n the yield value.

Nowadays, variants of the original attention mechanism (Bahdanau
et al., 2015) has been applied to crop yield prediction with the purpose
f highlighting input features. For instance, Lin et al. (2020) apply
ttention weights across time in time-series data and then perform a
eighted sum by using gated recurrent units in county-level corn yield
rediction. On the other hand, Ma et al. (2023) apply attention weights
cross different sensors in field-level winter wheat yield prediction. In

addition, Feng et al. (2021) apply a guided weights across input fea-
ures in county-level winter wheat yield prediction, where the learned
eights are computed from the geographical coordinates and year of

he data. The work of Feng et al. (2021) claim the usage of a weighted
neural network, which might be related to our work. However, the
weights we use in our work are applied across modalities at feature-
level for explicit fusion, i.e. weigh the contribution of each individual
modality in the fusion, in contrast to the weights of Feng et al. (2021)
hat are applied across all features at input-level, i.e. the input features
re just scaled.

Our case study consists of the crop yield prediction utilizing multi-
ple RS data sources, each characterized by distinct spatial and temporal
resolution. The target data is the crop yield from fields rasterized
at a spatial resolution of 10 m/px, which we refer to as sub-field
evel data. For the sub-field level predictions, we focus on a pixel-

wise prediction approach. We use multiple crop-types (soybean, wheat,
nd rapeseed) and regions (Argentina, Uruguay, and Germany) grouped
nto four dataset combinations. We use multi-spectral optical images
rom the Sentinel-2 (S2) mission to provide the main information about
he Earth surface. In addition, we collected different RS data sources
modalities) to enhance the modeling of the yield prediction task, and
rovide further information that the optical image might not capture
irectly. We include weather features during the growing season, and
tatic information from soil properties, and elevation maps. For this, we
se temporal data from seeding to harvesting, encompassing the entire
rop growing season. Notably, the beginning and end of the growing
eason depend on several factors, including the region, crop-type and
armer’s practices.

We propose a MML model that performs data fusion at the feature-
level using Gated Units (GUs; Arevalo et al. (2020)). The features
re learned by dedicated modality-encoders, allowing to handle the

heterogeneous nature of modalities with different temporal resolution
nd data distributions. Since the RS data used is fairly diverse, the GU

module is included to fuse the learned features based on data-driven
fusion weights. This allows an adaptive fusion of the multi-modal high
level features based on each sample (pixel). For the evaluation, we use
a cross-validation splits of the fields in each dataset. The metrics 𝑅2,
MAE, and MAPE are computed at the field and sub-field level (pix-
els). Our results show an overall improvement compared to previous
approaches based on single-modal learning, input-level fusion (Pathak
et al., 2023), and other conventional feature-level fusion approaches.
2 
Thus, the best results are obtained by feeding all modalities, unlike
common results in the literature. The 𝑅2 values are around 0.80 across
all datasets at field-level evaluation. While at sub-field level, the score
is 0.68 for Argentina and around 0.44 for Uruguay and Germany. The
key contributions of this paper are as follows:

1. We propose a two-component model that (i) learns a high-
level representation for each modality via dedicated encoders,
and (ii) learns to adaptively fuse this data with a weighted
sum computed with a gating mechanism (Gated Unit). To the
best of our knowledge, the proposed Multi-Modal Gated Fusion
(MMGF) is the first model applying an adaptive fusion approach
(via gating mechanism) to multi-modal crop yield prediction.

2. We evaluated in three countries and three crop-types, showing
that our best results are consistently obtained using all modal-
ities over regions and crops, contrary to previous results in the
literature (Bocca and Rodrigues, 2016; Kang et al., 2020; Pathak
et al., 2023; Ma et al., 2023). In addition, we obtained over-
all improvements compared to an input-level fusion baseline,
single-modal models and other fusion approaches.

3. The proposed model allows a simple interpretation through
the analysis of the gated fusion weights. These data-dependent
weights act as a proxy to the modality contribution in the yield
prediction (Section 6.1). The GU module in the proposed MMGF
learns different fusion weights distribution depending on the
country and crop-type.

The paper is organized as follows: In Section 2, related works in crop
yield prediction and adaptive fusion are presented. While Section 3
describes the data and study, Section 4 explains the proposed approach.
xperimental settings and main results are described in Section 5.

Additional analysis is presented in Section 6. Finally, the conclusion
about the work are in Section 7.

2. Related work

Recently, there has been an increase of MML models applied to
different tasks with RS data. Since the approaches usually incorporate
omain knowledge, they vary from task to task (Mena et al., 2024).
n the following, we briefly discuss some related works in MML for RS

data.

MML for crop yield prediction. The standard approach in crop yield
prediction is to build a specialized domain-specific set of features
across the growing season and then apply standard ML models (Bocca
and Rodrigues, 2016; Cai et al., 2019), e.g. random forest and Multi
ayer Perceptron (MLP), or deep neural networks (Gavahi et al., 2021;

Pathak et al., 2023), e.g. with convolutional (CNN) or recurrent (RNN)
perations. In these cases, the input-level fusion (Feng et al., 2021) is

used to merge the information coming from multiple RS sources, i.e. all
the input features are concatenated and then fed to a single model.
However, certain approaches involve the fusion of hidden features in
intermediate layers of neural network models, a concept known as
feature-level fusion (Maimaitijiang et al., 2020; Mena et al., 2024). This
strategy needs a sub-model for each modality (referred to as a modality-
encoder), which learns new features. For instance, Yang et al. (2019)
use two-modal data, RGB and multi-spectral images, to predict the
crop yield at county level, where a 2D CNN is used on each modality-
encoder. Some works apply feature-level fusion with other types of
modality-encoder, depending on the data used. Maimaitijiang et al.
(2020) use MLPs for multi-modal vector data, while (Chu and Yu, 2020)
incorporate an independent RNN for meteorological dynamic features
and an MLP for county information. Shahhosseini et al. (2021) use a
1D CNN (across time) for weather data, 1D CNN (across depths) for soil
properties, and an MLP for vector data. Additionally, some works group
modalities based on their information content. For instance, Wang et al.
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(2020) group static (soil properties) and dynamic (optical and meteo-
rological) features into a two-modal model that performs feature-level
fusion with an MLP and Long-Short Term Memory (LSTM) as modality-
encoders. Subsequent works (Cao et al., 2021; Srivastava et al., 2022)
have applied a similar group of static and dynamic modalities for
the yield prediction with the feature-level fusion. However, instead
of grouping modalities, in this work we process the features of each
modality with a dedicated model, and then employ an adaptive fusion
approach.

Adaptive fusion and attention in RS. As different variations of neural
networks models have been used in literature, different forms of the
attention mechanism (Bahdanau et al., 2015) have shown state-of-the-
art results in RS applications. The temporal attention pooling is used by
some works (Lin et al., 2020; Garnot and Landrieu, 2020; Ofori-Ampofo
et al., 2021; Garnot et al., 2022) to aggregate dynamic (time-series)
RS data. Attention mechanisms have also been used to highlight input
features (Feng et al., 2021), spatio-temporal RS data (Wang et al.,
2022), or different sensors (Ma et al., 2023). Motivated by attention
mechanisms and mixture-of-expert models (Jacobs et al., 1991), some
studies have explored gated fusion approaches in pursuit of adaptively
fusing multi-modal features (Zhang et al., 2020; Zheng et al., 2021;
Hosseinpour et al., 2022). The main idea is to highlight (apply an
adaptive weight to) the most relevant information of each modality
and aggregate them, e.g. with a linear sum (Arevalo et al., 2020).
Furthermore, recent literature is exploring the connection between at-
tention and explainability. For instance, explanation through attention
is used for land-use and land-cover classification (Méger et al., 2022)
and crop-type mapping (Rußwurm et al., 2020; Obadic et al., 2022).
This is mainly because the data-driven weights operate as a proxy for
feature importance by identifying which features are most used for
model prediction. Our work considers a tailored of the adaptive fusion
based on a gating mechanism. To the best of our knowledge, this is the
first work applying the gated fusion approach to the multi-modal crop
yield prediction task.

MML for land-use and land-cover task. In the widely studied land-
use and land-cover mapping, the target data focuses on a specific
and limited time frame. Typically, the multi-modal data consist of
static images captured by a variety of sensors, including multi-spectral
optical or radar images, or elevation maps. Chen et al. (2017) pro-
pose one of the first models that use deep neural networks on the
modality-encoders (concretely 2D CNN) of feature-level fusion (Mena
et al., 2024) with two-sensor data. Later, to fuse sensors with different
resolution, Benedetti et al. (2018) include an auxiliary classifier for
each modality that is feed with the learned features and acts as a
regularization. (Wu et al., 2021) use a variation of this approach
with auxiliary reconstructions of the learned features. On the other
side, Audebert et al. (2018) propose to fuse across all layers in 2D CNN
modality-encoders with a central model. They use skip-connections be-
tween individual modalities and post-fusion layers, where (Hosseinpour
et al., 2022) later extend the merge across all skip-connections layers.
To account for different levels of information that modalities might
have, Wang et al. (2022) merge the learned features in a hierarchical
way. In addition, the decision-level fusion (merge class predictions)
has been explored without significant advantages compared to feature
fusion (Audebert et al., 2018; Ofori-Ampofo et al., 2021). These works
usually consider a pixel-wise prediction as our application. However,
we are considering a time-dependent target with dynamic features.

Recent works in crop yield prediction focuses on feature fusion at
field level by grouping dynamic and static features (Wang et al., 2020;
Cao et al., 2021; Srivastava et al., 2022). However, the standard merger
are static functions, such as simple concatenation, while in other RS
applications more sophisticated approaches have been used. Since the
gated fusion (through the adaptive weighted sum) suits the dynamic
significance that each modality could have for prediction, we use it for
a sub-field crop yield prediction case study.
3 
Fig. 1. The figure depicts the rasterization process for the ground truth yield data,
where a cleaned point vector data (left) for a field is aligned with the satellite image,
and the mean of all yield points within one pixel is assigned to that pixel. The resulting
raster image is referred to as the yield map in this study.

Fig. 2. Crop yield distribution per pixel (at 10 m resolution) in the four datasets
considered in this study.

3. Data

Our case study consists of the crop yield prediction task based on
multiple RS data sources, with different spatial and temporal resolu-
tions. The target data is the crop yield at sub-field level (pixel-wise
yield values at 10 m spatial resolution) over different countries and
crop-types.

3.1. Crop yield data

The crop yield data corresponds to the target (ground-truth) vari-
able to be predicted by machine learning models. This yield data origi-
nally comes from combine harvesters at a sub-field level as point vector
data. The combine harvester equipped with yield monitors records
point data at consistent intervals with a high spatial resolution as it
moves across the field during the harvesting process. All points col-
lected are characterized by different features such as the geolocation,
yield moisture, and amount of yield. We pre-processed the points by (i)
re-projecting the reference coordinate system to respective UTM zones,
(ii) removing wrong values based on position, timestamp, moisture, and
yield (like biological infeasible crop yield), and (iii) filtering based on
a statistical threshold following (Sanchez et al., 2023). The statistical
threshold used correspond to remove all points for which the associated
yield value is outside the range of three standard deviations around the
mean within a field. Furthermore, we rasterized the point vector data
into pixels, aligning it with the available satellite images, illustrated in
Fig. 1. For each raster pixel, the mean yield of all points within the
10 × 10m2 area is assigned as its value. The resulting rasterized image,
with a resolution of 10 meters per pixel (m/px), is referred to as the
yield map in this study. The unit of these yield maps is tons per hectare
(t/ha).
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Table 1
Descriptive factors of the four datasets in this study, with different combinations of country and crop-type.

Name Country Crop-type Years Total area Fields Pixels Yield value Total area Growing season

mean ± std. average across field

ARG-S Argentina soybean 2017–2022 15351 ha 190 ∼1.4 M 3.86 ± 1.49 79.5 ha 156 days
URU-S Uruguay soybean 2018–2021 28358 ha 486 ∼1.8 M 2.35 ± 1.59 58.3 ha 169 days
GER-R Germany rapeseed 2016–2022 3221 ha 111 ∼0.3 M 4.01 ± 1.67 29.0 ha 335 days
GER-W wheat 2016–2022 3240 ha 188 ∼0.3 M 9.64 ± 2.95 17.2 ha 306 days
l

f

s
b
p
p
b
t

Crop-type and region. Unlike common crop-region specific use-cases in
the literature, we use field data across different countries (Argentina,
Uruguay, and Germany), crop-types (soybean, rapeseed, and wheat),
and years (from 2016 until 2022). We gathered this data from three
data providers, with each provider supplying data for one country.
Each provider collects data from various farmers, potentially utilizing
combine harvesters from different manufacturers. This data collection
process directly influences the quality of the sourced data. Therefore,
we categorize this dataset into four distinct sets, each pertaining to
different regions and crops. Fig. 2 shows the variability of the yield
data from the different datasets used in this study. The distribution of
the yield, e.g. mean and standard deviation, changes between country
and crop-type. Table 1 presents the total number of fields and yield
ixels in each dataset considered in this study. While there are a larger

number of pixels of soybean crops (in Argentina and Uruguay), the
crops in Germany have fewer number of pixels. The field data of this
tudy is fairly diverse, as the area covered per field is different in each
ombination, and, over the years, the fields are distributed in different

geographical locations within each country. Furthermore, the seeding
and harvesting dates are different across the fields and countries. We
present this in more detail in Fig. B.13.

3.2. Multi-modal input data

We use dynamic (time-dependent) and static input data collected
from different RS sources. Since there are numerous RS sources avail-
able nowadays, this work is limited to the selected sources. Our selec-
tion criteria hinge on the global availability of the RS data, coupled
by its usefulness in estimating crop yield. The aim is to have a better
representation and modeling of the crop yield drivers through the grow-
ing season, and therefore improve the crop yield prediction. Table 2
displays an overview of the multi-modal RS data used in this study.

3.2.1. S2-based optical image
We use multi-spectral optical information coming from the Sentinel-

 (S2) mission. Specifically, we use the surface reflectance imaging
roduct (level-2 A) from the S2 data, which is available from 2016. For
his, we collected a Satellite Image Time Series (SITS) from seeding to
arvesting date of each field, with approximately 5-days revisit time.
e use all 12 spectral bands of the L2 A product being agnostic to their

ontribution to crop yield prediction, see Table 2, where the bands with
lower spatial resolutions (B1, B5-B7, B8 A, B9-B12) are up-sampled to
the ones with higher (at 10 m/px). Finally, the number of images in
the SITS per field ranges from 11 to 78 for Argentina, from 21 to 82
for Uruguay, and from 17 to 140 for Germany, depending on the crop
rowing season.

Thanks to the Scene Classification Layer (SCL) contained in the L2 A
roduct, we can calculate the cloud coverage of the S2-based SITS. The
CL is an additional layer on the S2 data that assigns a label between
2 options (see Table 2) for each pixel in the image. By considering
abels related to occlusion factors (cloud, shadow, snow, and errors)
 percentage of pixels within the fields related to cloud occlusion is
omputed for each SITS. We refer to this as field cloud coverage. In

Fig. 3, we show the monthly cloud coverage for the fields across the
growing season. In Germany, there is a longer growing season since
4 
it contains winter crops,2 where we see a high cloud coverage for the
winter months (from December to next-year February). These charts
show the diversity of the S2 optical images across the growing season
for different countries.

3.2.2. Additional modalities
Weather. We utilize meteorological factors obtained from the climate
source, ECMWF ERA5 (Hersbach et al., 2020). This source is based on
the assimilation of various observations from satellites, ground-based
weather stations, and other sources into a consistent numerical weather
model, which has been available from 1979. The raw data collected for
each field is at hourly temporal resolution, from which we extract four
daily features based on temperature and precipitation, see Table 2. The
temperature values correspond to the air temperature at 2 m above the
and surface in a raw grid with a spatial resolution of 30 km/px.

Digital elevation model (DEM). We use topographic information col-
lected from the NASA source, Space Shuttle Radar Topography Mission
(SRTM) (Farr and Kobrick, 2000). Here, elevation information was
collected by bouncing radar signals to the Earth’s surface. We use five
features extracted with the RichDEM tool3 at a spatial resolution of 30
m/px, see Table 2. This information is static across time (uni-temporal).

Soil map. We utilize chemical and physical soil properties obtained
rom the global source, SoilGrids (Poggio et al., 2021) available at

spatial resolution of 250 meters per pixel. This data source integrates
ampled ground-based data with satellite measurements using ML-
ased predictions to derive global soil properties. SoilGrids offers these
roperties as static over time. However, in reality, certain chemical
roperties, such as pH and soil organic matter carbon, exhibit dynamic
ehavior. According to Poggio et al. (2021), spatial variation outweighs
emporal variation, indicating that these properties remain relatively

stable over time. Hence, in our study, we treat all soil properties as
static (uni-temporal) throughout the crop growing season. We use eight
soil properties across three depth intervals, as presented in Table 2.
Considering domain expertise, we use the top layer features up to a
depth of 30 cm: 0–5 cm, 5–15 cm, and 15–30 cm.

4. Method description

We use a pixel-wise approach for the prediction task. The approach
uses a feature-level fusion with an adaptive fusion approach, which
shows good results in RS applications (Section 2).

Spatial alignment. To harmonize the different spatial resolutions for the
pixel-wise approach, we spatially align the multi-modal data before
feeding them to ML models. For DEM and soil modalities, a cubic spline
method is used to interpolate to the spatial resolution of the S2 images
(10 m/px). While for weather, the value from the centroid of the field is
repeated across all the field pixels to match the same spatial resolution.
See Fig. 4 for an illustration.

2 Winter crops are a type of crop planted in early winter and harvested in
early summer that could handle cooler temperatures, frost, and shorter days.

3 http://github.com/r-barnes/richdem (Accessed 18 of April 2024).

http://github.com/r-barnes/richdem
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Fig. 3. Field cloud coverage across the growing season. Each point in a boxplot represents the cloud coverage of a field in the corresponding month. The month index goes from
(1) January in the seeding year to (24) December of the following year.
Table 2
Summary of the collected modalities in our study, with the respective resolutions and used features.

Modality Data source Resolution Features

Spatial Temporal

Optical S2 10 m 5 days B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11, B12.
S2 SCL 10 m 5 days Categorical label among: no data, saturated/defective, dark area pixel, cloud

shadows, vegetation, not vegetated, water, unclassified, cloud medium probability,
cloud high probability, thin cirrus, snow.

Weather ERA5 30 km daily Mean, maximum and minimum temperature, cumulative precipitation.

DEM SRTM 30 m – Aspect, curvature, digital surface model, slope, topographic wetness index.

Soil SoilGrids 250 m – Cation exchange capacity, volumetric fraction of course fragments, clay, nitrogen,
soil pH, sand, silt, soil organic carbon. (each at three depths)
Fig. 4. Illustration of spatial alignment applied to the four input modalities for a specific field. After this process, all modalities have a spatial resolution of 10 m/px in each field.
4.1. Data formulation and notation

Consider the following MML scenario with 𝑁 labeled pixels,  =
{ (𝑖), 𝑦(𝑖)}𝑁𝑖=1, 𝑦(𝑖) ∈ R+ the ground-truth crop yield for the 𝑖th pixel,
and  (𝑖) =

{

𝐗(𝑖)
S2,𝐗

(𝑖)
W , 𝐱(𝑖)D , 𝐱(𝑖)S

}

its corresponding multi-modal input
data. Let 𝐵𝑚 be the number of bands or features in each modality
𝑚 ∈ {S2,W,D, S} (see Table 2). The S2-based optical modality for the
𝑖th pixel is a multivariate time-series of length 𝑇 (𝑖)

S2 : 𝐗(𝑖)
S2 ∈ R𝑇 (𝑖)

S2×𝐵S2 ,
and the weather modality is a multivariate time-series of length 𝑇 (𝑖)

W :
𝐗(𝑖)

W ∈ R𝑇 (𝑖)
W ×𝐵W . Note that the temporal resolution between modalities

and pixels have not been aligned. On the other hand, DEM and soil
5 
modalities are constant variables over time for the 𝑖th pixel, 𝐱(𝑖)D ∈ R𝐵D

and 𝐱(𝑖)S ∈ R𝐵S . Additionally, 𝖢 ∶ R𝑑 × R𝑑 × R𝑑 × R𝑑 → R4𝑑 is the
concatenation function, and 𝖲 ∶ R𝑑 ×R𝑑 ×R𝑑 ×R𝑑 → R4×𝑑 the stacking
function.

4.2. Feature-level learning

In order to fuse modalities with different temporal resolution and
number of features, we learn a single high-level representation for
each modality on a 𝑑-dimensional vector space, named modality-
representation. We use one dedicated encoder model for each modality
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built with neural networks, named modality-encoder, see Fig. 6 for an
illustration. This modality-encoder is a function 𝐸𝜃𝑚 ∶ 𝑋𝑚 → R𝑑 , with
the corresponding learnable parameters 𝜃𝑚 for the 𝑚 modality.

𝐳(𝑖)S2 = 𝐸𝜃S2

(

𝐗(𝑖)
S2

)

∈ R𝑑 (1)

𝐳(𝑖)W = 𝐸𝜃W

(

𝐗(𝑖)
W

)

∈ R𝑑 (2)

𝐳(𝑖)D = 𝐸𝜃D

(

𝐱(𝑖)D

)

∈ R𝑑 (3)

𝐳(𝑖)S = 𝐸𝜃S

(

𝐱(𝑖)S

)

∈ R𝑑 (4)

These learned representations (𝐳𝑚) allow the model to handle the
heterogeneous nature of the modalities (different temporal resolutions,
magnitudes, and data distributions). The modality-encoder gives the
model the chance to extract information with a specific and dedi-
cated sub-model. Furthermore, the modality-encoder can use different
complexities and types of architecture (asymmetric network).

Temporal modality-encoder. For multivariate time-series 𝐗 = {𝐱1, 𝐱2,
, 𝐱𝑇 } ∈ R𝑇×𝐵 , with the 𝑡th observation 𝐱𝑡 ∈ R𝐵 , recurrent layers

or RNN) could be used to extract temporal high-level representations
𝑡 ∈ R𝑑 . With 𝐻 (𝑙) a recurrent unit (e.g. LSTM) at layer 𝑙, and 𝐡(𝑙)0 = 𝟎 ∀𝑙,
he hidden state at a time 𝑡 and layer 𝑙 can be expressed by

𝐡(𝑙)𝑡 =

⎧

⎪

⎨

⎪

⎩

𝐻 (𝑙)
(

𝐱𝑡,𝐡
(𝑙)
𝑡−1

)

, 𝑙 = 1
𝐻 (𝑙)

(

𝐡(𝑙−1)𝑡 ,𝐡(𝑙)𝑡−1
)

, 𝑙 ∈ {2, 3,… , 𝐿}
. (5)

Then, the last hidden state could be used to extract a single vector
epresentation 𝐚(𝐿) = 𝐡(𝐿)𝑇 ∈ R𝑑 . Additionally, attention-based ap-
roaches, such as temporal attention pooling (𝐚 =

∑

𝑡 𝛼𝑡𝐡𝑡) could be
sed (in Section 6.2 we show an empirical comparison). Given the

dynamic features of optical and weather modalities, we use these types
of architectures in 𝐸𝜃S2 , 𝐸𝜃W .

Static modality-encoder. For vector data 𝐱 ∈ R𝐵 , fully connected layers
(or MLP) are used to extract a high-level representation at the output
layer 𝐚(𝐿) ∈ R𝑑 . With 𝐻 (𝑙) a linear projection followed by a nonlinear
activation function on layer 𝑙, the output of a layer 𝑙 could be written
as

𝐚(𝑙) =
{

𝐻 (𝑙) (𝐱) , 𝑙 = 1
𝐻 (𝑙) (𝐚(𝑙)

)

, 𝑙 ∈ {2, 3,… , 𝐿} . (6)

Given the static features of DEM and soil modalities, we use these
rchitectures in 𝐸𝜃D , 𝐸𝜃S .

4.3. Gated fusion: Adaptive fusion with gating mechanism

The learned modality-representations can be fused with the concate-
nation merge function, as usual in crop yield prediction (Wang et al.,
2020; Shahhosseini et al., 2021; Srivastava et al., 2022):

𝐳(𝑖)F = 𝖢
(

𝐳(𝑖)S2, 𝐳
(𝑖)
W , 𝐳(𝑖)D , 𝐳(𝑖)S

)

. (7)

However, this static merge function does not align with the variable
ontributions that each modality has in predicting crop yield (Kang

et al., 2020; Pathak et al., 2023). Additionally, it ignores the real-time
nvironment of EO, where different phenomena (e.g. clouds in optical

images or noise in measurement) can affect the data quality (Ofori-
Ampofo et al., 2021; Ferrari et al., 2023). Therefore, inspired by
the Gated Unit (GU) modules (Arevalo et al., 2020), we propose an
adaptive fusion approach via gating mechanisms, the so-called gated
fusion.

We use a gating function 𝐺𝜃G ∶ R𝑑×R𝑑×R𝑑×R𝑑 → R4 that takes the
four modality-representations, and generates four pixel-specific values
𝛼(𝑖)𝑚 ∈ [0, 1] with 𝑚 ∈ {S2,W,D, S}, which we refer to as gated fusion
eights. The following computation is used

𝛼(𝑖) = 𝐺
(

𝐳(𝑖) , 𝐳(𝑖), 𝐳(𝑖), 𝐳(𝑖)
)

= softmax
(

𝖢
(

𝐳(𝑖) , 𝐳(𝑖), 𝐳(𝑖), 𝐳(𝑖)
)⊤

𝜃
)

, (8)
𝜃G S2 W D S S2 W D S G

6 
Fig. 5. Illustration of the proposed gating mechanism. The four modality-
representations are merged (𝖢) and linearly projected to a four-dimensional vector.
Then, the softmax function is applied to obtain the normalized fusion weights.

with learnable parameters 𝜃G ∈ R4𝑑×4. This GU module learns a weight
istribution over the modalities for each sample: ∑𝑚∈{S2,W,S,D} 𝛼

(𝑖)
𝑚 = 1.

s proposed, this function can be easily extended to use any kind
f weight calculation. See Fig. 5 for an illustration. Then, these fu-

sion weights are applied to the stacked vectors to obtain the fused
representation 𝐳(𝑖)F ∈ R𝑑 :

𝐳(𝑖)F = 𝖲
(

𝐳(𝑖)S2, 𝐳
(𝑖)
W , 𝐳(𝑖)D , 𝐳(𝑖)S

)⊤
𝛼(𝑖) =

∑

𝑚∈{S2,W,D,S}
𝛼(𝑖)𝑚 ⋅ 𝐳(𝑖)𝑚 . (9)

Thus, the data-driven fusion weights are applied to the modality-
representations as an adaptive weighted sum (9). The gating mecha-
nism plays a pivotal role in both weight learning and enabling adaptive
fusion for each sample (data-driven). In our approach, a pixel is a
sample. Therefore, the model highlights the modalities depending on
the information contained in the multi-modal pixel-level data. For
example, for a cloudy pixel, the model could learn to assign a lower
weight to the optical modality 𝛼S2 and higher to the other modalities
(𝛼W, 𝛼S, 𝛼D). While, for a cloudless pixel, learn to assign a higher weight
to the optical modality and distribute the rest to the complementary
modalities.

The gated fusion approach introduced in Arevalo et al. (2020)
shares similarities with ours, as both methods utilize the concatena-
tion of features, 𝖢, inside the GU module that calculates the fusion
weights, 𝛼𝑚. However, their proposed fusion weights are individually
normalized via a sigmoid activation function, i.e. 𝛼(𝑖)𝑚 ∈ [0, 1] and 0 ≤
∑

𝑚 𝛼(𝑖)𝑚 ≤ 4, in contrast to our work where the weights are complemen-
tary normalized to sum up one. In addition, the weights are applied
(as in (9)) after another non-linear mapping in the representations,
̃ (𝑖)𝑚 = t anh(𝐖g𝐳

(𝑖)
𝑚 ) (Arevalo et al., 2020). In Section 6.2 we show that

our design of fusion weights calculation and modality-representation
improves the performance of this strategy.

4.4. Prediction and optimization

After obtaining the fused representation, it is fed to fully connected
neural network layers. These layers, represented by a function 𝐹𝜃F ∶
R𝑑 → R1 parameterized by 𝜃F, serve as a prediction head to estimate
the crop yield for each pixel 𝑖: �̂�(𝑖) = 𝐹𝜃F

(

𝐳(𝑖)F

)

. Since we are designing
 predictive model that is fed with the multi-modal data and has all the
revious components, �̂�(𝑖) = 𝑃𝛩( (𝑖)) with 𝛩 =

{

𝜃S2, 𝜃W, 𝜃D, 𝜃S, 𝜃G, 𝜃F
}

,
e could minimize a loss function  over training pixels to learn it
nd-to-end. We use the following

(𝛩;) = 1
𝑁

𝑁
∑

𝑖=1
MSE

(

𝑦(𝑖), 𝑃𝛩( (𝑖))
)

, (10)

with the Mean Squared Error (MSE) as a loss function, MSE(𝑦, �̂�) =
(𝑦 − �̂�)2. We named our model that unifies these different components
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Fig. 6. Illustration of the proposed Multi-Modal Gated Fusion (MMGF) model with the four modalities used. ‘‘S’’ represents the vector stacking operation, and ‘‘P’’ the dot product.
The forward pass is shown with a black arrow, while the dotted arrow shows the additional connections for the GU. The model is learned end-to-end by comparing the prediction
with the ground truth. The red dotted arrows illustrate the backward pass of the loss function through the model components.
(modality-encoders, the GU, and a prediction head) as Multi-Modal
Gated Fusion (MMGF), see Fig. 6 for an illustration.

5. Experiments

5.1. Data preparation and evaluation

For the S2 optical data, we use two different versions. S2-R as the
raw SITS (including the SCL) up to 5-days temporal resolution. S2-M
as a monthly-based sampling SITS to use with the input-level fusion as
described in Pathak et al. (2023). In the second setting, a sample for
each month is selected based on the lowest cloud coverage, across a
two calendar year period (24 time-steps). The two years are defined by
seeding and harvesting, so that the harvesting month always falls in the
second year (Helber et al., 2023).

To avoid overfitting to the different magnitudes and scale of the
multi-modal data, we re-scale each numerical band or feature in the
input data into a [0,1] range (Zhang et al., 2021): 𝑥norm = (𝑥 −
min(𝑥))∕(max(𝑥) − min(𝑥)). For the S2 optical images, we calculate the
maximum and minimum value across time and samples in the S2-
M representation, which contains cloud-free values. In addition, for
dynamic modalities (optical and weather), we pad the sequences with
a masked value (−1). For the categorical information contained in the
S2-based SCL, we codify the 12 labels as a one-hot encoding vector,
with one additional category used in the padded times. In the S2 data,
the sequence length is 150 including padding, while for the weather is
500.

For the evaluation, we use a stratified-group 𝐾-fold cross validation
(𝐾 = 10). The grouping is based on the field identifier and stratified
at farm identifier.4 This means that all pixels within a field are used
either for training or validation. We quantitatively evaluate model

4 Four our study, a farm represents either a set of fields operated by a
farmer or geographically nearby fields.
7 
performance by using standard regression error metrics. The coefficient
of determination (𝑅2), Mean Absolute Percentage Error (MAPE) in
%, and Mean Absolute Error (MAE), in t/ha, are measured between
ground-truth yield values, 𝑦, and model predictions, 𝑃𝛩().

𝑅2 = 1 −
∑𝑁val

𝑖=1 (𝑦(𝑖) − 𝑃𝛩( (𝑖)))2
∑𝑁val

𝑖=1 (𝑦(𝑖) − �̄�)2
(11)

𝑀 𝐴𝑃 𝐸 = 1
𝑁val

𝑁val
∑

𝑖=1

|𝑦(𝑖) − 𝑃𝛩( (𝑖))|
𝑦(𝑖)

(12)

𝑀 𝐴𝐸 = 1
𝑁val

𝑁val
∑

𝑖=1
|𝑦(𝑖) − 𝑃𝛩( (𝑖))| (13)

𝑁val are the number of samples and �̄� is the field average in the vali-
dation split. These metrics are evaluated at sub-field level (pixel-wise
comparison, 𝑁val= number of pixels) and field level (comparison of
field-averaged values, 𝑁val= number of fields). The aggregated results
with the standard deviation across folds are presented.

5.2. Compared methods

As a baseline, we select the most similar approach in sub-field level
yield prediction, the Input-level Fusion (IF) proposed in Pathak et al.
(2023). For this, the S2-M is used, where the static modalities (DEM
and soil features) are vectorized (flattened) and repeated for each month
along the 24 time-step representation. The weather data is aggregated
by summing the daily features between the dates of the selected optical
images in each month. This generates a multivariate time-series data,
where each time-step and pixel has the features from weather, DEM,
and soil concatenated with the S2-M features. Since (Pathak et al.,
2023) showed that a subset of the modalities have to be used for a
better prediction performance, we follow the best combination that
they identified for each dataset. It is important to note that we trained
IF with S2-M instead of S2-R as in the MMGF. We do not see a direct
way to perform IF with S2-R modality for a fair comparison. In this
case, two models are selected: LSTM for IF (LSTM-IF) and Gradient
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Table 3
Sub-field level performance. 𝑅2 of the crop yield prediction at sub-field level for different models and combination of modalities. ∗The
multi-modal data used in IF models are: S2-M and DEM in ARG-S, S2-M and soil in GER-R, and all modalities in URU-S and GER-W. The
highest mean in each dataset is highlighted in bold.

Model Modalities ARG-S URU-S GER-R GER-W Overall
LSTM S2-M 0.61 ±0.11 0.38 ±0.08 0.35 ±0.13 0.32 ±0.09 0.41
LSTM S2-R 0.67 ±0.05 0.41 ±0.06 𝟎.𝟒𝟔 ±0.11 0.41 ±0.08 0.49

GBDT-IF S2-M+varies∗ 0.58 ±0.11 𝟎.𝟒𝟐 ±0.07 0.42 ±0.08 0.37 ±0.10 0.45
LSTM-IF S2-M+varies∗ 0.65 ±0.08 0.41 ±0.07 0.45 ±0.10 0.35 ±0.12 0.47

Concat-FF S2-R+All 0.67 ±0.05 𝟎.𝟒𝟐 ±0.07 0.44 ±0.15 0.43 ±0.10 0.49
Avg-FF S2-R+All 0.66 ±0.06 𝟎.𝟒𝟐 ±0.06 𝟎.𝟒𝟔 ±0.15 0.42 ±0.13 0.49
MMGF S2-R+All 𝟎.𝟔𝟖 ±0.05 𝟎.𝟒𝟐 ±0.06 𝟎.𝟒𝟔 ±0.15 𝟎.𝟒𝟒 ±0.10 𝟎.𝟓𝟎
Table 4
Field-level performance. 𝑅2 of the crop yield prediction at field level for different models and combination of modalities. ∗The multi-
modal data used in IF models are: S2-M and DEM in ARG-S, S2-M and soil in GER-R, and all modalities in URU-S and GER-W. The
highest mean in each dataset is highlighted in bold.

Model Modalities ARG-S URU-S GER-R GER-W Overall
LSTM S2-M 0.74 ±0.12 0.69 ±0.14 0.65 ±0.18 0.60 ±0.25 0.67
LSTM S2-R 𝟎.𝟖𝟒 ±0.08 0.77 ±0.09 0.77 ±0.13 0.72 ±0.11 0.78

GBDT-IF S2-M+varies∗ 0.72 ±0.14 0.77 ±0.08 0.69 ±𝟎.𝟎𝟗 0.68 ±0.12 0.71
LSTM-IF S2-M+varies∗ 0.82 ±0.12 0.74 ±0.12 0.78 ±𝟎.𝟎𝟗 0.66 ±0.28 0.75

Concat-FF S2-R+All 0.83 ±0.10 0.77 ±0.10 0.77 ±0.11 0.77 ±0.10 0.78
Avg-FF S2-R+All 0.82 ±0.14 𝟎.𝟕𝟖 ±0.08 0.78 ±0.13 0.74 ±0.22 0.78
MMGF S2-R+All 𝟎.𝟖𝟒 ±0.11 𝟎.𝟕𝟖 ±0.07 𝟎.𝟖𝟎 ±0.13 𝟎.𝟖𝟎 ±0.09 𝟎.𝟖𝟎
y

s
b
b
b

e
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Boosting Decision Tree for IF (GBDT-IF). The GBDT-IF model is fed
with flattened (across time) vectors (Feng et al., 2021). In addition,
to evaluate the benefit of the MML scenario, two single-modal models
are used. This corresponds to a model with a LSTM encoder that is feed

ith either S2-M or S2-R data.
We consider alternative feature-level fusion approaches for sub-

ield level yield prediction. We use the feature-level fusion with the
ommonly employed concatenation as merge function (Concat-FF). In

addition, we consider the sum of features with a constant uniform
weight (i.e. feature average) as a merge function in the feature-level
fusion (Avg-FF).

Implementation. The MMGF model uses different modality-encoders.
For S2 and weather modalities, we use RNN-based modality-encoders
consisting of two LSTM layers with 128 units each. We show a few ex-
periments with the Transformer model in Section 6.2 without achieving
significant improvements. For DEM and soil we use MLP as encoders,

ith one hidden layer of 128 units. On each modality-encoder, there
s an output linear layer projecting the data to 𝑑 = 128 dimensions.
or the prediction head, we use an MLP with one hidden layer of 128
nits and an output layer with a single unit. As suggested by previous
orks (Chen et al., 2017; Maimaitijiang et al., 2020), we include 30% of
ropout on the modality-encoders and Batch-Normalization (BN) on all
LPs. In Table A.12 we show the relevance of this regularization in our
odel. With this implementation, the LSTM in the single-modal model

with S2-R has 228K parameters. The LSTM of the LSTM-IF increased the
number of parameters to 238K, while for the MMGF, the parameters of
the four LSTM reach to 483K, and 2.1K in the GU. These models are
trained a maximum of 50 epochs, with an early stopping criterion in
the loss function (MSE). This function is optimized with ADAM (Kingma
nd Ba, 2015), a batch-size of 1024, a learning rate of 10−3, and a

weight decay of 10−4. The hyper-parameters were tuned in the ARG-S
ata. The GBDT-IF is implemented in the LightGBM Python library and
ll other neural networks with the PyTorch library.

5.3. Quantitative results

The aggregated 𝑅2 results for all datasets are displayed in Table 3
for sub-field level and in Table 4 for field level. We observe that
the proposed MMGF obtains the best performance across all datasets
 s

8 
and metrics regarding the compared methods, as indicated in the
Overall column, that correspond to the average metrics across datasets.
The same evidence is observed in the other regression metrics (See
Tables A.8, A.9, A.10, A.11 in ). The 𝑅2 is around 0.80 across all
datasets at the field level, while at sub-field level it is 0.68 for ARG-
S and around 0.44 for the rest. The lower values of sub-field level 𝑅2

compared to field level reflects the complexity of predicting the crop
ield to the high spatial resolution of 10 m/px.

When comparing the MMGF to the single-modal models, we ob-
erve both high and small prediction improvements, reflecting that the
enefit obtained from the MML scenario relies on each setting. The
est-performing combination of modalities for the MMGF is obtained
y using all modalities (Table 5), in contrast to IF models, where

the best-performing combination is obtained with a sub-set of them,
depending on the country and crop-type (Pathak et al., 2023). For
instance, for ARG-S the best combination is S2-M and DEM modalities,
and for GER-R it is S2-M and soil, we compare this in more detail
in Section 6.2. Compared to other FF models, the improvement of
the MMGF is minor, in some cases the results are the same. How-
ever, the best baseline model depends on the dataset and evaluation
metric. For instance, Concat-FF is among the bests at sub-field level
𝑅2 in URU-S, and Avg-FF is among the bests at field-level 𝑅2 in
URU-S. In contrast, the MMGF consistently obtains the best results
overall cases. Furthermore, we notice that the proposed MMGF per-
forms better in cloudy fields (Fig. A.11), as well as over unseen years
(Fig. A.12). These results exhibit the effectiveness of the MMGF to
adaptively fuse the features based on the information of each sample.
In this way, the practitioner can avoid expending time on trying differ-
nt fusion strategies and modalities combination for each particularly
etting.

Different results are obtained in each dataset. In GER-W fields is
where the MMGF obtains the greatest improvements as compared to
other fusion methods. Regarding the LSTM-IF, there are 0.07 and 0.12
points of improvement for sub-field and field 𝑅2. On the other hand, in
ARG-S and GER-R fields minor improvements are obtained, around 0.02
and 0.01 points in 𝑅2. A similar pattern is observed when comparing
the MMGF with single-modal models. In addition, we show the statisti-
cal significance of this improvements in . This difference is statistically
ignificant only in some cases, mainly between the MMGF with the IF
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Table 5
Multi-modal combinations. Crop yield prediction performance in ARG-S fields with different modalities as input data. The LSTM indicates the
single-modal model with the optical data (S2). The best results are in bold.

Model Modalities Sub-Field Field

MAPE MAE 𝑅2 MAPE MAE 𝑅2

(%) (𝑡∕ℎ𝑎) – (%) (𝑡∕ℎ𝑎) –

LSTM

S2-M without SCL 25 0.69 0.61 11 0.40 0.74
S2-M with SCL 25 0.68 0.61 11 0.39 0.75
S2-R cloudless 24 0.66 0.63 9 0.33 0.81
S2-R without SCL 23 0.62 0.67 9 0.31 0.82
S2-R with SCL 23 0.62 0.67 9 0.31 𝟎.𝟖𝟒

LSTM-IF

S2-R+weather 25 0.67 0.63 11 0.38 0.78
S2-R+DEM 24 0.65 0.65 9 0.33 0.82
S2-R+soil 25 0.68 0.61 10 0.37 0.76
S2-R+weather, DEM, soil 24 0.66 0.63 11 0.40 0.76

Concat-FF

S2-R+weather 𝟐𝟐 0.62 0.66 10 0.34 𝟎.𝟖𝟒
S2-R+DEM 23 0.63 0.66 10 0.34 0.81
S2-R+soil 23 0.65 0.65 10 0.34 0.80
S2-R+weather, DEM, soil 𝟐𝟐 0.62 0.67 9 0.32 0.83

MMGF

S2-R+weather 𝟐𝟐 0.62 0.67 9 0.32 0.83
S2-R+DEM 𝟐𝟐 0.62 0.67 9 𝟎.𝟑𝟎 𝟎.𝟖𝟒
S2-R+soil 23 0.63 0.66 9 0.32 0.83
S2-R+weather, DEM, soil 𝟐𝟐 𝟎.𝟔𝟏 𝟎.𝟔𝟖 𝟖 𝟎.𝟑𝟎 𝟎.𝟖𝟒
Fig. 7. Sub-field crop yield prediction for a random ARG-S field. The columns from left to right are the ground truth yield map, the predicted yield map, prediction and target
scatter, plot of prediction (blue) and target (green) distribution.
and single-modal models. In addition, we notice that despite ARG-S
and URU-S have the same crop-type, the results are quite different. The
models in URU-S, with more fields and data pixels, perform worse than
in ARG-S. This might be caused by the different geographic patterns
in each region. However, the error can also be associated with the
data quality and internal noise factors, as the label providers from
each country are different (Section 3.1). The datasets also influence
the model convergence. Whereas LSTM-IF converges in average (across
folds) in less than 23 epochs, MMGF need 29, 25, 39, and 36 for ARG-S,
URU-S, GER-R and GER-W respectively.

5.4. Qualitative results

In Fig. 7 we compare the yield map predictions of two fusion models
(LSTM-IF and MMGF) for a single field in ARG-S data. The purpose is
to qualitative inspect if the model learns the in-field variability. The
proposed MMGF (Fig. 7(b)) predicts a better yield map (first and second
column in the plot) than the LSTM-IF model (Fig. 7(a)). Indeed, the
9 
LSTM-IF tends to predict higher yield values for the selected field (third
column in the plot), while the predictions of the MMGF are closer to
the target data. This is also observed with the better yield distribution
alignment (fourth column in the plot) by the MMGF model (Fig. 7(b)).
The same evidence is shown in other datasets and fields (see Fig. B.14,
B.15, B.16, and B.17 for some examples).

We visualize the fusion weights 𝛼𝑚 computed by the GU (from (8) in
Section 4.3) to analyze what the MMGF model learned. To get a general
overview, we compare the fusion weights distribution across the 10
validation folds in Fig. 8. We observe that the weights are not perfectly
aligned across folds, mainly because each validation fold contains a
unique set of fields, and the fusion weights are distributed differently
from one field to another (Fig. B.18). This visualization suggests that
the MMGF model assigns higher fusion weights to different modalities,
within and across the datasets: optical modality is particularly high in
the Argentina fields, DEM modality is predominant in Uruguay, while
soil and weather modalities share high weights in the crops of German
fields. This crop-dependent behavior has also been observed in the
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Fig. 8. Summary of fusion weights averaged across all pixels in each fold. The 10 folds used for evaluation in the cross-validation are displayed for the fields in each dataset.
The intensity of the color increases from 0 to 1.
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attention weights computed along the temporal dimension for crop
classification (Garnot and Landrieu, 2020).

6. Analysis

In the following, we present an analysis of the data-driven gated
usion weights in Section 6.1, and an ablation study in Section 6.2.

6.1. Gated fusion weights analysis with linear regression

We further investigate the influence of the gated fusion weights
in the GU, as well as the contribution of each modality in the final
prediction, by retraining a variation of the MMGF model. For this, we
replaced the MLP in the prediction head (see Section 4.4) with a linear
ayer with weight parameters 𝐰 ∈ R𝑑 and bias parameter 𝑏 ∈ R1.

e refer to this model as MMGF with Linear Regression (MMGF-LR).
he prediction head (now a linear regression) allows us to interpret
he contribution of each modality. Given the fused representation 𝐳F ∈
𝑑 , the modality-representations {𝐳S2, 𝐳W, 𝐳D, 𝐳S} and the corresponding
ated fusion weights {𝛼S2, 𝛼W, 𝛼D, 𝛼S}, the expression for the crop yield
rediction can be written as follows:

�̂� = 𝐰⊤ ⋅ 𝐳F + 𝑏 =
𝑑
∑

𝑖=1
𝑤𝑖 × 𝑧F,𝑖 + 𝑏, (14)

where, if we expand 𝐳F as the weighted sum of the modality-
representations (9), we obtain:

�̂� =
∑

𝑚
𝐰⊤ ⋅ 𝛼𝑚𝐳𝑚 + 𝑏 (15)

= 𝛼S2𝐰⊤ ⋅ 𝐳S2 + 𝛼W𝐰⊤ ⋅ 𝐳W + 𝛼D𝐰⊤ ⋅ 𝐳D + 𝛼S𝐰⊤ ⋅ 𝐳S + 𝑏. (16)

The prediction in Eq. (16) is like a weighted combination of the pre-
diction of individual modalities by using a shared linear regressor (with

and 𝑏). As this weighted combination is based on a gated layer, this
expression is similar to mixture of expert models (Yuksel et al., 2012).
Furthermore, we can consider 𝐶𝑚 = 𝐰⊤ ⋅ 𝐳𝑚 and 𝛼𝑚𝐶𝑚 as the scalar
contribution (∈ R1) to the prediction by a particular modality 𝑚 before
and after applying the fusion weights respectively. Using this simplified
version of the model (MMGF-LR) allows to mathematically express the
crop yield predictions in terms of individual modality-representations
and data-driven fusion weights, making the fusion process simpler to
track back and interpret.

To mitigate the variability in the results stemming from the multiple
repetitions, we analyze a single fold in each data — the one yielding the
highest sub-field 𝑅2 score. We illustrate the 𝛼𝑚, 𝐶𝑚, and 𝛼𝑚𝐶𝑚 aggre-
gated at field level5 for ARG-S fields in Fig. 9. This analysis suggests that
the learned fusion weights (𝛼𝑚) linearly scales the contribution of each

5 We assume that within each field, fusion weights for different modalities
are roughly aligned, as shown in Fig. B.18.
10 
modality (𝐶𝑚) and yet allows each modality-encoders to learn repre-
sentations (𝐳𝑚) with distinct scales. This experiment demonstrates that
the GU module has a tendency to assigns higher weights to the optical
modality compared to the others. However, we can see how the learned
ata-driven fusion weights complement each other in some fields. For
nstance, when the GU assigns a small value to the optical modality
Fig. 9(a)), the soil modality has a larger fusion weights (with the

DEM modality in some cases). This is also reflected in the total modal-
ity contribution (𝛼𝑚𝐶𝑚) despite a significant modality-representation
contribution (𝐶𝑚) of DEM and weather modalities (Fig. 9(a) middle
nd last row). We observe a similar pattern in the other crop types

(see Fig. B.19 for GER-W and GER-R). We reorder the ARG-S fields
according to the yield prediction value of the MMGF-LR model in
Fig. 9(b). We notice a strong relationship between the yield predicted
alue and the fusion weights. When predicting a low yield value, the
MGF-LR model tends to use more information from static modalities,
ith high total representation contribution (𝛼𝑚𝐶𝑚) to DEM and soil.

Thus, when predicting a high yield value, the MMGF-LR model tends
to use more information the temporal modalities (S2-R and weather).

Similarly, we display the 𝛼𝑚, 𝐶𝑚, and 𝛼𝑚𝐶𝑚 for the different datasets
n Fig. 10. We notice that for soybean crops (in Argentina and Uruguay),
he model tends to assign a higher fusion weights and total contribution
o the S2-R modality compared to wheat and rapeseed (in Germany).
imilarly, additional modalities have a higher fusion weights and total
ontribution in the German crops compared to soybean crops. For
nstance, while weather modality is contributing more in wheat crops,
oil (and DEM) does it in rapeseed crops. These results reflect that the
MGF-LR model tends to use S2-R modality for soybean prediction,
hile in rapeseed and wheat prediction it uses auxiliary modalities for
 better modeling. This can be caused by the high cloud coverage in
erman fields compared to soybean fields (Fig. 3).

6.2. Ablation study

In the following, we present different experiments with the pro-
posed MMGF. The main purpose is to assess the impact of the individual
omponents that contribute to the overall model performance. We focus
n the cross-validation setting with the ARG-S fields.

In Table 5 we include the results obtained with different multi-
modal combinations. These results illustrate that the MMGF model is
table when feeding all the heterogeneous modalities. There are other

multi-modal combinations and models that also obtain the best perfor-
mance in some metrics. However, the best result across all scenarios is
obtained when feeding all data to our MMGF model. In contrast to some
models compared and previous results in the RS literature (Bocca and
Rodrigues, 2016; Kang et al., 2020; Pathak et al., 2023), the MMGF
model does not saturate through giving more input data. This effect
could be attributed to the GU in the gated fusion approach, since it
could select which modalities to merge depending on each sample, in
contrast to the static merge function of Concat-FF that obtains lower
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Fig. 9. Fusion weights and contributions of the MMGF-LR model over different ARG-S fields. Gated fusion weights from the GU (𝛼𝑚) at the top, the contribution before applying
the fusion weights (𝐶𝑚) at the middle, and the final contribution in the predicted yield (𝛼𝑚𝐶𝑚) at the bottom. The sub-field values are averaged per field. The 𝐶𝑚 and 𝛼𝑚𝐶𝑚 are
scaled by 1∕

∑

𝑚 |𝐶𝑚| and 1∕
∑

𝑚 |𝛼𝑚𝐶𝑚| respectively into a [−1, 1] range. The field bars are sorted (from left to right) by (a) descending weight given to the predominant modality,
and (b) ascending yield prediction value.

Fig. 10. Fusion weights and contributions of the MMGF-LR model over different country-crop combinations. Gated fusion weights from the GU (𝛼𝑚) at the top, the contribution
before applying the fusion weights (𝐶𝑚) at the middle, and the final contribution in the predicted yield (𝛼𝑚𝐶𝑚) at the bottom. The sub-field values are averaged per field using
the best performance fold. The 𝐶𝑚 and 𝛼𝑚𝐶𝑚 are scaled by 1∕

∑

𝑚 |𝐶𝑚| and 1∕
∑

𝑚 |𝛼𝑚𝐶𝑚| respectively into a range [−1, 1].
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Table 6
Merge function alternatives. Crop yield prediction performance in ARG-S fields with different types of merge functions in the feature-level
fusion. The adaptive fusion correspond to a weighted sum with weights computed by different criterion. The MMGF configuration correspond
to the last row. The best results are in bold.

Approach Merge Sub-Field Field

MAPE MAE 𝑅2 MAPE MAE 𝑅2

(%) (𝑡∕ℎ𝑎) – (%) (𝑡∕ℎ𝑎) –

Feature Fusion Product 23 0.64 0.65 10 0.34 0.81
Maximum 23 0.63 0.67 10 0.34 0.81
Weighted Concatenation 24 0.66 0.63 11 0.38 0.78

Adaptive Fusion

Scaled-dot Product Attention 23 0.63 0.67 10 0.33 0.82
Arevalo et al. (2020) version 23 0.62 0.67 9 𝟎.𝟑𝟎 0.83
Gated Fusion per feature 23 0.63 0.66 9 0.33 0.81
Gated Fusion 𝟐𝟐 𝟎.𝟔𝟏 𝟎.𝟔𝟖 𝟖 𝟎.𝟑𝟎 𝟎.𝟖𝟒
Table 7
Encoder alternatives. Crop yield prediction performance in ARG-S fields by varying the temporal modality-encoder between LSTM and
Transformer in the MMGF model. The selected MMGF configuration is the one with LSTM. The best results are in bold.

Model Modalities Sub-Field Field

MAPE MAE 𝑅2 MAPE MAE 𝑅2

(%) (𝑡∕ℎ𝑎) – (%) (𝑡∕ℎ𝑎) –

Transformer S2-R 23 0.63 0.66 10 0.35 0.78
→ MMGF S2-R+All 𝟐𝟐 𝟎.𝟔𝟏 0.67 10 0.35 0.78

LSTM S2-R 23 0.62 0.67 9 0.31 𝟎.𝟖𝟒
→ MMGF S2-R+All 𝟐𝟐 𝟎.𝟔𝟏 𝟎.𝟔𝟖 𝟖 𝟎.𝟑𝟎 𝟎.𝟖𝟒
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results. The motivation of the GU comes from whether it allows passing
the information through a channel (Arevalo et al., 2020), so it can
reduce non-relevant information and focus on the most important one.
This effect is observed in the other datasets as well.

Motivated by the work of Mena et al. (2023) in crop classification,
different merge functions are compared in Table 6. The product and

aximum replaced the weighted sum (𝖢 in (7)) as static merge func-
ions. In addition, we consider applying learnable weights followed by a
oncatenation (instead of summing), inspired by Ma et al. (2023), Feng

et al. (2021). As adaptive fusion alternatives, we include the vanilla GU
roposal with the sigmoid activation function (Arevalo et al., 2020),

and a weighted sum with the weights calculated via the scaled-dot
product attention (Vaswani et al., 2017). In the scaled-dot product
attention, a learnable query is used to calculate attention weights and
ull over the multi-modal representations. In addition, we show a per-
eature gated fusion which calculates and applies fusion weights on
ach feature for each modality (feature-specific) instead of the global
usion weights for each modality. The feature-specific fusion weights
ay suffer from overfitting since there is an increase in the number

f parameters in the GU module, from 2.1K (in the global) to 262K (in
he feature-specific). Overall, the proposed gated fusion obtains the best
redictions compared to these alternative merge functions, illustrating
he effectiveness of the MMGF for crop yield prediction.

Table 7 shows the results of the LSTM being replaced with the
Transformer model (Vaswani et al., 2017) as the encoders of S2 and

eather modalities. Similar to Vision Transformer (Dosovitskiy et al.,
2020), we use a class token to extract a single representation from
he complete time series. In sub-field level metrics, the MMGF with
ransformer has a similar performance to LSTM, contrary to field-

evel, where the LSTM has the best performance. The similarity in
erformance between Transformer-based model and neural networks
ithout attention is something already observed in MML with RS
ata (Zhao and Ji, 2022).

7. Final remarks

We present a study of crop yield prediction at a sub-field level
10 m) by leveraging a variety of RS sources: optical, weather, soil,
nd DEM. Our model, named Multi-Modal Gated Fusion (MMGF),
omprises two integral components. The first one involves feature-level
earning, where dedicated encoders learn high-level representations
12 
for each modality, effectively handling varying temporal resolutions
and data distributions. The second component involves gated fusion,

here a gating mechanism (the GU) learns data-driven weights to
use multi-modal features adaptively, allowing customized aggregations
epending on input data. In addition, the GU module allows a simple
nterpretation of what was learned by the model. Our evaluation on
our country-crop combinations shows that our MMGF achieves optimal
rop yield predictions when all modalities are used. Such a consis-
ent outcome is uncommon in yield prediction (Bocca and Rodrigues,

2016; Kang et al., 2020; Pathak et al., 2023; Ma et al., 2023), where
factors such as region and modalities often shape the effectiveness of
olutions (Mena et al., 2024).

Notably, results at the sub-field level underscore the increased
omplexity of the crop yield prediction compared to the field level. This
nsight prompts future researchers to prioritize this scenario, such as
ith image-based or neighborhood-based mapping. Furthermore, given

he valuable interpretability of the data-driven gated fusion weights,
uture research will explore this for enhancing model explainability.
hus, some researchers (Jain and Wallace, 2019; Wiegreffe and Pin-

ter, 2019) have already challenged the conventional notion of using
ttention weights as feature importance scores. Their framework is a
romising future step towards explainability in multi-modal crop yield
rediction.

Abbreviations

BN Batch-Normalization
CNN Convolutional Neural Network
DEM Digital Elevation Model
GU Gated Unit
LSTM Long-Short Term Memory
MLP Multi-Layer Perceptron
ML Machine Learning
MML Multi-Modal Learning
RS Remote Sensing
RNN Recurrent Neural Network
SCL Scene Classification Layer
SITS Satellite Image Time Series
S2 Sentinel-2
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Fig. A.11. Results at different cloud coverage. Field-level 𝑅2 and MAE are separated into two cloud coverage categorization. ‘‘High’’ considers fields with cloud coverage above
he 5th highest cloud coverage value, while ‘‘Low’’ considers fields with a cloud coverage same or below that threshold.
m
w
i

c
c

p
b
s
e
I
o
e
a
t
i

d

A
t

y
d
t
p

CRediT authorship contribution statement

Francisco Mena: Writing – original draft, Visualization, Software,
ethodology, Investigation, Conceptualization. Deepak Pathak: Writ-

ng – review & editing, Visualization, Validation, Software, Methodol-
gy, Conceptualization. Hiba Najjar: Writing – review & editing, Visu-
lization, Validation, Software. Cristhian Sanchez: Software. Patrick
elber: Visualization, Validation, Software, Funding acquisition, Data

uration. Benjamin Bischke: Visualization, Validation, Software, Fund-
ng acquisition, Data curation. Peter Habelitz: Visualization, Valida-
ion, Software. Miro Miranda: Data curation. Jayanth Siddamsetty:

riting – review & editing. Marlon Nuske: Writing – review & editing,
upervision, Project administration, Funding acquisition, Conceptu-
lization. Marcela Charfuelan: Writing – review & editing, Project
dministration, Data curation. Diego Arenas: Writing – review & edit-
ng, Supervision. Michaela Vollmer: Project administration. Andreas
engel: Supervision, Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

The research results presented are part of a large collaborative
roject on agricultural yield predictions, which was partly funded
hrough the ESA InCubed Programme (https://incubed.esa.int/) as part
f the project AI4EO Solution Factory (https://www.ai4eo-solution-
actory.de/). F. Mena and H. Najjar acknowledge support through a
cholarship of the University of Kaiserslautern-Landau. The research
arried out in this work was partly funded by companies, BASF Digital

Farming, John Deere, and MunichRe.

Appendix A. Extended results

In this section, we present additional quantitative results to comple-
ent the analysis.
 t

13 
Results per dataset. The crop yield prediction performance for different
metrics (MAE, MAPE, 𝑅2) at field and sub-field level is presented in
Table A.8 for ARG-S fields, Table A.9 for URU-S fields, Table A.10
for GER-R fields, and Table A.11 for GER-W fields. Depending on the

etric, different models get better or worse performance. In addition,
e assess the statistical significance of the MMGF model by comparing

t against other models with the Wilcoxon signed-rank test (Wilcoxon,
1992) in the paired 10-fold cross validation experiments.

Results per cloud coverage. We split the validation fields into their field
loud coverage (see Section 3.2.1). The field with the 5th highest
loud coverage is selected as a threshold in each dataset, therefore

the high/low categorization is relative to the country and crop-type.
Fig. A.11 displays 𝑅2 and MAE metrics for these grouped fields, com-
aring the LSTM-based models to our model. For all the datasets, it can
e seen that the prediction performance in high cloud coverage fields is
imilar between the models, and that the main difference (and greater
rror) is coming from the fields with more occluded optical images.
n these cloudy fields, the proposed MMGF takes the most advantage
f the additional information given in the multi-modal data, obtaining
rrors among the lowest for the compared methods. This suggests that
 better way of combining the multi-modal data particularly benefits
he case where one of the modalities has a higher chance of missing
nformation (due to occlusion).

Results per year. We perform a leave-one-year-out (LOYO) cross-
validation experiment to compare the prediction for each year in the
atasets. In this experiment, all fields with a harvesting date6 in a

specific year were chosen for validation. In addition, it is important
to note that not every crop field is available for a farm throughout the
years (see Fig. B.13). Here, we compare LSTM-IF and MMGF in the

RG-S fields with MAPE as a score that normalizes the magnitude of
he target variable, illustrated in Fig. A.12. We observe that the MMGF

model performs better than the LSTM-IF, as the previous evaluation
reflects. This holds for the results across all years except for 2017 and
2021 at field-level metrics. Whereas the MMGF model obtains the best
ield prediction performance in the most recent year (2022), the most
ifficult years for prediction are 2018 at the field level and 2021 at
he sub-field level. As a reference, the 10-fold cross-validation mean
erformance is shown with dashed lines. Since the models perform

6 Please note that the growing season of a crop could extend from one year
o the following.

https://incubed.esa.int/
https://www.ai4eo-solution-factory.de/
https://www.ai4eo-solution-factory.de/
https://www.ai4eo-solution-factory.de/
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Table A.8
Crop yield prediction performance in the ARG-S fields for different models and combinations of modalities. The best result is in bold. The p-value shows the statistical
significance of the MMGF with respect to other methods.

Sub-Field Field

Model Modalities MAPE MAE 𝑅2 𝑅2 MAPE MAE 𝑅2 𝑅2

(%) (𝑡∕ℎ𝑎) - p-value (%) (𝑡∕ℎ𝑎) - p-value
LSTM S2-M 25 ±4 0.69 ±0.07 0.61 ±0.11 0.002 11 ±3 0.40 ±0.09 0.74 ±0.12 0.010
LSTM S2-R 23 ±3 0.62 ±0.05 0.67 ±0.06 0.092 9 ±3 0.31 ±0.07 𝟎.𝟖𝟒 ±0.08 0.341

GBDT-IF S2-M+DEM 27 ±5 0.72 ±0.07 0.58 ±0.11 0.001 12 ±3 0.71 ±0.07 0.72 ±0.14 0.012
LSTM-IF S2-M+DEM 24 ±3 0.65 ±0.05 0.65 ±0.08 0.010 9 ±3 0.33 ±0.08 0.82 ±0.12 0.312

Concat-FF S2-R+All 𝟐𝟐 ±3 0.62 ±0.06 0.67 ±0.05 0.098 9 ±2 0.32 ±0.08 0.83 ±0.10 0.138
Avg-FF S2-R+All 23 ±4 0.62 ±0.08 0.66 ±0.06 0.082 9 ±3 0.32 ±0.11 0.82 ±0.14 0.116
MMGF S2-R+All 𝟐𝟐 ±3 𝟎.𝟔𝟏 ±0.07 𝟎.𝟔𝟖 ±0.05 𝟖 ±2 𝟎.𝟑𝟎 ±0.11 𝟎.𝟖𝟒 ±0.08
Table A.9
Crop yield prediction performance in the URU-S fields for different models and combinations of modalities. The best result is in bold. The p-value shows the statistical
significance of the MMGF with respect to other methods.

Sub-Field Field

Model Modalities MAPE MAE 𝑅2 𝑅2 MAPE MAE 𝑅2 𝑅2

(%) (𝑡∕ℎ𝑎) - p-value (%) (𝑡∕ℎ𝑎) - p-value
LSTM S2-M 100 ±18 0.80 ±0.07 0.38 ±0.08 0.001 21 ±3 0.40 ±0.06 0.69 ±0.14 0.030
LSTM S2-R 95 ±14 𝟎.𝟕𝟕 ±0.06 0.69 ±0.14 0.032 𝟏𝟖 ±3 𝟎.𝟑𝟓 ±0.06 0.77 ±0.09 0.419

GBDT-IF S2-M+All 102 ±17 0.78 ±0.06 𝟎.𝟒𝟐 ±0.07 0.081 20 ±4 𝟎.𝟑𝟓 ±0.06 0.77 ±0.08 0.216
LSTM-IF S2-M+All 99 ±15 0.78 ±0.06 0.41 ±0.06 0.010 20 ±2 0.37 ±0.06 0.74 ±0.12 0.076

Concat-FF S2-R+All 95 ±15 𝟎.𝟕𝟕 ±0.06 𝟎.𝟒𝟐 ±0.07 0.267 19 ±3 𝟎.𝟑𝟓 ±0.06 0.77 ±0.10 0.179
Avg-FF S2-R+All 96 ±16 𝟎.𝟕𝟕 ±0.07 𝟎.𝟒𝟐 ±0.06 0.267 19 ±5 𝟎.𝟑𝟓 ±0.06 𝟎.𝟕𝟖 ±0.08 0.439
MMGF S2-R+All 𝟗𝟒 ±14 𝟎.𝟕𝟕 ±0.06 𝟎.𝟒𝟐 ±0.06 19 ±3 𝟎.𝟑𝟓 ±0.05 𝟎.𝟕𝟖 ±0.07
Table A.10
Crop yield prediction performance in the GER-R fields for different models and combinations of modalities. The best result is in bold. The p-value shows the statistical
significance of the MMGF with respect to other methods.

Sub-Field Field

Model Modalities MAPE MAE 𝑅2 𝑅2 MAPE MAE 𝑅2 𝑅2

(%) (𝑡∕ℎ𝑎) - p-value (%) (𝑡∕ℎ𝑎) - p-value
LSTM S2-M 42 ±16 1.01 ±0.21 0.35 ±0.13 0.014 18 ±11 0.60 ±0.16 0.65 ±0.18 0.006
LSTM S2-R 𝟑𝟔 ±12 𝟎.𝟗𝟎 ±0.18 𝟎.𝟒𝟔 ±0.11 0.312 15 ±8 0.51 ±0.17 0.77 ±0.13 0.080

GBDT-IF S2-M+soil 40 ±14 0.94 ±0.19 0.42 ±0.08 0.188 18 ±11 0.58 ±0.18 0.69 ±0.09 0.042
LSTM-IF S2-M+soil 39 ±12 0.93 ±0.19 0.45 ±0.10 0.348 15 ±8 0.47 ±0.14 0.78 ±0.09 0.461

Concat-FF S2-R+All 37 ±11 0.93 ±0.20 0.44 ±0.15 0.348 14 ±8 0.49 ±0.18 0.77 ±0.11 0.278
Avg-FF S2-R+All 𝟑𝟔 ±11 0.91 ±0.18 𝟎.𝟒𝟔 ±0.15 0.539 14 ±8 0.48 ±0.19 0.78 ±0.13 0.577
MMGF S2-R+All 𝟑𝟔 ±9 𝟎.𝟗𝟎 ±0.15 𝟎.𝟒𝟔 ±0.17 𝟏𝟑 ±7 𝟎.𝟒𝟑 ±0.15 𝟎.𝟖𝟎 ±0.13
Table A.11
Crop yield prediction performance in the GER-W fields for different models and combinations of modalities. The best result is in bold. The p-value shows the statistical
significance of the MMGF with respect to other methods.

Sub-Field Field

Model Modalities MAPE MAE 𝑅2 𝑅2 MAPE MAE 𝑅2 𝑅2

(%) (𝑡∕ℎ𝑎) - p-value (%) (𝑡∕ℎ𝑎) - p-value
LSTM S2-M 30 ±5 1.79 ±0.22 0.32 ±0.09 0.001 10 ±4 0.91 ±0.23 0.60 ±0.25 0.005
LSTM S2-R 𝟐𝟕 ±4 1.59 ±0.26 0.41 ±0.08 0.084 8 ±3 0.72 ±0.24 0.72 ±0.11 0.057

GBDT-IF S2-M+All 29 ±4 1.76 ±0.24 0.37 ±0.10 0.005 10 ±2 0.86 ±0.22 0.68 ±0.12 0.002
LSTM-IF S2-M+All 29 ±6 1.71 ±0.28 0.35 ±0.12 0.001 9 ±3 0.84 ±0.19 0.66 ±0.28 0.019

Concat-FF S2-R+All 𝟐𝟕 ±5 𝟏.𝟓𝟖 ±0.26 0.43 ±0.10 0.236 8 ±2 0.70 ±0.16 0.77 ±0.10 0.116
Avg-FF S2-R+All 𝟐𝟕 ±5 1.60 ±0.25 0.42 ±0.13 0.193 8 ±3 0.71 ±0.22 0.74 ±0.22 0.116
MMGF S2-R+All 𝟐𝟕 ±2 𝟏.𝟓𝟖 ±0.16 𝟎.𝟒𝟒 ±0.09 𝟕 ±5 𝟎.𝟔𝟒 ±0.26 𝟎.𝟖𝟎 ±0.10
better in the standard cross-validation, it illustrates the difficulty of the
LOYO evaluation. This means that learning to predict an unseen year
is harder than focusing on a random prediction.

Regularization effect. In Table A.12 different regularization techniques
are compared. The results prove that different techniques are essential
o avoid model overfitting, especially when having several parameters
n the MMGF model. Concretely, BN contributes more to improving
rediction performance than Dropout. However, when both techniques
re combined, the regularization techniques boost their individual

improvements and obtain the best result.
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Appendix B. Further visualization

Some additional charts are included in this section to highlight some
patterns in the data.

B.1. Data visualization

Input data. Fig. B.13 illustrates the crop growing season in each field
(from seeding to harvesting), to illustrate how diverse the collected data
is regarding the temporal axis (years) and over regions.
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Fig. A.12. Results at different years. MAPE of the crop yield prediction across years in the leave-one-year-out evaluation for ARG-S fields. ∗As a comparison, the dashed lines
how the model performance in the stratified 10-fold cross-validation. The LSTM-IF uses S2-M with DEM modalities, while the MMGF use all modalities (S2-R, weather, DEM,
oil). There are 8, 12, 19, 50, 73, and 27 (validation) fields respectively for each year from 2017 to 2022.
Table A.12
Regularization contributions. Crop yield prediction performance in ARG-S fields by varying ML techniques in the MMGF
model. The best results are in bold.

Technique Sub-Field Field

MAPE MAE 𝑅2 MAPE MAE 𝑅2

(%) (𝑡∕ℎ𝑎) – (%) (𝑡∕ℎ𝑎) –

Without Regularization 23 0.64 0.64 10 0.77 0.36
With Dropout 24 0.65 0.64 10 0.35 0.79
With BN 23 0.63 0.66 10 0.35 0.80
With BN and Dropout 𝟐𝟐 𝟎.𝟔𝟏 𝟎.𝟔𝟖 𝟖 𝟎.𝟑𝟎 𝟎.𝟖𝟒
Fig. B.13. Fields from seeding to harvesting grouped by farms. Here, a farm represents either a set of fields operated by a farmer or geographically nearby field. There are a
different number of fields per year with different growing seasons.
B.2. Model-based visualization

Crop yield predictions. Since we use a pixel-wise prediction approach
or the field images, we visualize the field prediction to qualitatively
nspect if the model learns the in-field variability. We created a field
ield map based on the sub-field predictions of two models (LSTM-
F and MMGF). In Fig. B.14, B.15, B.16, and B.17 we show examples
f these yield map predictions in random fields of the ARG-S, URU-S,

GER-R, and GER-W data respectively.
15 
Gated fusion weights at sub-field level. Fig. B.18 displays a stacked bar
plot on four randomly selected fields per dataset. Spatially close pixels
(pixels within the same field) have a similar distribution of weights.
These results were consistent across a larger set of fields, which we
inspected separately.

Gated fusion weights analysis. In Fig. B.19 we display the modality con-
tributions based on the MMGF-LR model (𝛼𝑚, 𝐶𝑚, and 𝛼𝑚𝐶𝑚 explained
in Section 6.1) for the GER-R and GER-W fields.
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Fig. B.14. Field-level crop yield prediction for a field in ARG-S data. The columns from left to right are the ground truth yield map, the predicted yield map, prediction and
target scatter, and prediction-target (blue–green) distributions.

Fig. B.15. Field-level crop yield prediction for a field in URU-S data. The columns from left to right are the ground truth yield map, the predicted yield map, prediction and
target scatter, and prediction-target (blue–green) distributions.
16 
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Fig. B.16. Field-level crop yield prediction for a field in GER-R data. The columns from left to right are the ground truth yield map, the predicted yield map, prediction and
target scatter, and prediction-target (blue–green) distributions.

Fig. B.17. Field-level crop yield prediction for a field in GER-W data. The columns from left to right are the ground truth yield map, the predicted yield map, prediction and
target scatter, and prediction-target (blue–green) distributions.
17 
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Fig. B.18. The gated fusion weights distribution of 300 randomly sampled pixels from 4 random fields of the different datasets used. The 𝑥-axis displays the different pixels, while
the 𝑦-axis the fusion weights.

Fig. B.19. Field level gated fusion weights at the top (𝛼𝑚), the contribution before applying the fusion weights at the middle (𝐶𝑚), and the total contribution at the bottom (𝛼𝑚𝐶𝑚).
The values are from the GU in the MMGF-LR model. The bars are ordered (from left to right) in descending order of the weight given to the predominant modality (S2-R). The
𝐶𝑚 and 𝛼𝑚𝐶𝑚 are scaled by 1∕

∑

𝑚 |𝐶𝑚| and 1∕
∑

𝑚 𝛼𝑚𝐶𝑚| respectively into a range [−1, 1] for better visualization.
18 
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