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Common Practices and Taxonomy in Deep Multiview
Fusion for Remote Sensing Applications

Francisco Mena , Graduate Student Member, IEEE, Diego Arenas , Marlon Nuske , and Andreas Dengel

Abstract—The advances in remote sensing technologies have
boosted applications for Earth observation. These technologies
provide multiple observations or views with different levels of
information. They might contain static or temporary views with
different levels of resolution, in addition to having different types
and amounts of noise due to sensor calibration or deterioration. A
great variety of deep learning models have been applied to fuse the
information from these multiple views, known as deep multiview
(MV) or multimodal fusion learning. However, the approaches in
the literature vary greatly since different terminology is used to
refer to similar concepts or different illustrations are given to sim-
ilar techniques. This article gathers works on MV fusion for Earth
observation by focusing on the common practices and approaches
used in the literature. We summarize and structure insights from
several different publications concentrating on unifying points and
ideas. In this manuscript, we provide a harmonized terminology
while at the same time mentioning the various alternative terms
that are used in literature. The topics covered by the works reviewed
focus on supervised learning with the use of neural network models.
We hope this review, with a long list of recent references, can
support future research and lead to a unified advance in the area.

Index Terms—Data fusion, deep learning, multimodal learning,
multiview (MV) learning, remote sensing (RS), supervised learning.

NOMENCLATURE

CNN Convolutional neural network.
DSM Digital surface model.
EO Earth observation.
GRU Gated recurrent unit.
HS Hyperspectral.
LiDAR Light detection and ranging.
LSTM Long-short term memory.
LULC Land-use land-cover.
L8 Landsat-8.
MS Multispectral.
MLP Multilayer Perceptron.
MV Multiview.
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NIR Near infra-red.
NDVI Normalized difference vegetation index.
NN Neural network.
RS Remote sensing.
RNN Recurrent neural network.
SAR Synthetic aperture radar.
S1 Sentinel-1.
S2 Sentinel-2.
UAV Unmanned aerial vehicles.

I. INTRODUCTION

EARTH observation (EO) allows the study and analysis
of different aspects of human life and natural resources,

where RS technologies are a crucial factor in providing a
global perspective on the Earth. The final purpose is to make
better data-informed decisions based on the current and future
state of the planet. Many applications in this context express
phenomena or objects that could be represented by multiple
observations. For instance, the classification of a crop-type
using observations from multiple satellites [1], the estimation
of agricultural yield using ground-based weather and RS-based
optical information [2], or the estimation of evapotranspiration
(water evaporation into the atmosphere) based on meteorological
factors [3]. Deep neural networks have been successfully applied
to different areas of EO [4] for their capacity to learn complex
nonlinear functions and heterogeneous patterns. In a comprehen-
sive learning scenario, the object of interest can be represented
by multiple views, making it necessary to suggest the appropriate
approaches to combine diverse types of information.

Combining multiple views presents numerous challenges. For
example, sensors have four types of resolution: spectral, spatial,
temporal, and radiometric, which need to be considered when
combining the views. In addition, different data sources use
different sensors and data collection, introducing different levels
of noise to the data [5]. Besides, machine learning models are
prone to errors caused by inductive bias. Therefore, if we try
to include too many views, the model may collapse due to
overparameterization [5] or the curse of dimensionality [6], [7].
Then, the goal of the MV learning models is to extract the most
valuable information for a predictive task from the available
views. This manuscript focuses on deep learning models, ad-
dressing the challenges of model design. The types of questions
that we are aiming to answer in this manuscript are: What are the
modeling options? Which types of architecture and strategies of
data fusion to use? What are the common approaches from the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5004-6571
https://orcid.org/0000-0001-7829-6102
https://orcid.org/0000-0002-0651-0664
https://orcid.org/0000-0002-6100-8255
mailto:f.menat@rptu.de
mailto:andreas.dengel@dfki.de
mailto:diego.arenas@dfki.de
mailto:marlon.nuske@dfki.de


4798 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

literature? We notice that employing advanced fusion strategies
involving additional components and/or multiple fusion layers
results in superior predictive performance. The relevance of this
work is the examination of recent studies in a way to support
ongoing research efforts and encourages researchers to embrace
appropriate fusion approaches based on the available research
within the field.

The rest of this article is organized as follows. In Section II,
the conceptual framework is introduced. Section III, presents
the challenges of the MV learning. In Section IV, we attempt
to answer some main questions about fusion from the reviewed
literature. In Section V, common approaches (characterized by
the components used) are highlighted. The current resources
and promising results for fusion in MV learning are described
in Section VI. Finally, Section VII, open questions and Section
VIII concludes this article.

A. Background Concepts

EO is the gathering and study of information about the bio-
logical, chemical, and physical systems of the planet Earth. RS
involves observing objects from platforms that are distant from
the object being observed, e.g., satellites, aerial images, or UAV.
Sensors in RS have different types of resolution: spectral, as
electromagnetic bands or channels obtained by different filters;
spatial, as the area covered by each pixel based on the distance of
the object to the observed area or the resolution of the instrument;
and temporal, as the frequency with which an area is swept, and
radiometric, affected by the sensor sensibility, calibration, and
deterioration.

Regression, classification, and segmentation are common
tasks explored in the literature. Regression tasks predict a con-
tinuous value from the input data, e.g., estimate the crop yield
produced in a particular field during a growing season (agricul-
tural yield prediction), estimate the amount of precipitation for
the next days (precipitation forecasting), or estimate the snow
depth. Classification tasks predict a label from a set of categories,
e.g., identify a target object on the Earth’s surface (automatic
target recognition), identify the crop type growing in a field
(vegetation recognition), or identify whether a field is irrigated
or not (irrigation recognition). Segmentation tasks to assign a
class in a mesh of a given region (with pixel-wise information),
e.g., identify the type of use given to a piece of land (LULC
mapping), identify which section of a region is flooded (flood
mapping), or identify which pixels of an RS image are covered
by clouds (cloud segmentation).

A single view is a data point, observation, information chan-
nel, or feature set associated with an object of interest that
contains information about it (direct or indirect) [8], [9]. In the
context of EO, optical images are the most common type of view,
coming from passive RS, which measures the solar radiation
reflection on the Earth’s surface. Red–green–blue (RGB) bands,
MS (with more bands on the spectrum than RGB), HS (with
more than hundreds of bands), or panchromatic (PAN, a single
band with a broad spectrum) are the most common options for
optical views. The missions Sentinel-2 (S2), Landsat (L7 and
L8), MODIS, and custom UAV are current common sources of

optical views. Some studies have explored the use of spatial
indexes derived from the optical views as input data [10], [11],
[12], [13]. The NDVI and the enhanced vegetation index are the
most widely used for agricultural purposes, while the normalized
difference water index is most used in water-related applications.
Other types of views come from active RS sources, sending
electromagnetic pulses to the Earth’s surface and recording the
reflected energy. SAR that uses microwaves and LiDAR that
uses infrared waves emitting pulses, are two commonly used
active RS. Sentinel-1 (S1), Radarsat, or Envisat are example
sources of the SAR view. Private UAVs can be used to obtain
LiDAR data. With active RS, it is possible to generate a digital
elevation map/model representing the topographic surface of the
Earth. There are two types of these models: DSMs and digital
terrain models (DTMs). DSMs contain only the bare ground,
while DTMs additionally contain objects such as vegetation and
buildings. DSM is the most common model used in EO applica-
tions. Finally, meteorological variables can be represented in one
or more views collected from RS or ground-based instruments.
For example, temperature, precipitation, solar radiation, wind
speed, humidity, and vapor pressure.

The MV learning scenario assumes that multiple views are
(always) available for each object. We use the term “MV” as
a general concept that includes the concepts of multimodal,
multisource, or multisensor used in literature. MV does not
constrain that views must be complementary, represent different
physical quantities [14], or be from different data (e.g., images,
signals, and metadata). For instance, MV data may contain
multiband images [15], different groups of spectral bands, such
as RGB and NIR [16], or additional views extracted from the
optical view, such as NDVI [17], [18] or NN features [19].

In this article, we focus on data fusion within the context
of MV learning. The term data fusion is commonly used in
the context of database management, referring to integrating
heterogeneous data sources into a single, consistent, and clean
representation [20]. Image fusion can be understood as combin-
ing the geometric detail of multiband images to produce a final
image [21], [22], e.g., spatio-temporal fusion [23], [24], [25] or
spatio-temporal-spectral fusion [26]. However, data fusion may
have different interpretations in MV learning, depending on the
application. Therefore, we suggest the following interpretation:
to integrate and merge the information in MV data with machine
learning models to maximize the predictive performance on a
given downstream task.

Deep learning refers to the use of NNs as machine learning
models, usually fed with raw-format data, such as images or time
series. These models could be trained in a supervised (e.g., with
labels) or unsupervised (e.g., without labels) way. The unsuper-
vised training is usually focused on pattern recognition or rep-
resentation learning tasks such as clustering and dimensionality
reduction, e.g., by using an autoencoder or self-supervision [27].
However, when training in a supervised fashion, it is usually
for a downstream task (aka predictive task or learning task),
which is some task that the model needs to learn to predict
through minimizing a predictive loss. Thus, a prediction head
(aka classifier) is used to give the final decision or prediction
for the task based on the input data. However, when the models
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learn from raw data, usually an encoder model (aka backbone
or extraction network) is used. These encoder models obtain a
representation that compresses the most valuable information
from the input, which feeds the prediction head. The standard
NN architecture used as a prediction head is the MLP, which
incorporates fully connected layers. While the standard NN
architecture used as encoder of images or spatial information
is CNNs, the one for sequential data is RNN with LSTM or
GRU layers. We refer to the predictive quality of the supervised
trained model as the predictive performance.

II. LITERATURE REVIEW

The primary purpose of data fusion in MV learning is to
combine the information from different perspectives (views) to
provide a broader understanding of the phenomena and improve
the predictive performance of machine learning models [28].
However, sometimes the goal could be just to get an embedding
to search for similar views, as is the case of MV alignment or
representation learning [8], [29], [30]. This alignment is the base
of contrastive learning [27], where a model is used to project the
data into a shared subspace for each view. Nevertheless, this
article only covers data fusion within the MV learning topic.

Given the MV nature of the EO data, primarily attributed to
RS technologies, several fusion approaches have been proposed
in the literature. While some approaches may share fundamental
similarities, it is common to observe different use of terms,
creating variations in their presentation. For instance, the S1
and S2 missions are mentioned as multisensor [31], [32], mul-
tisource [15], or multimodal [33], [34] in LULC applications.
Another case is the term used when fusing intermediate repre-
sentations extracted by NNs, such as middle-level fusion [35],
layer-level fusion [1], or late-level fusion [36]. This manuscript
provides a unified taxonomy and common practices from the
literature, discussing the advantages, and limitations of different
approaches.

Some studies have already offered valuable reviews of MV
learning. Such as Sun et al. [37], focusing on unsupervised
and semisupervised MV learning with a theoretical perspective.
Later, Zhao et al. [38] provided a review on the same line with
updated references, including open problems in the area. Lahat
et al. [14] focused on multisensor, medical, and environmental
applications. Recent reviews compared conventional with NN
models for MV learning [39], [40]. Several public MV datasets
were shared from these works, and most of them based on human
and action recognition. In addition, some surveys focused on the
EO domain. For instance, Gomez-Chova et al. [41] presented
a review of RS image classification, while the authors in [6]
and [21] focused on RS image fusion. Image fusion in the
sense of a spatio-temporal fusion occurs before any learning
occurs for a downstream task [23]. Salcedo-Sanz et al. [42]
reviewed several data fusion methods in different applications
of the EO domain. Recently, Li et al. [43] gathered open-source
code and RS datasets for specific EO applications, focusing on
data fusion and multimodal learning. They focused on specific
models categorized into two main types of data fusion: homoge-
neous and heterogeneous. For our study, Fig. 1 summarizes the

query-based search process. We initiated our article collection
from the year 2014 onwards, aligning with the notable advances
in CNN for image classification [44], [45]. This temporal choice
was further substantiated by the observable surge in the number
of research articles in 2014. Nonetheless, we have included a
select few seminal articles predating 2014 as a reference to
conventional approaches that predated the deep learning era.
Our exhaustive search yielded a total of 160 articles related to
MV learning in the context of RS image-based applications.
These underwent a thorough review to ensure alignment with the
specific MV learning scenario we delineate in this manuscript.
It can be seen that the main sources are EO-related journals,
such as Remote Sensing, IEEE JOURNAL OF SELECTED TOPICS

IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, and
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.

A. History of MV Learning

MV learning beginnings can be traced to 1936, to the math-
ematical statistician Hotelling and his correlation canonical
analysis (CCA) proposal [8]. In this work, linear mapping is
learned to maximize the correlation between two views. Ketter-
ing et al. [46] extended CCA to multiple feature sets in 1971.
More recently, Andrew et al. [47] used NN models to learn non-
linear mappings and correlations in 2013. However, to the best
of our knowledge, the first work mentioning the concept “view”
providing the first theoretical foundations of MV learning in
classification tasks is Blum et al. [9] in 1998, which was extended
by Muslea et al. [48]. Furthermore, according to our research, the
first mention of the “MV” concept in the EO domain is associated
with an LULC application in 2015 [49], where different scales
(zooms) of an image were used as MV data. The “MV” concept
was also used in the more recent research of contrastive learning
in applications with RS images [30], [50].

The use of deep MV learning in the EO domain has received
considerable attention due to the recent advances in NN models
and open science culture [22]. The EO community has been very
active in generating open access code, benchmark datasets, or
pretrained models. As in other areas of machine learning, the
research started using machine learning models that learn from
tabular data (e.g., metadata). To give an idea, linear models such
as the perceptron was used in 1989 [51] followed by classical
nonlinear models such as SVM in 2006–2007 [31], [52] for
LULC, decision trees in 2006 [53], and MLP in 2008 [54]. Later,
the community explored highly nonlinear functions through
deep NNs. For example, using multiple CNN models for each
view in LULC during 2016–2017 [17], [32], [55]. Camps-Valls
et al. [22] recognized three phases of research in the evolution of
the application of NN models for EO [aligning with the research
trend we observe in Figs. 1 and 4(b)]. The early stage, starting
in 2014, involved the exploration of different EO tasks using
NN models; followed by the release of standard datasets for
benchmarking in 2016, which enabled researchers to validate
and compare the performance of different approaches; and in
more recent years, there has been a shift toward EO-driven
methodological research, with a focus not only on the applicabil-
ity of NN models but also on other aspects, such as uncertainty
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Fig. 1. Illustration of the articles search. Multiple keywords were used, yielding varying publications across EO journals, conferences, and machine learning
journals. “Others” count the sources that have less than two articles reviewed. The articles were obtained until April 2023.

Fig. 2. Where to fuse. Illustration of three alternative fusion strategies: (a) input-level fusion at the top, (b) feature-level fusion at the middle, and (c) decision-level
fusion at the bottom. The model forward pass is from left to right (green arrows), the VE stands for view-encoder and PH for prediction head.
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Fig. 3. Where to fuse. Illustration of additional fusion strategies from literature. Two versions of dense fusion methods are at the top of the figure, and two hybrid
fusions are at the bottom. The forward pass of the model is from left to right (green arrows). Since dense strategies could use different connections in the crossing
layers, the paths are distinguished with a circle and square at the arrows beginning.

Fig. 4. Illustration of (a) fusion terms and (b) publication count for all the fusion strategies described in Section IV-A.

and reasoning. These developments represent a significant step
forward in the application of NN models in the field of EO.

III. CHALLENGES OF DEEP MV LEARNING

In the following section, we discuss the intrinsic challenges
associated with deep MV learning using RS data. For a compre-
hensive review of the deep MV learning topic outside the EO
domain, refer to [39].

Wang et al. [5] presented interesting insights into the difficul-
ties of training MV learning models in the vision domain. We
comment on the results that also apply to RS image data.

1) Heterogeneity in modeling: Views can have different res-
olutions (e.g., spatial and temporal), requiring different
model or NN architectures to process them. For instance,
a CNN for spatial data, an RNN for temporal data, and an
MLP for tabular data.

2) Different information levels: Views may concentrate the
information at different levels (e.g., high-level versus low-
level feature or high versus low noise), and each one will
require different network complexity to process them. For
example, an optical image might require more layers in
the NN than a cloud mask.

3) More patterns: Each view has its own distribution, mag-
nitude, and behavior patterns. Therefore, by feeding more
input views (patterns) to the network, the model must
determine the most efficient way to relate these views to
the output. For instance, the curse of dimensionality1 [6]
could occur when RS views are concatenated [7].

4) Overfitting: The number of parameters increases with each
additional network, compared to using a single network,

1In machine learning, the curse of dimensionality can manifest itself through
the decrease in predictive performance when increasing the number of input-
features (dimensionality).
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i.e., single-view learning. This scenario could cause over-
fitting due to overparameterization if there is not enough
labeled data to learn from.

The amount and quality of labeled data are crucial to reduce
the error of supervised trained models. Besides, MV learning
models are more difficult to learn than single-view learning
models [5] because each view overfits and generalizes at a
different rate. However, MV models usually optimize in a single
framework that learns all the parameters together at the same
learning rate, i.e., does not consider the difference in views
overfitting.

In addition, shared (or common) and complementary (or
specific) information could be presented in the views [9], [56]
that is usually ignored in the model design and included in the
model bias. Christoudias et al. [57] explored the problem when
complementary information among views is high enough to have
view disagreement. View disagreement is when views express
contradictory information about the ground truth [57], causing
problems in training. Ideally, one looks for views that balance
complementary and similar/correlated information. Moreover,
determining the optimal views required to describe an object
accurately can be challenging. Whether additional views will
improve or worsen the model’s performance is often unclear.
This raises the question of selecting the appropriate number
of views to ensure that the model performs optimally without
overloading with redundant information. With this discussion,
we try to give an impression to researchers outside the field on
why this topic is currently being studied. To date, many works
have been proposed in the literature to properly handle and merge
the information contained in MV data, of which we discussed
in this manuscript.

IV. MAIN QUESTIONS

Learning from multiple views is a complex task for learn-
ing models (see Section III), which might require important
decisions by the practitioner. We refer to the “practitioner” as
the person in charge of the model design and experimentation
in the machine learning context. Numerous studies [18], [32],
[34], [36], [55], [58] have demonstrated that the choices made
in the fusing method can significantly impact the predictive
performance of machine learning models. These choices may
generate some questions that we try to answer in this section,
such as in which layer to fuse the data (where to fuse), which
functions to use for fusing the information (how to fuse), in
which part to assign more resources (what to focus), or which
approaches are more common for specific EO scenarios.

A. Where to Fuse?

A common question is at which stage of the deep learning
model it is recommended to fuse data, in the early, middle, or
late stages. However, the concepts of early, middle, and late can
be ambiguous in the context of NNs. For instance, which layers
define the boundaries between partitions? Some works [16], [18]
considered late as the fusion on the decision layer of multiple
models, while others [34], [59] considered late as the fusion one
layer before (hidden representation) the decision layer. If the

number of features in the hidden representation is large, it could
make a big difference between merging in this representation or
in the decision layer (which usually has a few features). In Fig. 2,
we categorize a more explicit terminology for early, middle, and
late fusion strategies inspired by the literature [1], [34], [36],
[60]. We categorized (not mutually exclusive2) 160 articles into
one or more fusion strategies (see all the articles categorized in
Table IV in the Appendix).

Input-level fusion (early or data level fusion) is a naive ap-
proach involving concatenation of the input data and feeding it
to a single model. The learning setting is similar to a single-view
model. A resolution alignment step is often required to match
all the dimensions of the views (see Fig. 2 for an illustration)
before the concatenation, e.g., spatio-temporal alignment using
resampling or interpolation operations or more sophisticated
operations such as feature extraction. This fusion in the data
layer was the most common strategy in our review, used in 72
articles with RS image-based applications.

Feature-level fusion (middle, intermediate, or layer level fu-
sion) yields a joint representation (ideally compact) that is useful
for a predictive task. This method uses NN view encoders to
generate an intermediate representation for each view, followed
by a fusion module and a prediction head (see Fig. 2). This
fusion strategy at the hidden representation layer was found
in 56 articles. Hidden features at the first layers of the NN
are usually called low-level features, while hidden features at
the last layer of the NN are usually called high-level features.
Motivated by this, we divided feature-level fusion into two
subcategories. Fusion of subfeatures when the fused features
have temporal, spatial, and/or spectral dimension(s), such as
image or time-series features. For example, Audebert et al. [18]
fused feature maps (spatial features) inside convolutional blocks
of CNNs for an LULC application. On the other side, a fusion of
embeddings implies fusing vector features. For example, Chen
et al. [32] fused vector features after extracting an embedding
with CNN for LULC.

Decision-level fusion (late level or classifier fusion) combines
view-based predictions (e.g., probabilities, logits, or numerical
values) from parallel single-view models processing each view
and yielding a decision (see Fig. 2). This strategy bears resem-
blance to the mixture of expert model [61] but where each expert
receives a different input data. The decision-level fusion was the
least used strategy in the literature reviewed, with ten articles.
As Fig. 2 shows, feature and decision-level fusion use multiple
models to process each view, while input-level fusion uses a
single model.

Table I outlines key considerations for practitioners when
selecting a fusion strategy. The most appropriate fusion strategy
may depend on the specific RS image-based application.

An alternative late-level strategy, distinct from the previous
decision-level mentioned, has been employed in some stud-
ies [31], [49], [62], [63], [64], [65], [66], [67], [68], [69], [70],
[71], [72], [73]. We refer to this approach as ensemble-based
aggregation (with 13 articles in total), since it is based on a
two-step process where fusion is not learned but added. The first

2More than one fusion strategy could be presented in each article.
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TABLE I
TECHNICAL DIFFERENCES OF THE MAIN FUSION STRATEGIES PRESENTED IN THIS MANUSCRIPT, WITH V THE NUMBER OF VIEWS IN THE MODELING

step trains a model for each view independently. The second step
happens at test time, where a prediction aggregation function
merges the view-based predictions (e.g., through the average or
majority vote), similar to an ensemble framework. This case is
a model-agnostic fusion, where the information from multiple
views does not interact with each other, nor the relationship
between these is exploited, i.e., the fusion is detached from the
learning.

More recent works have explored different fusion strategies
based on the flexibility of NN models and their representation
capability (at feature level). One strategy is hybrid fusion (with
11 articles found), which combines two-level fusions in the same
model. To illustrate, input and feature fusions [see Fig. 3(bottom-
left)] [72], [74], [75], [76], [77], [78], [79], [80] or feature and
decision fusions [see Fig. 3(bottom-right)] [33], [58], [81] are
used together, improving the prediction performance compared
to using a single layer fusion. These hybrid fusion strategies can
be applied to different views, e.g., input-level fusion for temporal
features and feature-level fusion to integrate tabular auxiliary
data [74], [76], [77]. A natural extension of the hybrid strategy
is the case when the feature fusion is integrated into multiple
layers of the model. We refer to this as dense fusion [82] (with
14 articles found). One option involves the use of cross modules
between the intermediate view representations [see Fig. 3(top-
left)] [18], [65], [83], [84], [85], [86], [87], [88], which could be
directed to a specific view (illustrated with a circles and squares
in the Fig. 3), or to use an additional central model that stores
the previously combined features [see Fig. 3 (top-right)] [18],
[58], [89]. In summary, Fig. 4 provides an overview of fusion
strategies. It can be seen that input-level fusion is the standard
method used by several works across the years, while feature-
level fusion shows an increasing trend. In addition, it shows
that hybrid and dense fusion are more current strategies gaining
popularity among researchers.

B. How to Fuse?

The practitioner must define how the fusion will be performed.
Many data fusion architectures with different ways to merge
data have been explored thanks to the flexibility of using deep
MV learning. For instance, using different merge functions such
as uniform-sum, weighted-sum, product, concatenation, or with

gated modules (as in adaptive fusion) [90], [91]. For input-level
fusion, concatenation is the most common merge function. In
the following paragraphs, we will discuss some common merge
functions used in the other fusion strategies. For simplicity,
consider the representation (or prediction) obtained by V view
encoders (or -prediction heads) on each view {zv}Vv=1 and the
merge function F (·), the final fused (or joint) representation
could be expressed by z∗ = F ({z1, z2, . . . , zV }). Table II sum-
marizes some function options used in the literature, which are
simplified for mathematical comparison. The merge function F
could even be a submodule that includes complex components
or layers. Some options include cross layers with direction from
one view to another (asymmetric) [18], [65], [83], [84], [86],
[87], [88], [92], [93], cross layers with multiple directions among
all views (symmetric) [18], [34], [85], [94], [95], [96], [97],
[98], a central additional submodel [18], [58], [89], submodel
with average correction in decision-level fusion [17], or even an
RNN submodel for sequential views [99], [100]. Nevertheless,
these could be seen as a special case of dense fusion, since the
fusion is already integrated across the model. Therefore, a dense
fusion model could eventually learn this one-step (or two-step)
fusion within the model layers.

To the best nowledge, we have not encountered any prior re-
search that specifically examines and compares merge functions,
particularly within the EO domain. While most of the merge
functions produce a pooling aggregation (fused dimension is
the same as individual-view dimensions), the most commonly
used in literature, concatenation, gets a dimensionality equal
to the sum of individual dimensions. However, a few works in
LULC have shown that the pooling functions perform better
than concatenation when fusing an optical-MS with a LiDAR
view [81], or an optical-RGB with a DSM view [58]. When
comparing different pooling aggregations, other publications
show that the convex combination of a uniform sum was better
than the maximum for land-use characterization with RS and
ground-based views [101], or than the product for crop-type
mapping with optical-MS and SAR views [1], or than the
majority voting for building extraction with optical and DSM
views [58]. This could be because a convex combination does
not possess the same level of pooling strength as maximum
or product operators. In addition, Hong et al. [102] showed
that view-specific features are more useful for prediction than
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TABLE II
COMMON MERGE FUNCTIONS IN THE LITERATURE

view-shared features, suggesting a step toward exploiting the
individual information within each view.

C. What to Focus?

As an additional concern, the practitioner could be curious
about which aspects of the modeling warrant particular attention.
For example, in which part to design a more complex architec-
ture to obtain better predictive performance. Since RS-based
views have different resolutions, e.g., an image, a sequence
of images, vectors, or metadata, it is necessary to define an
appropriate view-encoder model to process each view. The most
common choice of view encoders for RS image data is MLP
or well-known models and architectures for the specific data
[34], [103], [104], [105], [106]. For instance, when using optical
images (usually for LULC), the common choice is to use known
CNN architectures [107], such as AlexNet [108], [109], [110],
[111], [112], [113], VGG [55], [114], [115], [116], [117], [118],
InceptionNet/GoogleNet [110], [118], [119], ResNet [69], [76],
[89], [99], [120], [121], [122], [123], [124], DenseNet [76],
SENet [69], and EfficienNet [76], [125], [126]. While Seg-
Net [127] and Faster R-CNN [16] have been used for optical-MS
image segmentation. On the other hand, RNN models (with
LSTM or GRU) are usually selected when using temporal
data [105], [106].

As observed in other fields, increasing the complexity of MV
models result in an improvement in the predictive performance
for RS image-based tasks. Some examples are increasing the
network layers and branches on LULC [18] or increasing the
network parameters on automatic target recognition [100]. How-
ever, some cases present the opposite evidence [34], [106]. Using
a less complex model (few layers) achieves a good predictive
performance in MV learning.

Some works [128], [129] recommend pretraining the view-
encoder or having prediction heads for each view independently.
The application of a pretrained model (aka transfer learning)
to the EO domain varies from fine-tuned models pretrained on
large image datasets outside the EO domain [19], [55], [117], to
models pretrained with the same task in a different geographical
region [130], including pretrained models on a different task in
the same geographical region [76], [131]. For example, Khaki

et al. [131] proposed a crop-type classification transfer on the
same region, i.e., fine tuning in a different crop type.

Sahu and Vechtomova [132] mentioned that simple view
encoders could be combined with a complex fusion mechanism,
which can make it compete against complex single-view models
(such as transformers or deep networks). This highlights the
importance of focusing on the fusion modules rather than only
on the complexity of the view encoders. However, the empirical
evidence of Gadiraju et al. [106] for crop classification showed
that having a linear model (SVM) after the fusion step worked
better than a nonlinear model (MLP). Their approach imple-
mented complex view encoders to process the optical-RGB
image and NDVI time series views. Ienco et al. [15] obtained
similar results for LULC when comparing conventional learning
models such as random forest versus MLP with the fusion of S1
and S2 data. Research on RS image-based applications has been
mostly restricted to limited comparisons of the complexity of NN
models before and after the fusion process. Such a comparison
would be of great interest as it could shed light on which stage
of the modeling process, prefusion or postfusion, requires more
resources to achieve optimal performance. In addition, it is
essential to pay attention to certain aspects such as regularization
techniques, including dropout, batch normalization, pretraining,
data augmentation, and early stopping, to ensure the model does
not overfits toward a specific type of pattern.

D. What to Consider in Specific EO Applications?

As mentioned in Section I-A, there are different types of RS
image-based applications requiring a downstream task in EO.
For applications involving tasks like LULC classification or
segmentation, cloud detection, flood mapping, and vegetation
recognition, it is common to encounter the use of static RS
images, e.g., a single time frame. For these application scenarios,
the most commonly used views are optical and radar images,
DSM, and LiDAR maps. Another application scenario that uses
temporal data, like a sequence of RS images or a signal of
different measurements, involves applications like agricultural
yield prediction, vegetation recognition (including crop-type
classification), environmental parameter retrieval, and change
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detection. In these applications, it is common to use weather,
optical, and radar views.

For the scenario of static RS views, LULC is the most explored
application, with feature-level fusion as the most common fusion
strategy. It is quite common to use residual connections and/or
layers that operate at multiscales in this scenario [92], [93], [94],
[95], [121], [133], [134], [135], [136], [137]. For LULC seg-
mentation, we found three standard approaches: image-to-image
mapping, pixel-wise classification, and neighborhood pixel-
wise classification. Furthermore, when we filter approaches
that employ feature-level fusion, the neighborhood pixel-wise
classification approach is the most common one regardless of
the application [32], [34], [35], [59], [93], [94], [96], [122],
[133], [136], [138], [139]. To address the limited amount of
labeled data in static MV image data for different applications,
some works use pretrained models on ImageNet as initialization
of one or multiple layers inside the MV learning model [19],
[55], [69], [89], [117], [121], [122], [125], or use different
data augmentation techniques [18], [117], [134], [140], such
as random crops, flips, and rotations.

For the scenario of temporary RS views, we found input-level
fusion as the most explored fusion strategy. Often, by extracting
(and aggregating) features across the temporal dimension, as
described in [2], [10], [12], [54], [141], [142], [143], [144],
[145], [146], [147], [148], and [149], or by aligning all the
views to the same temporal resolution [7], [130], [149], [150],
[151], [152], [153], [154], [155], [156], [157], [158], [159]. A
common approach to aggregate the temporary information is to
stack a temporary NN and return the last state. For instance, 2-D
CNN with an LSTM [153], 3-D CNN with a convolutional-
LSTM [158], or 2-D CNN with a GRU. Another approach
would be to stack a pooling layer. For instance, a convolutional-
LSTM network with an average layer [160], LSTM with a
temporal attention layer [155], [157], or MLP with a temporal
self-attention layer [1], [36]. In addition, some works consider
the temporal information as an additional input channel beyond
the standard positional encoding [161] used in transformer-like
models for EO [1], [162], [163]. For instance, the day of the
year [160], [164], or temporal differences between consecutive
times [165].

V. MODELING CONSIDERATIONS

In addition to the previous questions and choices. Some works
have proposed different components or modules that can help
in the stability and predictive performance of MV models. In
particular, the dropout3 [166] has been mentioned as a crucial
technique to include throughout the MV model for better learn-
ing [32], [60], [70], [104], [157]. Other works [17], [32], [34],
[35], [70], [81], [87], [88], [104], [125] mentioned the batch
normalization4 [167] with the same purpose. Recent research
has proposed innovative techniques such as sharing parameters

3Regularization technique used to drop or sample some neurons on a NN
layer. It uses a dropout ratio (practitioner defined) as the dropping probability.

4Technique used for reducing internal covariance-shift of the layers (and also
used as regularization). It normalizes the layer features and subsequently applies
an affine transformation with learnable parameters.

between the prediction heads for each view while maintaining
view-specific batch normalization, as demonstrated by Wang
et al. [168], and applied to RS image-based applications by
fusing HS and SAR views [135].

Some techniques used to improve model generalization and
to reduce overfitting and inductive bias are as follows:

1) Feature reduction or selection [7], [144], [157], [160],
[169], [170], [171], [172], [173]: Reduce the number
of features or bands in the case of images, in each
view. The idea is to remove the redundant or nonrelevant
information. This technique helps to prevent the curse
of dimensionality [7]. For instance, Ghamisi et al. [171]
reduced the number of bands in optical-HS images with
extinction profiles and kernel principal component anal-
ysis. Others used NNs to learn new features, e.g., for
bands in optical-MS images [19], or for image and text
data [174].

2) Share model parameters [33], [81], [100], [103], [117],
[135], [168], [175], [176], [177]: To avoid overparam-
eterization in the MV learning model, this technique
employs shared parameters in NN layers across views.
Similarly to SiameseNets [178] (see [179] for a survey)
or TwinNets [180], as has been called in recent works.
The parameter sharing is usually applied in the whole NN
for each view, but it has also been applied in a few layers,
e.g., with 2-D CNN that processes optical-MS and SAR
views [33], [176]. Sharing parameters is possible when
the same NN architectures are designed for each view.

3) Group views [17], [18], [75], [76], [77], [78], [79],
[92], [181]: To reduce overparametrization when mul-
tiple models are used. Views are grouped (in practice
concatenation) based on their semantic or structural sim-
ilarity. For instance, Wang et al. [75] grouped temporal
features (optical-MS and weather data) as one view and
static features (soil information) as another view for
agricultural yield prediction. Grouping is possible when
the views are from the same data type (e.g., images and
vectors).

4) Use pretrained NNs: Pretrained networks on large-scale
datasets can be used to transfer the learned knowledge. It
requires the RS data to have a similar resolution to the one
used in the pretrained model, e.g., Imagenet-based CNNs
need RGB or three bands images. However, some works
have used multiband images by initializing randomly the
first layer or by some heuristic followed by the pretrained
model [76], [89], [99], [113], [120], [121], [123], [124],
[125], [126].

5) Add prediction loss on the views [15], [33], [36], [81],
[86], [182], [183]: Incorporating an auxiliary predictive
loss for each view might force all views to be used for the
downstream task. This is done by including one predic-
tion head for each view instead of having a single model
after the fusion; see Fig. 5. There are some differences
in the proposal regarding how to apply weights to the
additional MV losses.
a) In some LULC works [81], [182], [183], the authors

set different weights for the loss of each view, which
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Fig. 5. Illustration of additional components in feature-level fusion: Auxiliary
loss on each view at the top and reconstruction on each view at the bottom. The
dashed lines are auxiliary steps, only used during training. The “prediction head
F” represents the prediction head that is fed with the fused representation.

is consistent with the argument that views converge
at different rates [5].

b) Ienco et al. [15] assigned one weight to the total sum
of the additional MV losses.

c) In [33] and [86], the authors used the sum of all the
MV losses.

6) Reconstruct views [35], [59], [137]: Incorporate auxil-
iary losses and layers that focus on reconstructing each
view entirely [59], [137] or the view’s representation
before fusion [35] (see Fig. 5). The idea is that the
learned representation contains enough information for
the single-view reconstruction.
Other techniques used to help model convergence and
learning are mentioned in the following paragraphs.

7) Perform pretraining and fine tuning: Pretrain each view
encoder individually on the same RS data used for
the downstream task. For example, learn to predict the
downstream task based on each view individually [71],
[133], [136], [184] or learn to reconstruct the views as a
pretraining [137], then fine tune with the downstream
task. With this technique, the parameters of the view
encoders have already learned information about the RS
patterns in the corresponding data.

8) Include attention modules: Inspired by the success of
attention modules [161], [185], [186]. The main focus
of application in RS data has been to perform temporal
attention [1], [15], [36], [74], [155], [157], [165], [182],
[187], [188]. Nevertheless, in RS image-based applica-
tions, the use cases have been extended as a way to en-
hance the information. Then, attention has been applied
across spatial [100], [177], spectral [123], [134], [181],
spatio-spectral [78], [80], [136], [139], or vector [138]
dimensions. The motivation is that attention mechanisms

lead to adaptively enhance the most relevant features of
the data.

9) Fuse with attention: One application of attention mod-
ules involves to fuse the MV data adaptively (see Sec-
tion IV-B). For instance, gated fusion for LULC with
the attention across vector [122], spatial [85], [86], [88],
[92], [124], or spectral [58] dimensions. Another case
corresponds to crossing layers that apply attention from
one view to another (and vice versa) enhancing spa-
tial [89], [95], spectral [85], [88], [92], [97], [113], or
spatio-spectral [87], [93], [94], [96] dimensions.

10) Include residual learning: Inspired by residual NN (or
ResNet [189]) and its ability to build very deep models,
some studies use skip connections in the MV learning
model. For instance, skip connections could be included
between each view (before fusion) [78], [86], [97], [123],
[134], [135], [136], [183], [190], from each view (before
fusion) to after fusion [17], [18], [65], [85], [94], [95],
[98], [124], [135], [137], [191], [192], or between after
fusion layers [84], [88], [193], [194].

11) Normalize view representation: To handle different fea-
ture scales in the MV data, a normalization of the learned
view representations could be included before applying
the merge function. For example, Marmanis et al. [55]
used it on optical (RG+NIR) and DSM view representa-
tions, and Zhang et al. [137] used it on fusing optical-HS
and DSM view representations. Li et al. [135] remarked
in their proposal that having specific normalization layers
for each view is crucial.

12) Use a different learning on the views: This technique
assigns different learning rates for each view in the
model. To give an idea, Zhang et al. [58] used a higher
learning rate on a DSM view and a lower rate on an
optical-RGB view. Other approaches with RS data are in
the same line [81], [182].

Furthermore, there is the option to include more fusion chan-
nels, as is the case of hybrid or dense fusion. The main purpose
is to allow explicit fusion at multiple levels of abstraction of the
NN layers. However, it has been shown in the vision domain
that fusion in just some layers is better than in all of them [82],
[129]. Other approaches have used postprocessing after training,
e.g., updating the predictions based on the application and
domain-knowledge [52], [68], [69], [70], [72], [169], [195].
Furthermore, some works have included context information in
the modeling, e.g., neighboring pixels as input data on pixel-wise
predictions [19], [32], [34], [35], [59], [87], [93], [96], [106],
[122], [133], [136], [138], [169], [171], [182], [196], [197] or
graph-based constraints on similar pixels/patches [102], [169],
[171], [175], [198].

VI. CURRENT RESOURCES AND RESULTS

The following analysis provides a general perspective of the
current RS sources and views, as well as fusion approaches,
focusing on the predictive performance for EO applications.
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A. Which Views are Most Used in Earth Observation?

Optical (surface reflectance) data are the views that usually
provide further information, and therefore, are the most used
for various downstream RS image-based tasks. Meanwhile,
active-based views are the quintessential views chosen to com-
plement (and improve by fusion) the optical in classification
tasks with MV models, e.g., by using SAR view [1], [15], [33],
[34], [36], [99], [113], [120], [124], [126], [143], [163], [173],
[174], [188], [190], [193], [199], [200], [201], [202] or LiDAR
view [94], [139]. Furthermore, the DSM view has been widely
used together with the optical view [17], [18], [19], [55], [58],
[64], [65], [76], [80], [84], [85], [88], [89], [92], [104], [123],
[184], where on some occasions is a LiDAR-derived DSM [32],
[34], [35], [59], [62], [81], [86], [87], [93], [96], [133], [134],
[136], [137], [139], [169], [170], [171], [183], [184], [198],
[203]. The visible light of the spectrum (RGB bands concretely)
have been shown to be more relevant than other spectral bands
in the optical view when considering the predictive performance
of NN models [16], [99], [204]. Besides, views with coarse
resolutions are usually worst in predictive performance than
finer resolution views [106], [120], [201], and multitemporal
views have better predictive performance than static views [99],
[106], [188], [191], [205]. Although RS-based views provide
valuable and more accessible information for downstream tasks
than ground-based views [30], [117], some works have used
interesting data sources to complement RS-based views. For
instance, Heidler et al. [30] used ground-based audios in addi-
tion to the optical view to classify an observed place, Mantsis
et al. [174] included images and text from tweets to estimate
the snow depth of an observed place, and He et al. [206]
included people density as a temporal view from geospatial
Big Data in China. These works suggest that social views
could be a powerful source to estimate disasters [207], such
as earthquakes [208] and floods [209]. There are other cases of
domain-specific views depending on the application. One is the
case of the agricultural yield prediction, where the weather and
soil views are chosen to complement (and improve) the optical
view [2], [75], [77], [103], [146], [181], or even used without
the optical view [73], [79], [131]. In addition, different types of
metadata can be used, e.g., statistics of the planted crop [71],
[74], [210], the region where it was planted [211] or irrigation
factors [60], [142].

Different time periods of the same sensors could be con-
sidered as views in MV learning models, as is the case of
change detection [52], [72], [98], [177], [192], [194], [212],
while some works generate multiple views from single-view
data, e.g., by different image operations (zoom ratios [49],
color alteration [213], and rotations [175]). Others, partition the
single-view data to generate MV data, e.g., splitting the spectral
bands of S2 optical image for vegetation recognition [19] or
water body detection [121]. Furthermore, feature extraction of
spectral indexes [15], [17], [18], [71], [97], [103], [125], [172],
model-based (such as principal component analysis [138]) or
domain-specific feature generation [78], [102], [160], [165]
have been used as an additional view to the raw bands of
optical images. Nevertheless, the use of redundant optical views

(multiple optical sensors) has shown compelling evidence in the
literature, such as learning from S2 and L8 satellites [69], [126],
[199], [201], from satellite data and UAV [72], [120], or from
low and high spatial resolution images [72], [106], [120], [160],
[182], [214]. This shows that different types of views can be
considered for different predictive tasks, and that the concept of
“view” grants flexibility in exploring methods within the same
framework.

There exist several publicly accessible datasets that can be
used for downstream tasks involving multiple RS views. In
Table VII (in the appendix), we provide an overview of some
datasets that are also used as benchmarks for specific applica-
tions and validation. Another valuable resource for researchers
is the annual data fusion contest hosted by the IEEE Geoscience
and Remote Sensing Society, where challenging datasets are
made publicly available.5

B. Does the Use of Additional Views Improve Predictive
Performance?

Outside the EO domain, substantial evidence suggests that ad-
ditional views or modalities improve the predictive performance
on downstream tasks regarding using single-view data [91],
[129], [215], [216]. Does this result apply to RS-based ap-
plications? In the following, we describe some results in this
direction.

There is plenty of evidence from works using two-view data
on various RS image-based tasks. These works show that the
predictive performance improves with respect to training on any
of the single views, e.g., with optical and active-based views
(SAR/LiDAR/DSM) [1], [13], [13], [15], [18], [32], [33], [34],
[35], [58], [59], [65], [81], [86], [92], [93], [94], [96], [99],
[102], [113], [133], [136], [143], [163], [169], [190], [191],
[193], [199], [202]. This indicates that the views complement
each other in the MV learning for EO tasks, in addition to the
fact that there is evidence when other diverse views are chosen
to supplement or replace the optical view [16], [70], [71], [106],
[117], [159], [160], [181], [183], [210], [211]. Several publi-
cations have shown that improvements regarding the optical
view appear even when using more than two views. Nguyen
et al. [103] demonstrated that optical-MS images, NVDI, and
soil properties perform better than individual views for agricul-
tural yield prediction. Pageot et al. [217] showed that optical-MS
image, SAR image, and weather improve over individual views
for irrigation recognition. Song et al. [201] fused optical-MS
from S2, optical from MODIS, optical-MS from L7 and L8, and
SAR from S1 views and found better predictive performance
as compared to individual views for crop-type mapping. Irvin
et al. [76] showed that optical and auxiliary data extracted from
DSM, weather, and soil properties improve over optical for
detecting deforestation. In [49], multiple zooms of an optical
image improved predictive performance over a single perspec-
tive for LULC. Wang et al. [100] found that multiple angles
of an object improve over a single angle for automatic target

5www.classic.grss-ieee.org/community/technical-committees/data-fusion/
(Accessed 19 December 2023)

www.classic.grss-ieee.org/community/technical-committees/data-fusion/
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Fig. 6. Number of articles that show empirical evidence of being best, in-
between, or worst predictive performance within three fusion strategies (input,
feature, and decision fusion). Individual articles are in Table VI.

recognition. Finally, some works [19], [60], [75], [83], [104],
[120], [146], [205], [217] presented a monotonically increasing
trend in predictive performance by including additional views
in the MV model. This evidence suggests that learning from
MV data outperforms in terms of predictive performance as
compared to learning from single-view data in RS image-based
applications. Heidler et al. [30] showed an interesting result
that MV learning improves over single-view learning when
inferring on single-view data. They showed that an MV model
trained with optical and audio views outperforms a single-view
trained model when predicting using only the optical view. This
suggests that additional views have the potential to enhance the
learning process, even if they are not used during the inference
stage.

Even though all the previously commented works report that
using additional data improves predictive performance, there
are some works that report the opposite regarding the number
of features in single-view learning with conventional learning
models. In these works [7], [144], [196], a subset of the features
(selected with feature engineering techniques) improved the
predictive performance of the models. This might suggest that
conventional models with single-view learning fail to extract
the patterns adequately from the additional views needed for
the downstream task. However, it is essential to note that the
results usually depend on the empirical data and the downstream
task [201], the difficulty of that task (e.g., number of classes or
task granularity) [131], the number of training examples [50],
[130], [218], and the model used [172].

C. Which Strategy Leads to Better Predictive Performance?

Regarding current results in the field, some works have
compared and studied the effectiveness of fusion strategies.
Hong et al. [34] explored the question of where to fuse RS images
in NNs. Their conclusions indicate that middle (cross) fusion
has the best performance, followed by late fusion. Nevertheless,
the conclusions were based on the results in two EO datasets,
while in this article, a collection of different experimental
evidence is gathered and summarized for comparison. In Fig. 6,
we gather empirical evidence from the literature on different RS
datasets by comparing the three main fusion strategies discussed
in previous sections (see Fig. 2). In this case, the comparison is

categorical and corresponds to whether the fusion strategy shows
the best, worst, or in-between predictive performance. The main
outcome is that feature-level fusion has better predictive
performance compared with input and decision-level fusion in
most of the cases [18], [32], [34], [35], [36], [58], [86], [101],
[104], [105], [133], [200]. Furthermore, based on the analyzed
evidence, the feature-level fusion performance stands above the
worst performance alternatives. Input-level and decision-level
fusion strategies are similar in results to each other. In some
cases, input fusion is the best [1], [36] (or worst [34], [35], [190],
[200]), while in others, decision fusion is the best option [16],
[33] (or worst [1], [36]), showing that the results strongly
depend on the data. The available evidence suggests that input
and decision-level fusion techniques are more unpredictable
regarding their effectiveness in RS image-based applications,
making it challenging to determine a priori whether they will
yield superior or inferior results. Srivastava et al. [101] compared
empirically that when no fusion is performed, feature-based
aggregation (sum of NN features before training) is better than
ensemble-based aggregation (majority voting of predictions
after training) when using RS-based and ground-based views for
LULC. In addition, many works reported that additional fusion
layers improve the predictive performance compared to using
just one fusion layer. For instance, in hybrid fusion [18], [33]
or dense fusion [58], [83], [97], [177], [219]. These works give
credit to the idea that the model can exchange more information
from the views and correct the fusion of the earlier stages.
Furthermore, it is worth noting that the differences in predictive
performance observed across various fusion strategies in the
literature are generally modest.

Considering that the selection of the fusion strategy might de-
pend on the EO application, we offer some suggestions for prac-
titioners in Table III. Since different solutions can be proposed
for the same application using different RS sources, we group
the applications in the three task types defined in Section I-A as
follows: segmentation, classification, and regression.

An evaluation of the methods is not provided as the results
reported in the literature exhibit significant variability depending
on various factors, including the downstream tasks, geographic
region, RS satellites, and views used. As such, we refrain from
offering incomplete or biased insights on this topic. Neverthe-
less, some authors have made the code of the MV learning model
available alongside their manuscripts, allowing reproducibility
and progressive research. These valuable resources are summa-
rized in Table VIII (in the Appendix).

VII. OPEN QUESTIONS

Although many fusion approaches have been explored in the
MV learning topic, there are still some open challenges that
could motivate new research and proposals in the EO domain.

1) Missing views: The usual assumption of MV learning is
that all views are available for each sample during and after
training. However, RS-based scenarios are dynamic envi-
ronments that do not necessarily follow this assumption,
e.g., remote sensors may fail or be unavailable, causing a
MV learning with missing views [220]. Only a few works
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TABLE III
ALTERNATIVES FOR FUSION STRATEGIES DEPENDING ON THE TASK TYPES

have explored the effect of fusion when this occurs. For
instance, fusions further away from the input data (e.g.,
decision and feature fusion) are more robust to missing
data6 in HS and LiDAR images [34]. Other works present
the same results when missing7 optical-MS images at
some time steps of an optical and SAR MV model [1],
[36], [163] or in cloudy conditions [70], [121], [143],
[190]. Hong et al. [34] also showed that the robustness to
missing views could be increased by including additional
components to the standard fusion approaches (see Fig. 2).
These solutions are usually data-specific techniques and
require knowing in advance what and when the missing
views will be. However, NN models have shown the
ability to reconstruct complex RS image patterns [205].
Adapting the MV learning model to missing views still
has open questions that could motivate further research.
For example, when more than two views are used, the
missing views can be dynamic, and a robust model could
be suitable.

2) MV uncertainty analysis: Not many studies have ana-
lyzed the prediction uncertainty when using MV data. It
is reasonable to ask whether additional views reduce or
increase the uncertainty. It might happen that if views are
too different from each other, the uncertainty increases, or
if views are more similar, the uncertainty is reduced. Ofori-
Ampofo et al. [1] showed that, when running multiple
times, the MV models obtain a lower variance compared
to the single-view ones. Ebel et al. [188] showed that addi-
tional views reduce the aleatoric and epistemic uncertainty
on model predictions for cloud removal. Nevertheless,
there is an open opportunity for research in alternative
applications and RS sources.

3) Complex MV models: Several studies in RS image-based
applications have proposed diverse models and archi-
tectures to address MV learning [15], [55], [85], [86],
[88], [89], [137], [187], e.g., by making the model more
complex, and thereby, able to extract better information.
However, the neural architecture search field might assist
in searching an optimal MV learning [221]. This might
reduce the human effort of a manual model design if proper
use is done with RS data.

4) Explainability on MV learning: The explainability of a
single-view model is a research line exploring questions

6In practice, the missing views are filled with zero when feeding the model.
7In practice, the missing is ignored by the model or masked out.

such as: What is the impact on the explainability as the
complexity of the model increases? since current ap-
proaches use multiple models for each view to deal with
MV data, increasing the complexity for each view. It is
challenging to understand what the model is doing under
abstract fusion operations. Therefore, significant attention
needs to be put on this subject.

5) Theories on MV learning: Some theoretical aspects of MV
learning have been explored in the ML domain, such as
view consistency (f1(x1) = f1(x2), [9]), sufficiency for
correct classification (f1(x1) = f1(x2) = y, [9]), com-
plementary (ε > 0), and redundancy (ε = 0) in view infor-
mation (I(y, x2|x1) ≤ ε, [222]). With xv the input view
and fv(·) the prediction model for view v, y the predic-
tion target, and I(·) the mutual information. However,
just a few works have used a theoretical framework for
view-alignment in RS-based applications, e.g., an MV
linear discriminant analysis like formulation in an LULC
application [29], a canonical correlation analysis (CCA)
for missing view retrieval [117], or CCA for learning
kernels in CNN [213]. Nevertheless, given the current
scarcity of research on theories for RS data fusion within
MV learning, there is an open field to explore.

VIII. CONCLUSION

This manuscript analyzes different data fusion aspects in MV
learning in the context of RS data. Multiple approaches from
the literature were grouped based on their similarity, providing
a unified structure to compare methods in the field. Our observa-
tions indicate that the utilization of advanced fusion strategies,
which incorporate supplementary components and/or multiple
fusion layers, leads to a notable enhancement in predictive
performance. To the best of our knowledge, the works included
in this review reflect the current trends of MV fusion learning in
RS image-based applications.

APPENDIX

Table IV contains the references of articles of the categoriza-
tion made in Section IV. While Table V contains the references
used to create Table II in the main content of this manuscript,
Table VI contains the data used to generate Fig. 6. On the side
of the current resources in the literature, Table VII provides an
overview of public available datasets, while Table VIII shows
public available code of different research proposals.
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TABLE IV
NONEXCLUSIVE CATEGORIZATION OF ARTICLES REVIEWED

TABLE V
NONEXCLUSIVE CATEGORIZATION OF MERGE FUNCTIONS USED IN SOME ARTICLES

TABLE VI
DATA USED TO GENERATE FIG. 6
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TABLE VII
RS IMAGE-BASED MV DATASETS

TABLE VIII
PUBLIC CODE FOR MV LEARNING MODELS PROPOSED IN RS IMAGE-BASED APPLICATIONS
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