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Abstract: Allocentric semantic 3D maps are highly useful for a variety of human–machine interaction
related tasks since egocentric viewpoints can be derived by the machine for the human partner. Class
labels and map interpretations, however, may differ or could be missing for the participants due
to the different perspectives. Particularly, when considering the viewpoint of a small robot, which
significantly differs from the viewpoint of a human. In order to overcome this issue, and to establish
common ground, we extend an existing real-time 3D semantic reconstruction pipeline with semantic
matching across human and robot viewpoints. We use deep recognition networks, which usually
perform well from higher (i.e., human) viewpoints but are inferior from lower viewpoints, such
as that of a small robot. We propose several approaches for acquiring semantic labels for images
taken from unusual perspectives. We start with a partial 3D semantic reconstruction from the human
perspective that we transfer and adapt to the small robot’s perspective using superpixel segmentation
and the geometry of the surroundings. The quality of the reconstruction is evaluated in the Habitat
simulator and a real environment using a robot car with an RGBD camera. We show that the proposed
approach provides high-quality semantic segmentation from the robot’s perspective, with accuracy
comparable to the original one. In addition, we exploit the gained information and improve the
recognition performance of the deep network for the lower viewpoints and show that the small robot
alone is capable of generating high-quality semantic maps for the human partner. The computations
are close to real-time, so the approach enables interactive applications.

Keywords: 3D semantic maps; semantic matching; superpixel segmentation; semantic segmentation;
human–robot collaboration; real-time reconstruction; label transfer; computer vision; deep learning

1. Introduction

Human–robot collaboration opens novel application avenues, as super-human sensing,
computation speed, additional degrees of freedom in control, and strength can extend
human capabilities in problem solving. Taking the example of healthcare applications [1],
there are several challenges to be addressed. Robots must adapt to the unique challenges
and constraints of the environment while providing safe and effective care to patients.
They need to navigate confined spaces, account for different types of furniture, and avoid
obstacles while carrying out their tasks. Moreover, privacy concerns and customization of
care plans for individual patients are crucial factors to be addressed.

In physical rehabilitation scenarios [2] for example, a ground robot needs to guide the
patient to the optimal place and optimal direction, observe the patient while performing
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physical exercises, track the exercise in 3D, and provide feedback in case of error. Time
constraints for correcting instructions can be demanding, and verbal communication may
be necessary. Context-aware guidance requires the recognition of the objects, the recon-
struction of the geometry of the space, path planning, and execution. Guidance requires
verbal instructions in the patient’s egocentric coordinates. Therefore, complete 3D semantic
reconstruction is necessary for the recognition of the spatial relationships between objects,
the neighboring relations and free spaces between them, and the transformation to the
egocentric coordinate system.

While small robots have several advantages in home scenarios, they also face chal-
lenges set by computational constraints and by their form factor. An important practical
problem is that small robots have difficulties in recognizing objects viewed from their own
unusual perspectives, which are typically not present in their object training database. Hu-
mans see objects from the top while ground robots see things from the bottom. Moreover,
training datasets such as [3–5] are usually annotated from human perspectives, which poses
a common challenge in image segmentation. Models tend to generalize poorly to different
perspectives [6], resulting in significant segmentation accuracy drops, as shown in Figure 1.
To address this issue, one option is to request semantic information from a human partner,
e.g., through verbal communication. However, this may not be practical or effective in
real-time scenarios. Another option is to use semantic scene completion [7] to infer labels
of unknown regions, but these approaches are computationally intensive and may not be
suitable for real-time operation on typical robots. An attractive option is to use a semantic
map of a higher viewpoint to estimate semantics from a lower viewpoint, as also shown
in [8]. This approach can provide the object recognition system with low-angle training
samples to improve its performance while preserving multi-view consistency. Furthermore,
after deploying the semantic segmentation network, continual learning approaches [9,10]
could be employed to update the model on previously unseen data.

Figure 1. Predicted semantic segmentation from different perspectives. Semantic segmentation
algorithms can fail on images taken from unusual perspectives, such as those captured by small
ground robots or flying drones (Best viewed in color).

We propose ways to generate semantic segmentations from lower viewpoints. Specifi-
cally, we transfer semantic labels to various 2D viewpoints from an existing 3D semantic
reconstruction using various projection and matching mechanisms, building upon the
3D semantic reconstruction works of Rosinol [11] and Rozenberszki [8]. We study the
effects of changing the camera heights and compare different segmentation models. We
evaluate the proposed label projection approaches on synthetic data coming from the
Habitat [12] simulation framework and on a real-world dataset. We demonstrate that our
method can provide semantic segmentation from lower viewpoints with similar accuracy
as the 3D semantic reconstruction from the upper viewpoint, and it can be used to train
semantic segmentation models on unusual perspectives. Our implementation is available
at https://github.com/szilviaszeier/semantic_matching (accessed on 23 May 2023).

2. Related Works

Robotic systems are increasingly assisting us in our daily lives. Initially, these agents
were hard-coded to complete specific tasks without generalizing capabilities. However,
in recent years, greater research emphasis has been put on their autonomy and spatial
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awareness. Spatial artificial intelligence (SAI) can be divided into four distinct but inter-
dependent layers with increasing complexity: spatial perception, pose tracking, geometry
understanding, and semantic understanding. Semantic environment reconstruction is the
core of our work. In this section, we briefly discuss relevant reconstruction methods and
then introduce the problem of segmentation failure from unusual perspectives, such as
those of small ground robots and flying drones.

Three-dimensional semantic reconstruction of indoor environments refers to the task
of recreating the geometry and appearance of our surroundings. The reconstruction can
be performed using different techniques. Some utilize a LiDAR scanner and segment the
3D point cloud, others reconstruct the environment from 2D segmented images with a
structure-from-motion algorithm [13], while others traverse the area with an RGBD or
stereo camera and create a map on the fly. In our work, we focus on RGBD cameras.

Due to the complexity and high dimensionality of this task, many solutions only work
offline [14,15]. In robotic applications, real-time approaches such as BundleFusion [16]
become much more relevant. For example, in a navigation task the robot needs to be
aware of immediate changes in its environment to be able to generate a collision-free
trajectory [17]. A 3D semantic reconstruction stores environmental information which can
later be utilized by the same or other agents to complete various tasks.

Semantic segmentation is a key aspect of the way in which the semantic labels of the
reconstruction are created. Some methods utilize 2D semantic segmentation algorithms [18],
while others perform the segmentation on the 3D geometry itself [19,20]. There are many
publicly available 2D semantic segmentation methods, making this approach an attractive
choice. On the other hand, 3D segmentation methods have the advantage of being able to
utilize the geometry of a given object, but these techniques are more time-consuming and
much fewer variants exist.

In this work, we use 2D semantic segmentation methods [21,22] due to their ease of
use and inference speed. Most semantic segmentation algorithms are trained on datasets
such as SUNRGBD [3], NYUv2 [4], and COCO [5], which mainly contain images taken
from a standard (human) perspective. Consequently, detection is unreliable or fails when
applied to images taken from unusual viewpoints, such as those of small ground robots
or drones.

Regarding 3D semantic reconstruction, typical methods isolate components and fuse
the results later in a pipeline architecture. However, this is not always the case. In [23],
the authors propose an approach to jointly infer 3D geometry and 3D semantic labels
using a depth fusion network. This method leverages the 2D semantic prior to enhance
the 3D reconstruction accuracy, meaning that out-of-distribution viewpoints would not be
supported, which is the primary problem we aim to address.

The problem of segmentation failures due to unusual perspectives has been tackled by
leveraging multi-view consistency, domain adaptation, and continual learning approaches.
A key idea is to exploit the consistency of semantic information across different viewpoints
to improve the performance of segmentation networks. The work by [24] highlights the
benefits of leveraging view consistency enforced in 3D as a prior for 2D tasks involving
semantics. Frey et al. [9] proposes an online adaptation method for semantic segmen-
tation networks during deployment, using a probabilistic accumulation of consecutive
2D semantic predictions in a volumetric 3D map as a supervision signal. This method
enforces multi-view consistency through the 3D representation and employs a continual
learning experience replay strategy to retain previously learned knowledge. Similarly,
Liu et al. [10] introduces a method for continual multi-scene adaptation for semantic seg-
mentation without ground truth labels, using a Semantic-NeRF network for each scene
to fuse the predictions of a segmentation model. The Semantic-NeRF model enables 2D–
3D knowledge transfer, and its compact size allows for long-term memory storage and
reduced forgetting.

These approaches provide ways to adapt the segmentation model to new data in
an online or offline manner after deployment. These methods could also benefit from
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the proposed label projection methods to render 2D pseudo-labels from upper-view 3D
semantic reconstructions. We note that segmentation methods keep improving with the in-
creasing size of databases, see, e.g., the recent publication of Kirillov et al. [25]. Nonetheless,
the relevance of the problem remains for complex novel objects subject to heavy occlusions,
especially in critical applications.

3. Methods

In this paper, we contribute several new methods for 3D semantic label transfer and
matching across multiple viewpoints.

3.1. Reconstruction Pipeline Overview

We first describe the overall structure of our real-time 3D semantic reconstruction
pipeline, which is adopted from previous work [8]. The reconstruction pipeline includes
UcoSLAM [26] as a visual SLAM method used for pose tracking, and Mask R-CNN [21]
as a 2D semantic segmentation algorithm trained on the SUNRGBD dataset [3]. A pose
filtering procedure was also introduced to filter out erroneous pose estimates that may
result from false re-localization or drifts in the pose. The final 3D model of the environment
is constructed using the Voxblox [27] framework by integrating measurements from each
sensor into a global map. The reconstruction can be colored or semantically labeled,
depending on the inputs. As we focus on 3D semantic reconstructions, we paint the model
with semantic labels.

We extended the pipeline of [8] with several new components. The proposed archi-
tecture is shown in Figure 2. Our goal is to obtain a 3D semantic reconstruction from
unusual viewpoints starting from a partial human-perspective reconstruction. We built a
small ground robot to capture data from an odd perspective. The starting reconstruction is
provided by the reconstruction pipeline using a typical 2D semantic segmentation algo-
rithm. Originally, Mask R-CNN was used for semantic labeling, but we also included the
recent segmentation algorithm called Mask Transfiner [22]. We trained this model on the
SUNRGBD [3] and the ADE20K [28] datasets. For comparability, the Mask R-CNN was
also trained and evaluated on the same datasets.

Figure 2. Overall pipeline. We build upon the work of [8]. We added a label projection module
(highlighted in red) to infer the missing semantic labels from a lower viewpoint, given an existing 3D
semantic reconstruction.

Our goal is to extend and improve the starting reconstruction model to unusual
perspectives. However, the semantic segmentation algorithms are not reliable from these
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odd perspectives. Therefore, we propose several different label projection methods which
map semantic labels from the starting reconstruction to the perspective of the ground robot.

3.2. Label Projection Methods

The label projection module aims to provide 2D semantic segmentation to the point
cloud generation module. However, when the camera is close to the floor, the accuracy
of the pre-trained semantic segmentation degrades. Therefore, we propose methods to
provide high-quality semantic segmentation when the camera position is not optimal by
incorporating labels from an existing 3D semantic mesh. In the following sections, we
propose five label projection methods: (1) superpixel-based projection in 2D, (2) superpixel-
based projection in 3D, (3) supervoxel-based projection, (4) 3D clustering-based projection,
and (5) per-point matching.

3.2.1. Superpixel-Based Projection in 2D

To obtain semantically meaningful regions in the RGB image, we utilize superpixel
segmentation. Superpixel segmentation is a clustering algorithm that aims to cluster regions
of an image based on some similarity metrics such as color, texture, and proximity. We use
Fast-SLIC [29], an optimized version of SLIC [30] (simple linear iterative clustering) for
superpixel segmentation on CPU-constrained devices.

The superpixel-based projection approach consists of the following steps: (i) We project
the 3D semantic reconstruction from the upper viewpoint onto the lower-view image plane.
(ii) Fast-SLIC is applied on the RGB frame from the lower viewpoint to group coherent
image regions, and the projected semantic labels are aggregated accordingly. (iii) A majority
voting scheme is employed to assign semantic labels to each superpixel. This approach is
referred to as “2D SLIC”.

3.2.2. Superpixel-Based Projection in 3D

This approach builds on the 2D SLIC method by extending it to 3D. We first perform
superpixel segmentation on the lower-view RGB frame using Fast-SLIC as described in
the previous section. Next, instead of assigning semantic labels to each 2D superpixel, we
project each superpixel onto the lower-view 3D point cloud by using the depth image. We
then group the 3D points belonging to each superpixel and assign a semantic label to the
group based on the majority of labels. Algorithm 1 provides a detailed description of the
method. For the remainder of the paper, we refer to this method as “3D projected SP”.

Algorithm 1: Superpixel-based projection in 3D

Input: Lower-view RGBD image (I ∈ [0, 255]H×W×3 and D ∈ [0, 255]H×W),
upper-view 3D semantic reconstruction (including point cloud
Pupper ∈ RN×3 and labels Lupper ∈ {0, 1, . . . , L}N , where L ∈ N denotes the
number of semantic labels).

Output: Lower-view semantic segmentation (S ∈ {0, 1, . . . , L}H×W)
1 Run superpixel segmentation (SLIC) on the RGB image (I) to find coherent image

regions (SP).
2 Using the depth image (D), project the superpixel segmentation (SP) onto 3D to

obtain the lower-view point cloud (Plower).
3 [Optional] Downsample the point cloud (Plower).
4 Match the lower-view point cloud (Plower) with the upper-view 3D semantic

reconstruction (Pupper, Lupper) and determine the corresponding semantic label of
each superpixel (Llower).

5 Project the labels of the lower-view semantic point cloud (Llower) onto the image
plane to obtain the semantic segmentation (S).
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3.2.3. Supervoxel-Based Projection

In addition to the generalization of the label assignment, one can extend superpixel
segmentation to 3D. In this case, we refer to the resulting 3D regions as supervoxels. Out of
the several approaches for supervoxel segmentation, we use an extension of SLIC called
maskSLIC [31].

To apply maskSLIC, we need to convert the 3D point cloud P ∈ RN×3 to a voxel
grid using the formula V = P−P̄

V , where P̄ = 1
N ∑N

j=1 P(j) is the center of the point cloud
and V ∈ R is the voxel size, which represents the length of the side of a cubic voxel in
meters. In order to keep the runtime low, we introduce heavy subsampling on the point
cloud before the voxelization. Furthermore, we use maskSLIC with a foreground mask to
ignore empty voxels, and we limit the number of supervoxels. Algorithm 2 describes the
supervoxel-based projection method in detail. We will refer to this approach as the “3D
SLIC” method in the remainder of this paper.

Algorithm 2: Supervoxel-based projection

Input: Lower-view RGBD image (I ∈ [0, 255]H×W×3 and D ∈ [0, 255]H×W),
upper-view 3D semantic reconstruction (including point cloud
Pupper ∈ RN×3 and labels Lupper ∈ {0, 1, . . . , L}N , where L ∈ N denotes the
number of semantic labels).

Output: Lower-view semantic segmentation (S ∈ {0, 1, . . . , L}H×W)
1 Create a colored 3D point cloud (Plower) from the lower-view RGB (I) and depth

image (D).
2 Downsample the point cloud (Plower) and keep track of each point’s

original location.
3 Convert the lower-view point cloud (Plower) to a voxel grid (Vlower).
4 Utilize SLIC on the voxel grid (Vlower), using masking to obtain supervoxels (SV).
5 Match the lower-view point cloud (Plower) with the upper-view 3D semantic

reconstruction (Pupper, Lupper), determining the semantic label (Llower) of each
supervoxel (SV).

6 Project the semantic labels of the lower-view point cloud (Llower) onto the image
plane to obtain the semantic segmentation (S).

3.2.4. Three-dimensional Clustering-Based Projection

We propose an alternative clustering approach that first identifies planes (e.g., floor,
ceiling, and walls) in the scene and then clusters the remaining points. We use the
RANSAC [32] algorithm to identify the dominant planes in the point cloud, and the
density-based spatial clustering of applications with noise (DBSCAN) [33] algorithm for
clustering. Algorithm 3 details the proposed approach.

This approach can handle point clouds with hundreds of thousands of points. How-
ever, subsampling the point cloud can improve the runtime. The number of supervoxels
cannot be adjusted directly, as it depends on the point density, therefore, it may struggle
to distinguish regions with fine details. Furthermore, fine-tuning the parameters may be
necessary to reduce sensitivity to noise. For the rest of the paper, we refer to this approach
as “DBSCAN”.
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Algorithm 3: Three-dimensional clustering-based projection

Input: Lower-view depth image (D ∈ [0, 255]H×W×3), upper-view 3D semantic
reconstruction (including point cloud Pupper ∈ RN×3 and labels
Lupper ∈ {0, 1, . . . , L}N , where L ∈ N denotes the number of
semantic labels).

Output: Lower-view semantic segmentation (S ∈ {0, 1, . . . , L}H×W)
1 Create a 3D point cloud (Plower) from the lower-view depth image (D).
2 Downsample the point cloud (Plower) and keep track of each point’s

original location.
3 while Plower contains planes do
4 Use RANSAC to find a plane and select the largest coherent region using

DBSCAN (Pcluster).
5 Cluster the remaining points in Plower using DBSCAN (Pcluster).
6 Match the lower-view clustered point cloud (Pcluster) with the upper-view 3D

semantic reconstruction (Pupper and Lupper) and determine the semantic label of
each cluster (Lcluster).

7 Project the labels of the clustered semantic point cloud (Lcluster) back onto the
image plane to obtain the semantic segmentation (S).

3.2.5. Per-Point Matching

The per-point matching method involves projecting the lower-view RGBD frame to
3D and then comparing the resulting point cloud with the upper-view point cloud to assign
corresponding upper-view labels to the lower-view points.

Let Plower ∈ RM×3 be the lower-view point cloud, and Pupper ∈ RN×3 be the upper-
view point cloud, and Lupper ∈ {0, 1, . . . , L}N be the corresponding upper-view labels,
where L ∈ N. We assign the nearest upper-view label to each lower-view point:

L(j)
lower := L(i)

upper,

where Llower ∈ {0, 1, . . . , L}M and ‖.‖ denote the labels of the lower-view point cloud and
the L2 norm, respectively, and i ∈ [1, N], j, k ∈ [1, M], j 6= k are indices, such that∥∥∥P(i)

lower − P(j)
lower

∥∥∥
2
≤

∥∥∥P(i)
lower − P(k)

lower

∥∥∥
2

(∀k).

After assigning labels to the lower-view points, we project Llower onto the image plane
to obtain the semantic segmentation. We refer to this approach as the “3D neighborhood”
method. Note that this method is computationally efficient but can result in errors when
there are significant occlusions or changes in viewpoint between the upper- and lower-
view frames.

3.3. Superpixel-Based Edge Refinement

To ensure accurate instance or semantic segmentation, it is important that the objects’
regions follow a set of pre-defined concepts, such as smooth and spatially precise bound-
aries between segments [34]. However, the proposed label projection methods may result in
rough and uneven boundaries between objects, hindering the fine-tuning of segmentation
models on the generated samples. To address this issue, we introduce a superpixel-based
pre-processing step using Fast-SLIC [29], as described in Algorithm 4. This method aggre-
gates pixels into superpixels, resulting in smoother boundaries and mitigating the negative
impact of ragged edges. Further improvements could be made through post-processing
techniques, as described in [35], and by exploiting the 3D nature of scenes through radiance
field propagation and bidirectional photometric loss, as discussed in [36].
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Algorithm 4: Superpixel-based edge refinement

Input: RGB image (I ∈ [0, 255]H×W×3) and the corresponding semantic
segmentation (S ∈ {0, 1, . . . , L}H×W), where L ∈ N denotes the number of
semantic labels).

Output: Semantic segmentation with smoothed edges (Ŝ ∈ {0, 1, . . . , L}H×W)
1 Run superpixel segmentation (SLIC) on the RGB image (I) to find K coherent

image regions (SP).
2 for each superpixel SPk, k = 1, 2, . . . , K do
3 Determine the class label distribution (Pk) for SPk using the semantic

segmentation (S).
4 Assign the class label (Ck) to SPk with the highest probability in Pk.

5 Map the class labels (C) to the superpixel segmentation (SP) to produce the final
semantic segmentation with smooth edges (Ŝ).

3.4. Benchmark Measures

When comparing meshes, we transform them into semantic voxel grids and then
compare these grids with the following specified metrics:

• Jaccard: The Jaccard index is calculated as the ratio of the color intersection over the
union. The color intersection is defined as the number of voxels for which the position
and color match in the two voxel grids, while the union is the total number of voxels
occupied within at least one of the voxel grids. The Jaccard index provides a measure
of the overlap between the two sets, with a score of 1 indicating a complete match and
a score of 0 indicating no match.

• Sorensen: The Sorensen similarity index is a variant of the Jaccard index that places

more weight on the size of the intersection. The Sorensen index is calculated as 2·|X∩Y|
|X|+|Y| ,

where the numerator is the double of the color intersection and the denominator is the
total number of voxels in the compared voxel grids. The Sorensen index provides a
measure of the similarity between the two sets, with a score of 1 indicating a complete
match and a score of 0 indicating no match.

• Color Accuracy: The color accuracy (Color Acc.) is a metric that measures the similarity
between the colors of the voxels in the two compared voxel grids. It is defined as the
ratio of the color intersection over the intersection of occupied voxels. This metric
provides a measure of the consistency between the colors of the voxels in the two
voxel grids.

• Mean Accuracy: The mean accuracy (Mean Acc.) is the mean of the Jaccard, Sorensen,
and Color Acc. and serves as the main benchmark measure. This metric provides an
overall evaluation of the similarity between the two voxel grids and gives a single,
comprehensive score.

4. Results

To test the usability of our approach, we assessed our methods using both synthetic
data and real-world scenarios. We first present the results obtained from synthetic input
generated with the Habitat simulator, followed by the outcomes of real-world tests. Finally,
we show results for lower-perspective fine-tuning.

4.1. Experimental Setup

The training process for instance segmentation models [21,22] necessitates the incor-
poration of multiple indoor object datasets. This is crucial because the accuracy of the
model on RGB frames and TOF depth estimation directly affects the performance of mesh
reconstruction. The primary objective is to acquire a diverse array of samples from various
datasets, regardless of the distributions of the individual data sets. This is important, as the
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final test set will consist of both synthetic and real-world experiments, which will exhibit
different distributions. Therefore, the model must be able to generalize effectively.

We selected two datasets [3,28] that contained common household objects relevant to
this research. However, the datasets included similar objects under different categories,
likely due to the lack of unified annotations provided by crowdsource workers. This
necessitated the merging of different classes that referred to the same or similar objects.
After the dataset processing, which involved the exclusion of corrupted images, the data
was divided into standard training, validation, and test splits. These splits were fixed to
ensure consistency across different pre-trained architectures and their backbones.

During label projection, we did not treat the case where an object may not be visible
from the top view but becomes visible from a lower viewpoint. The object (a) may be
recognizable from this lower viewpoint, or (b) the point cloud may indicate that it is a
distinct object. In either case, a new label is to be added, and the label sets will differ for
the two views. The label should be “an unknown object” in case (b).

We employed label projection methods with the following parameters: For both
the 2D SLIC and the 3D projected SP methods, we set the number of superpixels to 512.
In the case of the 3D projected SP, we retained only every fourth point of the point cloud.
For the 3D SLIC method, we subsampled the point cloud by setting the voxel size V
to 0.1 m and limited the number of supervoxels to 128. Lastly, for the DBSCAN label
projection method, a voxel size V of 0.04 m was employed for downsampling, and we
set the ε parameter of DBSCAN to 0.1, determining the maximum distance between
points within a neighborhood. The remaining parameters can be found in the codebase:
https://github.com/szilviaszeier/semantic_matching (accessed on 23 May 2023).

We assessed the runtime of each label projection method on a server equipped with
an AMD EPYC 7401P CPU and 3 NVIDIA GeForce RTX 2080 Ti GPUs. Despite the
optimizations, 3D SLIC and DBSCAN operated at approximately 1 frame per second (FPS).
However, the 3D projected SP and the 3D neighborhood methods performed at around 20
and 10 FPS, respectively (see Table 1).

Table 1. Speed of the 3D label projection methods. The measurements are in frames per second (FPS).
For more details, see Section 4.1.

3D SLIC 3D Projected SP DBSCAN 3D Neighborhood

1.04 9.57 0.84 20.06

During the lower-perspective fine-tuning, to ensure consistency and minimize training
bias, we maintained fixed parameters across all experiments. We set the batch size to 10
due to GPU and data sample size constraints, and trained the model for 50 epochs using
the Adam [37] optimizer with a learning rate of 0.0005. During the base model’s fine-
tuning process, we performed an extensive search of the parameter space. Based on our
experiments, we selected the Transfiner [22] architecture with an R101-FPN-DCN backbone
for the pre-trained model, as it yielded the best overall results while maintaining efficient
execution speed.

4.1.1. Ground Robot

To record the real-word dataset, we built a small ground robot, shown in Figure 3. We
3D-printed the frame of OpenBot [38], collected and assembled the electrical components
from scratch, and adapted the Arduino code to fit our needs. The brain of our agent is the
NVIDIA Jetson Nano [39] embedded computer, and we equipped the robot with an Azure
Kinect RGBD camera.

https://github.com/szilviaszeier/semantic_matching
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Figure 3. Ground robot used to record the real-world dataset. An OpenBot equipped with an Azure
Kinect RGBD camera.

4.1.2. Datasets

We conducted experiments in both simulated and real-world environments.
For the simulated dataset, we used the Habitat [12] simulation framework with the

Replica [40] dataset, which contains several photo-realistic models of indoor scenes. We
selected three scenes: frl_apartment_4, room_2, and office_3, and generated different
trajectories for each task. We ran experiments on each scene and reported the average
results. We opted for a simulator as it has the added benefit that the ground truth camera
poses can be queried, as opposed to an online visual SLAM method.

To create the real-world dataset, we used an Azure Kinect camera to record upper-
and lower-view video feeds in two different rooms. Multiple videos were captured from
both a human’s and a ground robot’s perspective (see Section 4.1.1). In order to obtain
accurate camera poses, we first ran the UcoSLAM algorithm [26] to create a high-quality
SLAM map of the environment. This step was important as it allowed for more accurate
localization of the camera during recording, resulting in a higher quality reconstruction of
the environment [8]. After creating the SLAM map, we used it to localize the camera while
recording the area and generating the 3D reconstruction. Since we did not have ground
truth semantic annotations of the environment, we manually annotated the resulting mesh
for evaluation purposes.

4.2. Influence of the Viewpoint

The Habitat simulation framework was used to investigate the effects of unconven-
tional perspectives. For each scene, a trajectory was generated by periodically tilting the
camera up and down by 20 degrees. The same trajectory was used for each experiment,
but the camera height was varied. Figure 4 shows how the segmentation accuracy is
affected by changing the camera height.

0.2 0.8 1.2 1.8
0.6

0.7

0.8

0.9

1

Height of the camera (in meters)Se
gm

en
ta

ti
on

ac
cu

ra
cy

Mask R-CNN
Transfiner

(a)

0.2 0.8 1.2 1.8

(b)

0.2 0.8 1.2 1.8

(c)

0.2 0.8 1.2 1.8

(d)

Figure 4. Segmentation accuracy as the height of the camera changes. The same trajectories were used
during the evaluations, only the height of the camera was changed. The trajectories were generated by
tilting the camera up and down by 20°. Both models were trained on the same dataset. (a) Mean Acc.
represents the mean of the other three ((b) Jaccard, (c) Sorensen, and (d) Color Acc.) metrics.
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Two segmentation models were used, a Mask R-CNN and a Transfiner pre-trained
on the SUNRGBD and ADE20K datasets [3,28]. The models performed the worst at 0.2 m
height, with mean accuracies of 0.737 and 0.767, while the best results were obtained at
0.8 m height, with mean accuracies of 0.770 and 0.802. Further increases in the height
resulted in a slight decay in accuracy.

4.3. Three-Dimensional Semantic Reconstruction of Synthetic Scenes

To evaluate the performance of our 3D semantic reconstruction approach on synthetic
scenes, we generated a dataset using the Habitat simulation environment. Specifically, we
manually controlled the virtual camera along two distinct trajectories within each room,
an upper and a lower one, and saved the generated images. In both cases, the aim was to
explore the whole room. We ran the 3D semantic reconstruction method from the upper
trajectory using different models. Then, we executed the proposed label projection methods
given the upper-view reconstruction to generate the lower-view 3D semantic reconstruction.
The results are shown in Table 2.

Table 2. Results on the synthetic dataset. The “view” denotes the camera position. The trajectories
differ between the upper and the lower view. From the upper viewpoint, we create a semantic map
using per-frame semantic segmentation from different models. (The ground truth model indicates
results when the upper-view 3D semantic reconstruction is provided by the simulator.) From the lower
viewpoint, we either use a pre-trained model or the upper-view 3D semantic reconstruction with our
proposed label projection methods to provide per-frame semantic segmentation to create a lower-
view 3D semantic reconstruction. The highest values in each evaluation measure are highlighted for
easy reference.

Model View Method Jaccard Sorensen Color Acc. Mean Acc.

G
ro

un
d

Tr
ut

h

Upper - - - - -

Lower

- - - - -
2D SLIC 0.813 0.868 0.955 0.879
3D SLIC 0.892 0.922 0.975 0.930

3D projected SP 0.894 0.921 0.969 0.928
DBSCAN 0.859 0.865 0.953 0.892

3D neighborhood 0.917 0.944 0.985 0.949

M
as

k
R

-C
N

N

Upper - 0.778 0.754 0.867 0.800

Lower

- 0.737 0.720 0.841 0.766
2D SLIC 0.728 0.717 0.852 0.766
3D SLIC 0.781 0.746 0.861 0.796

3D projected SP 0.794 0.752 0.860 0.802
DBSCAN 0.793 0.757 0.871 0.807

3D neighborhood 0.800 0.757 0.865 0.808

Tr
an

sfi
ne

r

Upper - 0.794 0.758 0.867 0.806

Lower

- 0.734 0.708 0.832 0.758
2D SLIC 0.718 0.707 0.851 0.759
3D SLIC 0.790 0.746 0.862 0.799

3D projected SP 0.798 0.749 0.860 0.802
DBSCAN 0.796 0.753 0.871 0.807

3D neighborhood 0.804 0.754 0.866 0.808

As a baseline, we present the accuracy of the 3D semantic reconstruction using only
the semantic segmentation models. We also indicate the accuracy of the label projection
methods with the ground truth upper-view reconstruction to demonstrate the upper limit
(in terms of the benchmark measures) of the proposed methods.
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In all cases, the proposed label projection methods outperformed the baseline methods,
i.e., 3D semantic reconstruction using deep learning models applied to the odd viewpoints.
The 3D neighborhood method achieved the highest accuracy regardless of which model
was used for the upper-view 3D semantic reconstruction. The DBSCAN approach achieved
similar color accuracy when used in conjunction with deep learning models, but fell
short when using the ground truth mesh due to its inability to detect fine details without
thorough fine-tuning. The 3D SLIC and 3D projected SP methods performed similarly.
They outperformed DBSCAN with the ground truth and provided comparable results
when used with deep learning models.

Figure 5 shows the 3D semantic reconstructions using each approach. The label
projection methods were guided by the ground truth upper-view semantic mesh.

Figure 5. Qualitative results. Each column shows a different environment from the Replica dataset.
The label projection methods were guided by the ground truth upper-view 3D semantic reconstruc-
tions. We use the same color scheme to represent the labels as in Figure 1 (Best viewed in color).

4.4. Three-Dimensional Semantic Reconstruction of Real Scenes

The experiments performed on the synthetic dataset do not provide a clear picture
of the real-world performance of our methods, as the data lacks noise and measurement
errors. Therefore, we tested the proposed methods on real-world data as well.

As in the previous section, we recorded images from both lower and upper viewpoints.
The upper viewpoint represents the human perspective and was used to generate the 3D
semantic reconstruction for guiding the label projection methods. We used the same deep
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learning models without any weight changes. In Table 3, we present the performance
comparison of the 3D semantic reconstruction using the proposed label projection methods.

Table 3. Results on the real-world dataset. We used the same methods as described in Table 2. The
highest values in each evaluation measure are highlighted for easy reference.

Model View Method Jaccard Sorensen Color Acc. Mean Acc.
M

as
k

R
-C

N
N

Lo
w

er

- 0.379 0.522 0.868 0.590
2D SLIC 0.460 0.604 0.898 0.654
3D SLIC 0.513 0.644 0.892 0.683

3D projected SP 0.635 0.727 0.878 0.747
DBSCAN 0.547 0.680 0.919 0.715

3D neighborhood 0.665 0.749 0.891 0.768

Tr
an

sfi
ne

r

Lo
w

er

- 0.384 0.527 0.864 0.592
2D SLIC 0.509 0.648 0.912 0.690
3D SLIC 0.565 0.682 0.891 0.713

3D projected SP 0.697 0.767 0.882 0.782
DBSCAN 0.540 0.677 0.927 0.715

3D neighborhood 0.718 0.777 0.881 0.792

In contrast to the synthetic dataset, both semantic segmentation models achieved
significantly lower scores on the real-world dataset. This can be attributed to the domain
shift between the synthetic and real-world data and the challenges posed by the real-world
environment. Nonetheless, they obtained similar scores, and the label projection methods
improved their performance, particularly with the Transfiner model. Among the label
projection methods, the 3D neighborhood approach reached the highest mean accuracy,
while DBSCAN achieved the highest color accuracy. However, DBSCAN performed worse
compared to other methods, mainly due to its lack of robustness to noise and the diversity
of objects in terms of size and overlap. Fine-tuning the parameters of this approach may
mitigate these issues, but this would require ground truth samples, which would make the
evaluation unfair since other methods do not require supervision.

The 3D SLIC approach achieved a significantly lower mean accuracy, which can
be attributed to the measurement errors in the dataset and the steps taken to reduce
execution time for real-time runs, such as strong point cloud subsampling and significantly
fewer supervoxels. On the other hand, the 3D projected SP method performed better
than 3D SLIC, especially when used in combination with the Transfiner model. Notably,
the 3D neighborhood approach applied on the Transfiner model achieved results that were
comparable to those obtained in the synthetic experiments.

4.5. Fine-Tuning on the Lower Perspective

In this section, we explore the potential of fine-tuning the Transfiner [22] model using
the label projection results. We begin with identical initial weights and fine-tune the model
on three distinct datasets: lower-view ground truth (lower GT), upper-view ground truth
segmentations projected onto the robot’s perspective using the 3D neighborhood label
projection method (projected GT), and Transfiner predictions projected onto the robot’s
perspective using the same label projection method (projected Transfiner). We then evaluate
the 3D scenes reconstructed using the fine-tuned models and present the results in Table 4.

To standardize the dataset and address any existing distortions, we apply a series
of processing functions. The initial step involves generating polygons for the necessary
categories on which the model has been trained, considering that the generated data
from the Habitat [12] virtual environment for semantic segmentation is in bitmap format.
During this stage, smaller regions are also removed; these areas correspond to segments
of larger objects not fully captured in a single frame, and their inclusion would introduce
unwanted noise to the dataset (see Figure 6). To achieve this, we independently identify
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the contours of various categories within a given frame and encapsulate each object in a
separate polygon with its associated bounding boxes. Subsequently, we save the generated
polygon points in JSON format alongside the corresponding images from which they were
derived. This practice helps to reduce the dataset size and maintain uniformity throughout
all trials.

Table 4. Fine-tuning results on the synthetic lower-view dataset. This table shows the results of
fine-tuning the Transfiner model on lower-view synthetic data generated using the Habitat simulation
framework (lower GT) and the proposed label projection method applied on the upper-view ground
truth dataset (projected GT) and on the upper-view Transfiner predictions (projected Transfiner).
The edge ref. column indicates whether the superpixel-based edge refinement was applied to the
segmentation results before fine-tuning.

Dataset Edge Ref. Jaccard Sorensen Color Acc. Mean Acc.

Lower GT - 0.736 0.801 0.953 0.830
SLIC 100 0.869 0.802 0.977 0.916

Projected GT - 0.265 0.393 0.901 0.520
SLIC 100 0.852 0.892 0.971 0.905

Projected Transfiner - 0.238 0.347 0.777 0.454
SLIC 100 0.790 0.753 0.867 0.803

Table 4 shows that fine-tuning the Transfiner model on lower-view synthetic data
(lower GT) results in higher mean accuracy than fine-tuning the same model on the corre-
sponding lower-view ground truth dataset obtained using the proposed label projection
method (projected GT). The introduction of unwanted noise by the label projection method
is the likely cause of this difference. Figure 6 displays artifacts introduced by the 3D
neighborhood method.

Figure 6. Artifacts introduced by the 3D neighborhood method (Best viewed in color).

The results also indicate that the proposed superpixel-based edge refinement method
has a positive impact on the segmentation accuracy. This is evident from the increase in
all benchmark measures for all three datasets. The edge refinement method successfully
mitigates the effects of the artifacts introduced by the label projection method, and the
models achieve comparable results on the lower GT and projected GT datasets.

Finally, fine-tuning on the projected Transfiner predictions produces a 3D semantic
reconstruction with similar accuracy as directly applying the label projection method on
the upper-view predictions.



Sensors 2023, 23, 5126 15 of 17

5. Conclusions

Several solutions have been proposed in the literature for the 3D semantic recon-
struction of indoor environments. However, semantic segmentation in the case of drastic
perspective changes has not yet been fully addressed. In this work, we proposed a modular
pipeline for semantically reconstructing indoor environments from unusual perspectives,
such as one from a small ground robot. Our approach leverages superpixel segmentation
and the geometry of the surroundings to extend a partial 3D semantic reconstruction from
the human perspective to new, unusual viewpoints.

We experimented in both simulated and real-world scenarios with two different 2D
semantic segmentation networks. The proposed label projection methods can provide
semantic segmentation from lower viewpoints with accuracy similar to the human per-
spective. While these methods may introduce artifacts, we proposed a superpixel-based
edge refinement step to mitigate their effect. Thereby, label transfer and the fine-tuning of
semantic segmentation networks to unusual perspectives becomes possible.

However, while our results are promising, it is important to acknowledge certain
limitations inherent to the proposed methods. The resulting 3D reconstruction contains
class-level semantic segmentation, which means that we can differentiate between cate-
gories but not between the instances themselves. In this work, we need to assume perfect
pose estimation and assume a fixed set of classes, as we do not explicitly handle unknown
classes. The proposed approaches depend on the partial observation of objects from an
upper viewpoint, as the assignment of labels from a lower viewpoint relies on the initial 3D
semantic reconstruction from the upper viewpoint. This could pose challenges in scenes
where objects are partially obscured. Another potential limitation lies in the segmenta-
tion of objects with complex geometries. Due to resolution constraints imposed by the
superpixel methods, some of the proposed techniques may have difficulties accurately
segmenting such objects.

Despite these limitations, our computationally efficient and real-time capable method
opens up new possibilities for human–robot collaboration in various domains, especially
in situations where small robots operate in environments designed for human perspectives.
These include health and home care applications, where the proposed techniques can po-
tentially enhance robot functionality. In health care settings, it could help robots to navigate
in complex environments, provide real-time feedback to patients, and assist in patient care.
In home care services, small robots can benefit from a better understanding and interaction
with their surroundings, leading to improved assistance in daily tasks. It is important to
note, however, that while our method can contribute to these applications, it is but a single
component of a larger, more complex system. Overcoming challenges such as handling
unknown classes and improving pose estimation accuracy would require significant further
research and development. As part of our future work, we aim to integrate our approach
with online adaptation methods for segmentation networks, incorporate instance-level
segmentation, and facilitate panoptic 3D reconstructions of environments. This would
address the aforementioned limitations and further enhance the applicability and accuracy
of our approach.
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