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Abstract. Deep learning is ubiquitous, but its lack of transparency lim-
its its impact on several potential application areas. We demonstrate a
virtual reality tool for automating the process of assigning data inputs
to different categories. A dataset is represented as a cloud of points in
virtual space. The user explores the cloud through movement and uses
hand gestures to categorise portions of the cloud. This triggers gradual
movements in the cloud: points of the same category are attracted to
each other, different groups are pushed apart, while points are globally
distributed in a way that utilises the entire space. The space, time, and
forces observed in virtual reality can be mapped to well-defined machine
learning concepts, namely the latent space, the training epochs and the
backpropagation. Our tool illustrates how the inner workings of deep
neural networks can be made tangible and transparent. We expect this
approach to accelerate the autonomous development of deep learning
applications by end users in novel areas.

Keywords: Virtual Reality · Annotation Tool · Latent Space · Repre-
sentation Learning

1 Introduction

Machine learning (ML) with deep neural networks, or deep learning (DL), has
achieved astonishing performance in many tasks [8], and systems based on DL
are ubiquitous in our everyday lives. However, for most people these systems are
black boxes—the algorithms powering them are not transparent, understand-
able, or even approachable. This lack of transparency raises ethical concerns [4]
and limits the potential impact of ML on several novel applications. Interac-
tive machine learning (IML) is the design and implementation of algorithms and
intelligent user interface (IUI) frameworks that facilitate ML with the help of
human interaction, and includes the mission to empower end users to develop
their own domain-specific DL applications [13,15].

We demonstrate a virtual reality (VR) tool for automating the common su-
pervised ML task of assigning category labels to data inputs (e.g. classifying
⋆ Both authors contributed equally to this research.
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images). Traditionally, such ML tasks would be implemented through a pipeline
that starts with data annotation, followed by model design, training, and finally
deployment. Data annotation is the human-labor-intensive task of adding meta-
data (e.g. category labels) to a dataset with the purpose of providing examples to
guide the training of an expert-designed ML model. The training process should
render the model capable of generating sufficiently accurate category labels for
previously unseen data inputs. At this stage, the resulting model can be deployed
to power a user-facing system. In such a traditional system, end user interaction
with the system is limited to providing input data and collecting back a predic-
tion. While such black-box interaction patterns might suffice for many purposes,
we propose an alternative interaction paradigm.

2 Demonstration

Our tool is an IUI consisting of a deep neural network linked to a VR interface
(see section 3 for a technical description). An input dataset is represented as a
cloud of points in virtual space; for demonstration purposes, we use the MNIST
dataset [2], a standard set of images of handwritten numerals. When entering
the virtual space, the user stands outside the point cloud; this perspective of-
fers a broad overview of the entire data set (figure 1a). At this stage, the user
can already notice that the points are distributed in space so that the cloud
largely occupies the entire virtual space—even if not uniformly. To get different
perspectives on the data cloud the user can move in virtual space, either by
physical movement or by using a teleport mechanism (figure 1c). Once inside
the cloud of points, the user will see that each point is a cube, and the images
(handwritten digits, in this case) are rendered as a texture on the surface of the
cubes (figure 1b). Furthermore, the user might notice some degree of topological
organisation in the cloud: curvy digits like 0s and 6s will be in one region of
virtual space, rectilinear digits like 1s and 7s are in another region, and neigh-
boring data points within each region tend to represent instances of the same
digit. Besides moving in virtual space, the user can also use hand gestures to
assign portions of the cloud to different groups reflecting class labels (i.e. digit
identity)—in other words, to annotate the data. In the current implementation,
that is done by creating and placing spheres in virtual space (figure 1d) and as-
signing them a label (figure 1e). While non-annotated data is displayed on gray
cubes, user annotated data is displayed in colored cubes indicating the assigned
class (figure 1f). Annotating data will cause the underlying network to be up-
dated, a process perceived by the user as motion, or gradual reshaping, of the
cloud. Motion will be perceived as if driven by three different forces: points of
same category are attracted to each other, different groups are pushed apart, and
the global distribution is such that the entire space is filled. Furthermore, the
user will notice that the more data points get annotated, the more pronounced
is the clustering of groups. Importantly, data annotation reshapes the entire vir-
tual space, and the position of each data point in virtual space is independent of
whether it has been manually labelled: data points that are yet unlabelled will
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(a) Initial unlabeled dataset, viewed from
outside the cloud

(b) Initial unlabeled dataset, viewed from
inside the cloud

(c) Teleport options for movement over
long distances

(d) Positioning and sizing of a sphere for
annotation

(e) Selecting a label of a sphere for anno-
tation

(f) Dataset after labelling some data
points, which appear colour-coded

Fig. 1: Steps of the annotation process from the user’s point of view in the virtual
space and model architecture.
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be spatially grouped together with labeled ones, as long as they represent similar
handwritten digits. The topological organization and motion patterns observed
in virtual space are direct, tangible consequences of the way the underlying deep
neural network functions.

3 Tool Description

The interactions experienced in VR, described in section 2, arise from the work-
flow presented in figure 2. Effectively, the user is annotating a dataset: the more
data points are labelled, the more precisely separated the category clusters will
become. As a result, annotation efficiency is expected to gradually increase.

The deep neural network powering the IUI is composed of three modules: an
encoder, a decoder, and a classifier (figure 3). The encoder maps input images
onto a hidden layer made up of three units—in other words, it embeds images
into a 3-dimensional latent representation. The choice of the number of hidden
units is not arbitrary: each unit is displayed as a dimension of virtual space.
While the encoder alone is responsible for computing the representation of in-
put images in virtual space, the other two components are essential to guide
representation learning [1]. The decoder maps back from 3D latent space to
a reconstruction of the input image, and together with the encoder it consti-
tutes a variational autoencoder (VAE) [7]. The classifier, a shallow perceptron,
maps from latent space onto user-provided category labels and was added to
encourage cluster separation. Following standard procedures for training neural
networks, each of these tasks is expressed formally through a function measur-
ing the mismatch between generated and desired outputs (objective function).
Learning takes place by iterating a two-step procedure known as gradient de-
scent: fist computing the direction in which network parameters should change
to minimize the mismatch (i.e. the gradient), then taking a small step in that
direction. The motions gradually reshaping the point cloud in virtual space di-
rectly reflect the iterative update of network parameters by gradient descent.
Table 1 establishes a direct parallel between the perspectives of the user and of
the IUI system on the steps of the workflow shown in figure 2.

4 Discussion and Future Work

We demonstrate an IUI tool for automating image classification in VR. An image
dataset is represented as an actionable cloud of points that can be grouped into
category classes with hand gestures. The architecture of the underlying neural
network model consists of the combination of a VAE and a shallow classifier
network, and the dynamics of the network learning process are experienced as
structured motion patterns in virtual space.

We chose a VR environment as IUI framework. In addition to cognitive and
immersive aspects, the advantages of VR over two-dimensional screens for visu-
alization and interaction with complex data have been demonstrated in recent
publications [3, 9, 10, 11]. Although it has been shown that annotation of data
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State User Perspective Deep Learning Perspective

Represen-
tation

Images from the dataset are rep-
resented as points in 3-dimensional
virtual space. The positions of the
points are not arbitrary, but show a
topological organisation (e.g. curvy
handwritten digits are distant from
rectilinear ones, neighboring points
tend to represent same digits, and
the entire space is occupied).

Images from the dataset are embed-
ded in 3-dimensional latent space
of a neural network. The embed-
dings of the samples are not arbi-
trary, but shows a topological or-
ganisation (similar images produce
similar embeddings, and global ar-
rangement conforms to a prior dis-
tribution in latent space).

Visuali-
zation

Moving in virtual space renders
different perspectives on the data
cloud. Manually annotated data
points are color coded.

User position in virtual space is
used to compute 2-dimensional pro-
jections of 3-D embeddings without
altering coordinate system. Manu-
ally annotated samples are associ-
ated to class labels.

Interaction Using hand gestures in VR (e.g. po-
sitioning a sphere around a group of
data points), new data samples get
annotated.

A larger fraction of data samples
has associated class labels and can
thus be used for supervised learn-
ing.

Updating After the labeling is done, the data
points change their position in dis-
crete time steps. Each discrete time
step leads to a more accurate sort-
ing of data points in virtual space.

After new annotations are avail-
able, the model is fine tuned on the
partially annotated dataset. Each
iteration of the learning procedure
leads to a more structured represen-
tation of the data in latent space.

The positions of the data samples
are adjusted by an invisible force
similar to magnetism: Samples of
the same class are attracted to
each other, while classes repel each
other. This effect is also shown in
figure 2 and makes annotation in-
creasingly easier.

The weights of the system for calcu-
lating the embeddings of the data
samples are adjusted by a mathe-
matical method called gradient de-
scent: Samples of the same class
produce similar embeddings, while
classes are separated by a linear
classifier using the annotations.

Table 1: Description of the four states representation, visualization, interaction
and updating performed by the tool, presented from the user perspective and
from the deep learning perspective.
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Unlabeled
dataset

Representation
Neural network computes
virtual space coordinates

for each input sample

Visualisation
Samples displayed in VR
as point cloud; labeled
samples are color-coded

Interaction
Moving in VR offers new
cloud perspectives; hand
gestures label samples

Update
Labeled dataset is
used to fine-tune

the neural network

Iteration 1

Iteration 50

Fig. 2: Illustration of the data labelling process. The schematic figures after 1 and
50 iterations are shown two-dimensionally and colour-coded for a better illus-
tration of the clustering process. In our tool, the clusters are three-dimensional
and only samples that are already annotated are coloured.
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Fig. 3: Basic scheme of the deep neural network architecture

in VR has great potential in terms of time spent and cost, most projects prefer
2-dimensional interfaces [6, 14]. An example of an annotation tool in VR for la-
belling 3D point clouds is described in [14], and another for annotating industrial
datasets using deep clustering is described in [5]. In order to make the workflow
of the underlying model intuitive, and in line with the principles of direct ma-
nipulation [12], we use the metaphors of space, time, and force in VR to mediate
interaction with representation and updating of the underlying neural network
model. While the use of the metaphor of interface space for representing embed-
dings is present in previous works [5, 11], the metaphors of time and force for
the gradient-descent-based learning of network parameters are novel to the best
of our knowledge. As a consequence, our tool complements existing elaborations
with topological organisation and dynamics that enable the annotation of mul-
tiple data samples simultaneously, thus potentially improving the efficiency of
the annotation process.

We are currently teaming up with domain experts in the fields of ecology and
conservation sciences interested in automating sound event detection to continue
co-development of the tool presented here. Our demo offers the opportunity for
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exploring variants regarding user actions and sensory representations of rele-
vant aspects of neural network design and updating. As next steps, we will run
qualitative user studies to evaluate design alternatives such as integrating a di-
alog system, as well as different model architectures. We expect that IML tools
such as the IUI illustrated here will pave the way for empowering end users in
establishing a different, more transparent relation with DL, and accelerate the
autonomous development of applications in novel areas.
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