
A Deep Generative Model for Interactive Data
Annotation through Direct Manipulation in

Latent Space

Hannes Kath1,2, Thiago S. Gouvêa1, and Daniel Sonntag1,2

1 German Research Center for Artificial Intelligence (DFKI), Oldenburg, Germany
{hannes_berthold.kath, thiago.gouvea, daniel.sonntag}@dfki.de

2 University of Oldenburg, Applied Artificial Intelligence (AAI), Oldenburg, Germany

Abstract. The impact of machine learning (ML) in many fields of ap-
plication is constrained by lack of annotated data. Among existing tools
for ML-assisted data annotation, one little explored tool type relies on
an analogy between the coordinates of a graphical user interface and the
latent space of a neural network for interaction through direct manip-
ulation. In the present work, we 1) expand the paradigm by proposing
two new analogies: time and force as reflecting iterations and gradients
of network training; 2) propose a network model for learning a compact
graphical representation of the data that takes into account both its in-
ternal structure and user provided annotations; and 3) investigate the
impact of model hyperparameters on the learned graphical representa-
tions of the data, identifying candidate model variants for a future user
study.

Keywords: Deep Generative Model · Self-supervised Learning · Varia-
tional Autoencoder

1 Introduction

Modern machine learning (ML) algorithms such as deep neural networks (DNNs)
have shown outstanding performance on various tasks, especially on supervised
learning. Still, the impact of ML in many application areas is limited by the low
availability of annotated data, as well as by technical entry barriers for domain
experts, leading to a cross-domain need for user-friendly tools to annotate vast
datasets. To address this need, we propose and investigate a deep generative
model (DGM) for the development of a data annotation tool that visualises
data samples in a 2D or 3D graphical user interface (GUI).

Previous work has shown that interactive GUIs using the latent space of ML
systems can facilitate data interaction [14]. The authors show that ML systems
can learn representations of a data domain from which users can obtain action-
able views using GUIs, such as virtual reality (VR). Another tool for ML-assisted
data annotation operating on latent representations is Seadash [7]. Seadash is
a tool for graphical data programming [15] that operates based on redundant,
parallel data transformations.

ar
X

iv
:2

30
5.

15
33

7v
1

 [
cs

.L
G

]
 2

4
M

ay
 2

02
3

2 H. Kath et al.

In this paper, we take a general approach to improving data efficiency, which
is to first learn a representation that captures the data structure [4], then an-
notate some data points, and finally restructure the data incorporating new
annotated data points, facilitating further annotation. A powerful method for
learning useful representations in an annotation-free manner is self-supervised
learning (SSL) [11, 12]. In SSL, a model learns to predict labels that are au-
tomatically computed from the input data itself, e.g. by reconstructing input.
The learned representations are then fine tuned based on the class annotations
provided by the user. To exploit the limited amount of annotated data, we use
a DGM, following the promising approach of Kingma et al. [9]. SSL can be con-
sidered as a special task in generative models that involves imputing missing
data as a means to improve classification accuracy [9]. DGMs learn entangled
representations, which means that the dimensions of the latent space do not
always have a consistent meaning along the axes [13]. Using a DGM that learns
disentanglement [13] in such a way that the decision boundaries or the respective
clusters are clearly visible to the user, we structure the latent space.

2 Application

The DGM described in this paper is designed to run a data annotation system
with 2D or 3D representations. The overall system architecture is shown in
figure 1a. Leading to the model requirements outlined in section 3, this section
provides a concise overview of the user’s workflow. Details about the development
and presentation of the application can be found in separate publications for a
2D GUI [2] and a 3D GUI [3].

The workflow of the application follows the concepts of direct manipulation
(DM), which focus on physical, incremental and reversible user interactions on
displayed objects of interest whose effects are immediately visible [16]: A partially
labelled dataset is embedded in a latent 2D or 3D space represented in the GUI.
Similar inputs are clustered so that multiple data samples can be annotated at
once (e.g. with the Lasso tool). New annotated data samples are used to re-train
the DGM, which triggers movement of the data samples: data samples of the
same class are pulled together while different classes are pushed apart, creating
the illusion of an invisible force like magnetism.

By applying the concept of DM, we derive three metaphors: space (latent
space represented as interface space), time (intermediate training results repre-
sented as movement) and force (backpropagation represented as physical force).
In this work, we therefore focus on the learned embedding of data points, the
training process and backpropagation of the DGM, while the user interactions
in terms of space, time and force take place in the GUI.

3 Model description

Functional requirements for the model derived from the system architecture in
figure 1a include learning relevant data structures without annotations, mapping

A Network Model for Interactive Latent Representation Learning 3

them into a 2D or 3D latent space, a way for the user to explore, inspect and
annotate data, as well as a way to helpfully customize the latent space for the
user based on the added annotations. The central non-functional requirement
derived from the metaphors described in section 2 is that the user interface
needs to reflect essential concepts of the ML system, namely the latent space,
the training progress and the backpropagation. Considering these requirements,
we developed a DGM architecture (figure 1b) based on a variational autoencoder
(VAE) [10] and extended it with a classification header.

X

X̃
Ỹ

Z

Y

1. Model Training

2. Representation

3. Annotation

4. Update

(a) System architecture: The model is
trained (1) using the (partially anno-
tated) dataset. Based on the trained
model, the dataset is presented in la-
tent space to the user (2), who can
annotate samples (3). New annotated
data trigger a new system cycle that
also uses the new annotations (4).

X

E
n
cod

er

Z

D
ecod

er

X̃

Classifier

Ỹ

(b) Model architecture: The raw
dataset is processed and represented
in latent space (encoder). For training
purposes the representation is recon-
structed (decoder) and annotated data
is presented to the classification header
(classifier).

Fig. 1: Presentation of system and model architecture with X (dataset), Z (rep-
resentation in latent space), X̃ (reconstruction), Y (label annotated by user)
and Ỹ (label predicted by classifier).

VAE. Figure 1b shows the VAEs architecture besides the classification header.
The encoder qϕ(Z | X) captures data structures from the input data X and rep-
resents them in the latent space using the representation Z. The dimensionality
of the latent space is chosen low to force the learned representation to capture
the most salient features of the training data and to allow the representation of
the entire state space in a 2D or 3D environment. The decoder pθ(X | Z) is used
for training purposes and calculates the reconstruction X̃ using Z. The parame-
ters ϕ and θ are learned jointly using gradient descent on random minibatches. A
VAE is a probabilistic model, because each input X induces a probability distri-
bution over the entire latent space of variable Z. In the standard implementation
of a VAE, Z is parameterized as a multivariate Gaussian whose parameters µZ

4 H. Kath et al.

and ΣZ are computed deterministically from X, and downstream operations are
performed on samples from this distribution [10]. While samples of Z are used
in learning, we propose to use the mean µZ for visualizations.

Classification head. The latent space of the VAE is displayed to the user for
annotation. A user might find it helpful that the space is transformed to group
data points of the same category. Since VAEs cannot handle annotations, we
introduce the variable Y and a classification head that computes the class labels
Ỹ from the latent variable Z. This classification head is a simple multilayer
perceptron (MLP).

Loss functions. The VAE and MLP are jointly optimized by minimizing the
sum of all loss components:

L = Lreconst(X, X̃) + βKLDKL (qϕ(Z | X) || p(Z)) + βclassifierH(Y, Ỹ), (1)

where the first two terms are from [5], H is the cross entropy loss between Y and
Ỹ , and βKL and βclassifier serve as the weighting coefficients for the loss terms.

4 Experiments

To analyze the potential of the proposed method for designing the user interface
by varying hyperparameters of the ML system, we analyzed their impact on the
user experience. As an apparatus, we created a convolutional VAE similar to the
one in [5] with a 2D latent space and trained it on 10 % of the MNIST dataset [6].
Data preprocessing included one hot encoding the labels, which allowed using a
cross entropy loss in the classifier. We used the common Adam optimizer with
a learning rate of 5 · 10−3. Our MLP classifier head has 10 units per layer and
was trained with 100 % classified data. We conducted experiments by varying
the following hyperparameters:

Hidden layers of classification head. We hypothesized that classification
heads with lower capacity would constrain the learned representation to sim-
pler structures and thus force easier separation for the user. To test that, we
pretrained the VAE using unsupervised learning (figure 2a, left) and added a
classifier head with either two (figure 2a, right) or none (reducing to a logistic
regression, figure 2a, center) hidden layers. The results show that self-supervised
training already leads to visible clustering. Adding a classification head with lo-
gistic regression leads to sharper separation of classes, whereas this is not clearly
observed with a higher capacity classification head.

Number of training epochs. For investigating the model stability, after self-
supervised pretraining (i.e., the VAE component), we added the logistic regres-
sion classification head and trained it for different numbers of epochs (figure 2b).
The results show a stable change that can be continuously displayed in a tool to
show changes to the user immediately.

A Network Model for Interactive Latent Representation Learning 5

a

b

c

ßKL = 1
ßclassifier = 1

ßKL = 3
ßclassifier = 1

ßKL = 3
ßclassifier = 10

epoch 5 epoch 15 epoch 30

+MLPVAE +Logistic Regr.

Fig. 2: Visualisation of MNIST dataset embedded in 2D latent space
learned by model variants. Scatter plots show mean of latent variable Z for
each input X; marginal plots are marginal histograms; colours denote label class.
(a) Different classifier heads. left: No classifier; initial condition for all other
learned representations. center: Logistic regression. right: MLP with 2 hidden
layers. Hyperparameters set to βKL = 3, βclassifier = 100, nepochs = 50. Logistic
regression used for all other experiments. (b) Learning observed after 5, 15, and
30 training epochs; compare with initial (a, left) and final (a, center) states. (c)
Different weights applied to loss components. Compare with (a, center).

6 H. Kath et al.

Components of the loss function. We varied βKL and βclassifier in equa-
tion (1). The representation learned with neutral values is shown in the figure 2c,
left. Figure 2c, right and figure 2a, center show that increasing βclassifier leads to
learning representations with tighter clusters. Increasing βKL reduces the overall
spread of data points (figure 2c, center). This is explained by the choice of prior
p(Z) to be a standard Gaussian for each of the dimensions of Z, and the fact
that βKL scales the divergence between input representation in latent space and
the chosen prior. By choosing even higher values for βKL, the second term of
equation (1) gains priority, which leads to a collapse where the encoder outputs
µZ = 0 and ΣZ = 1 for all inputs. The likelihood of this collapse occurring can
be controlled by weighing the KL component [5].

5 Conclusions and future work

A real need has been identified for interactive machine learning, shifting the fo-
cus from developing more accurate algorithms to improving applicability, which
may include other metrics such as productivity and interpretability [1, 17]. We
have described a neural architecture that can drive a GUI for interactive repre-
sentation learning for ML-assisted data annotation, and we have found that the
hyperparameters (classification header, number of training epochs, and loss func-
tion weights) have potential effects on user experience. Our network enables DM
of data in latent space by establishing three analogies relevant to an immersive
experience: (latent as interface) space, (training as frame) time, and (stochastic
gradient descent as physics engine) force. We are currently exploring different
learning rates to produce different degrees of stability of representations, as well
as continuous learning methods [8] to handle the incremental availability of labels
provided by the interface front-end.

References

1. Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: The role
of humans in interactive machine learning. Ai Magazine 35(4), 105–120 (2014)

2. Author: A human-in-the-loop tool for annotating passive acoustic monitoring
datasets. In: Proceedings of the 32nd International Joint Conference on Artificial
Intelligence, IJCAI (2023)

3. Author: A virtual reality tool for representing, visualizing and updating deep learn-
ing models. In: KI 2023 (submitted)

4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence
35(8), 1798–1828 (2013)

5. Burgess, C.P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., Ler-
chner, A.: Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599
(2018)

6. Deng, L.: The MNIST database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–
142 (2012). https://doi.org/10.1109/MSP.2012.2211477, https://doi.org/10.1109/
MSP.2012.2211477

https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477

A Network Model for Interactive Latent Representation Learning 7

7. Gouvêa, T.S., Troshani, I., Herrlich, M., Sonntag, D.: Annotating Sound Events
Through Interactive Design of Interpretable Features. HHAI2022: Augmenting
Human Intellect pp. 305–306 (2022). https://doi.org/10.3233/FAIA220225, https:
//ebooks.iospress.nl/doi/10.3233/FAIA220225

8. Hadsell, R., Rao, D., Rusu, A.A., Pascanu, R.: Embracing change: Continual learn-
ing in deep neural networks. Trends in cognitive sciences 24(12), 1028–1040 (2020)

9. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised
learning with deep generative models. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neu-
ral Information Processing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada. pp. 3581–3589 (2014), https://proceedings.neurips.cc/paper/2014/hash/
d523773c6b194f37b938d340d5d02232-Abstract.html

10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

11. LeCun, Y., Misra, I.: Self-supervised learning: The dark mat-
ter of intelligence (Mar 2021), https://ai.facebook.com/blog/
self-supervised-learning-the-dark-matter-of-intelligence/

12. Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., Tang, J.: Self-supervised
learning: Generative or contrastive. IEEE Transactions on Knowledge and Data
Engineering (2021)

13. Paige, B., Siddharth, N., van de Meent, J., Desmaison, A., Goodman, N.D.,
Kohli, P., Wood, F.D., Torr, P.H.S.: Learning disentangled representations with
semi-supervised deep generative models. In: Guyon, I., von Luxburg, U., Ben-
gio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA. pp. 5925–5935 (2017), https://proceedings.neurips.cc/paper/2017/hash/
9cb9ed4f35cf7c2f295cc2bc6f732a84-Abstract.html

14. Prange, A., Sonntag, D.: A demonstrator for interactive image clustering and fine-
tuning neural networks in virtual reality. In: German Conference on Artificial In-
telligence (Künstliche Intelligenz). pp. 194–203. Springer (2021)

15. Ratner, A.J., De Sa, C.M., Wu, S., Selsam, D., Ré, C.: Data programming: Creating
large training sets, quickly. Advances in neural information processing systems 29
(2016)

16. Shneiderman, B.: Direct manipulation for comprehensible, predictable and con-
trollable user interfaces. In: Moore, J.D., Edmonds, E.A., Puerta, A.R. (eds.)
Proceedings of the 2nd International Conference on Intelligent User Interfaces,
IUI 1997, Orlando, Florida, USA, January 6-9, 1997. pp. 33–39. ACM (1997).
https://doi.org/10.1145/238218.238281, https://doi.org/10.1145/238218.238281

17. Simard, P.Y., Amershi, S., Chickering, D.M., Pelton, A.E., Ghorashi, S., Meek,
C., Ramos, G., Suh, J., Verwey, J., Wang, M., et al.: Machine teaching: A new
paradigm for building machine learning systems. arXiv preprint arXiv:1707.06742
(2017)

https://doi.org/10.3233/FAIA220225
https://ebooks.iospress.nl/doi/10.3233/FAIA220225
https://ebooks.iospress.nl/doi/10.3233/FAIA220225
https://proceedings.neurips.cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-Abstract.html
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://proceedings.neurips.cc/paper/2017/hash/9cb9ed4f35cf7c2f295cc2bc6f732a84-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9cb9ed4f35cf7c2f295cc2bc6f732a84-Abstract.html
https://doi.org/10.1145/238218.238281
https://doi.org/10.1145/238218.238281

	A Deep Generative Model for Interactive Data Annotation through Direct Manipulation in Latent Space
	1 Introduction
	2 Application
	3 Model description
	4 Experiments
	5 Conclusions and future work

