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Abstract
This work explores the effectiveness of employ-
ing Clinical BERT for Relation Extraction (RE)
tasks in medical texts within an Active Learn-
ing (AL) framework. Our main objective is
to optimize RE in medical texts through AL
while examining the trade-offs between per-
formance and computation time, comparing it
with alternative methods like Random Forest
and BiLSTM networks. Comparisons extend to
feature engineering requirements, performance
metrics, and considerations of annotation costs,
including AL step times and annotation rates.
The utilization of AL strategies aligns with
our broader goal of enhancing the efficiency
of relation classification models, particularly
when dealing with the challenges of annotat-
ing complex medical texts in a Human-in-the-
Loop (HITL) setting. The results indicate that
uncertainty-based sampling achieves compara-
ble performance with significantly fewer an-
notated samples across three categories of su-
pervised learning methods, thereby reducing
annotation costs for clinical and biomedical
corpora. While Clinical BERT exhibits clear
performance advantages across two different
corpora, the trade-off involves longer computa-
tion times in interactive annotation processes.
In real-world applications, where practical fea-
sibility and timely results are crucial, optimiz-
ing this trade-off becomes imperative.

1 Introduction

The digitisation of diverse medical documents
into Electronic Health Records (EHRs) has signifi-
cantly increased worldwide. Essential relationships
among biomedical entities, including drug-drug in-
teractions and treatment efficacy lie within EHRs
(Herrero-Zazo et al., 2013; Uzuner et al., 2011;
Henry et al., 2020). Biomedical and clinical texts
often contain complex and highly specialized lan-
guage, making it difficult for models to understand
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and extract relationships accurately (Zhou et al.,
2014; Bose et al., 2021a). Figure 1 shows the an-
notated relations between different pairs of named
entities. Relation Extraction (RE) systems aim to
identify the relevant entity mentions and recognize
their relations. Previous research consistently un-
derscores the superior performance of deep learn-
ing methods in biomedical and clinical RE tasks
within passive learning environments (Wei et al.,
2020; Yadav et al., 2022). However, the annotation
process required to construct training datasets is
both time-consuming and expensive.

Figure 1: Demonstration of entities and their annotated
relations in the n2c2 corpus (Henry et al., 2020): Each
instance may feature multiple entities, and the anno-
tations indicate the presence or absence of a relation
between any two entities.

Active Learning (AL) advocates for a gradual
labelling approach focused on the most informa-
tive instances by strategically selecting challenging
or uncertain instances (Settles, 2009, 2012; Zhang
et al., 2012; Shelmanov et al., 2019). However,
utilizing AL with pre-trained language models can
result in unacceptable waiting time for annotators
(Maekawa et al., 2022). Traditional machine learn-
ing (ML) models emerge as potentially more suit-
able choices for AL settings due to their shorter
iteration times and commendable performance on
the same tasks (Munkhdalai et al., 2018). This
work aims to assess potential variations in anno-
tation costs for biomedical and clinical RE using
various supervised learning methods with AL: Ran-
dom Forest (Alimova and Tutubalina, 2020), Bidi-
rectional Long Short Term Memory (BiLSTM) net-
works (Hasan et al., 2020), and a pre-trained Clin-



ical BERT model (Alsentzer et al., 2019). The
evaluation is conducted on two relevant RE bench-
marks, namely the Drug-Drug Interaction (DDI)
corpus (Herrero-Zazo et al., 2013) and the n2c2
corpus (Henry et al., 2020). The primary objective
is to understand the data requirements for RE in
medical text and identify resource-efficient strate-
gies for real-world applications. This investigation
aligns with the principles of Interactive Machine
Learning (IML) (Amershi et al., 2014; Dudley and
Kristensson, 2018; Wang et al., 2021; Wu et al.,
2022; Liang et al., 2023). The goal is to enhance
model adaptability in the medical domain while
minimizing the annotation workload for domain
experts, particularly when utilizing pre-trained lan-
guage models.

The experimental results reveal that three ma-
chine learning approaches achieve performance
comparable to state-of-the-art methods with sig-
nificantly less annotated data through active learn-
ing (AL), resulting in a substantial reduction in
annotation costs. Our analysis, comparing Clinical
BERT with alternatives such as Random Forest and
BiLSTM networks, offers insights into the advan-
tages and challenges of employing AL strategies
with advanced pre-trained language models. This
study contributes to optimizing relation extraction
in medical texts by exploring the trade-offs of dif-
ferent ML methods within an AL framework.

2 Approach

2.1 Data and Classification Scheme

DDI Corpus. The DDI corpus (Herrero-Zazo
et al., 2013) comprises 792 documents describing
short drug-drug interactions (DDIs) from the Drug-
Bank database (DDI-DrugBank corpus) and 233
MedLine abstracts (DDI-MedLine corpus), with
four clinical entity types, namely Drug, Brand,
Group and Drug_n. The corpus proposes four types
of DDI relations: Effect, Mechanism, Advise and
Interaction. Table 9 reports the frequency counts
of the different relation types in the corpus, where
Effect denotes the description of the effect of the
drug-drug interaction, Mechanism is assigned when
a pharmacodynamic or pharmacokinetic interaction
occurs, Advise is assigned to those drug-drug in-
teractions that provide recommendations or advice
regarding their concomitant use and Interaction
is assigned when the sentence merely states that
interaction occurs without providing additional in-
formation about the interaction. An example of

each relation type is illustrated in Table 1. The
corpus can be accessed from the official GitHub
repository 1. For DDI corpus, a multi-class classifi-
cation scheme is proposed in previous work, where
one classifier determines one possible drug-drug
interaction or no relation between two target enti-
ties. Examples of each relation type are presented
in Table 1. More data statistics on the sizes of the
datasets and average sequence lengths can be found
in the appendix A.

Relation Type Example

Advise
Interactions may be expected, and [UROXATRAL]BRAND

should NOT be used in combination with other
[alpha-blockers]GROUP .

Effect
In common with other broad-spectrum antibiotics,
[AUGMENTIN XR]BRAND may reduce the efficacy of oral
[contraceptives]GROUP .

Mechanism Milk, milk products, and [calcium]DRUG -rich foods or
drugs may impair the absorption of [EMCYT]BRAND.

Int Conversely, [diethylpropion]DRUG may interfere with
[antihypertensive drugs]GROUP .

Table 1: Instances of relation types annotated to pairs
of entities in the DDI corpus.

n2c2 Corpus. The n2c2 corpus is specifically
designed for the medication challenge and empha-
sises the identification of injuries caused by drug-
related medical interventions, such as allergic reac-
tions, drug interactions, overdoses and medication
errors. Identifying and notifying caregivers of po-
tential adverse drug events (ADEs) can improve
healthcare delivery (Henry et al., 2020).

Relation Type Example

Strength-Drug [Furosemide]DRUG [10 mg]STRENGTH IV ONCE
Duration: 1 Doses.

Dosage-Drug Patient has been switched to [lisinopril]DRUG

10mg [1]DOSAGE tablet PO QD.

Duration-Drug Patient prescribed 1 x 20 mg [Prednisone]DRUG tablet
daily for [5 days]DURATION .

Frequency-Drug Patient prescribed 1 x 20 mg [Prednisone]DRUG tablet
[daily]FREQUENCY for 5 days.

Form-Drug Patient prescribed 1 x 20 mg [Prednisone]DRUG

[tablet]FORM daily for 5 days.

Route-Drug [Furosemide]DRUG 10 mg [IV]Route ONCE
Duration: 1 Doses.

Reason-Drug Patient prescribed 1-2 325 mg / 10 mg [Norco]DRUG pills
every 4-6 hours as needed for [pain]REASON .

ADE-Drug Patient is experiencing [muscle pain]ADE , secondary to
[statin]DRUG therapy for coronary artery disease.

Table 2: Annotations indicating relation types between
pairs of entities in the n2c2 corpus.

We employ a binary classification scheme for
the n2c2 corpus as previous work (Wei et al., 2020;
Christopoulou et al., 2020). Under eight relation
types, the training and test sets are divided into
eight subsets. Each training instance contains a
pair of entities which may have a possible relation

1https://github.com/isegura/DDICorpus



type, see Table 2. A summary of the distribution
of the generated pairs of each relation type in the
corpus is presented in Table 11. Table 12 shows
the average sequence length of each relation type.

2.2 Supervised Machine Learning Methods
In the application of Random Forest and BiLSTM
neural networks, feature engineering is a crucial
stage in the preparation of data for supervised
learning (Hasan et al., 2020). Pre-trained domain-
specific BERT models have demonstrated remark-
able success in contextualized representation learn-
ing and addressing natural language understanding
tasks in biomedical and clinical domains (Alsentzer
et al., 2019).

Random Forest. The implementation of Ran-
domForestClassifier from scikit-learn library2 is
utilized in our experiments. The effectiveness and
diversity of individual decision trees within the
Random Forest method are directly influenced by
the quality of the features employed. Instructed by
Alimova and Tutubalina (2020), different features
such as distance-based features, word-based fea-
tures and negation words extracted from input text
are prepared to train the RandomForestClassifier.
Table 3 displays an example of the input features.

Sentence

Population pharmacokinetic analyses revealed
that MTX, [NSAIDs]GROUP , corticosteroids,
and TNF blocking agents did not influence
[abatacept]DRUG clearance.

token distance 10
character distance 61
punctuation distance 2
position [0, 2]

bag of entities [0, 2, 0, 0]
bag of words [0, 0, 1, ..., 1, 0, 0, 0, 0]

negated e1 0
negated e2 1
hasBut 0

Table 3: Input features for the Random Forest method
including distance features (token distance, character
distance, punctuation distance and position), bag of
words and entities, negation features3

.

BiLSTM networks. We implement the BiLSTM
networks using PyTorch4 and adopt the architec-
ture proposed by Hasan et al. (2020) to tackle the
RE tasks in our experiments. The input features
are prepared considering syntactic and semantic in-
formation, shown in Table 4. Domain-specific pre-

2https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
RandomForestClassifier.html

4https://pytorch.org/tutorials/beginner/nlp/
advanced_tutorial.html

trained word embeddings (BioWordVec)5 (Zhang
et al., 2019) are employed as the first representa-
tions for the input sentence, embeddings for entities
are obtained by averaging the word embeddings of
the words within one entity.

Sentence, S He was administered Ibuprofen and [Paracetamol]DRUG [500 mg]DOSAGE for 3 days
e1 Paracetamol
e2 500, mg
Word Embeddings pre-trained BioWordVec
Relative distance e1 [−5,−4,−3,−2,−1, 0, 1, 2, 3, 4]
Relative distance e2 [−6,−5,−4,−3,−2,−1, 0, 0, 1, 2, 3]
PoS tagging [ PRON, AUX, VERB, NOUN, CCONJ, PROPN, NUM, NOUN, ADP, NUM, NOUN]
DEP tagging [ nsubjpass, auxpass, ROOT, compound, cc, conj, nummod, dobj, case, nummod, nmod]
IOB tagging [O, O, O, O, O, B-DRUG, B-DOSAGE, I-DOSAGE, O, O, O ]

Table 4: Input features for the BiLSTM-based method
including word embedding (BioWordVec), POS, DEP
and IOB annotations at token-level.

Clinical BERT. We fine-tune the Clinical BERT
model6 (Alsentzer et al., 2019) for both corpora
following the method of Wei et al. (2020), namely
replacing the original entity words with their cor-
responding semantic types. Table 5 presents the
resulting input sentences from n2c2 corpus. Each
sentence from n2c2 dataset can include several en-
tity pairs between which there can be a relation.

Original sentence [CLS] Furosemide 10 mg IV ONCE Duration: 1 Doses

Candidate
relation pairs

(1) [CLS] @Drug$ @Strength$ IV ONCE Duration: 1 Doses
(2) [CLS] @Drug$ 10 mg @Route$ ONCE Duration: 1 Doses
(3) [CLS] @Drug$ 10 mg IV @Frequency$ Duration: 1 Doses
(4) [CLS] @Drug$ 10 mg IV ONCE Duration: @Dosage$ Doses

Table 5: An example of transformed samples from an
original sentence from the n2c2 corpus.

2.3 Active Learning Strategies

Uncertainty-aware sampling is a common query
framework in AL (Lewis and Catlett, 1994; Settles,
2009). We incorporate the principles of uncertainty
and diversity in our instance selection strategies,
aligning them with the imperative of querying in-
formative instances to enhance the performance of
the three distinct categories of machine learning
methods for biomedical and clinical RE (Kumar
and Gupta, 2020). To ensure a comprehensive eval-
uation of how the AL strategies impact the per-
formance of different machine learning categories
biomedical and clinical RE, we establish a random
sampling strategy as a baseline and conduct experi-
ments using Least Confidence (LC) (Settles, 2009)
for all three machine learning methods. Bayesian
Active Learning by Disagreement(Houlsby et al.,
2011) is applied to deep learning methods, e.g.

5https://github.com/ncbi-nlp/BioWordVec
6https://huggingface.co/emilyalsentzer/Bio_

ClinicalBERT
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https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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BiLSTM networks and Clinical BERT. Due to the
large number of parameters, training BiLSTM net-
works or fine-tuning BERT-based models can be
both time-consuming and resource-intensive. To
streamline the AL process with these methods, in-
stances are selected in batches, namely we imple-
ment BatchBALD (Kirsch et al., 2019) instead of
BALD. In the following, we describe the strategy
query formations of ϕ(·).

Least Confidence (LC). The LC strategy in-
volves selecting the instance x from a training
datasetDtrain with the least confidence or most un-
certain classification (y ∈ Y ) in the context of prob-
abilistic models (Settles, 2009). Given the model
parameters ω to compute the most uncertainty of
each sample with a prediction of P(y∗|x;ω), the
following formula from Settles (2009) is used:

ϕLC = 1− P(y∗|x;ω) (1)

Once P(y∗|x;ω) has been computed, the in-
stance x with the highest value of ϕLC is queried.
To query a batch of size B > 1, the top B samples
(x1, ..., xB) with the highest uncertainty values
ϕLC are selected, referred to BatchLC. BatchLC
combines uncertainty sampling and ranking to se-
lect a batch of unlabelled instances (Cardoso et al.,
2017). If the query strategy is applied to Random
Forest, they must first be modified to have proba-
bilistic output (Lewis and Catlett, 1994).

Batch Bayesian Active Learning by Disagree-
ment (BatchBALD). The LC strategy identifies
unlabelled instances where the model expresses
the lowest confidence levels, determined by its
probability scores. In contrast, the BALD strategy
queries unlabelled instances where a significant
proportion of the model’s parameter distribution
samples yield incorrect predictions (Houlsby et al.,
2011).

ϕBALD = H(y|x,Dtrain)− Eω∼p(ω|Dtrain)[H[(y|x, ω,Dtrain]] (2)

Equation 2 of BALD explains how to balance the
entropy of the model prediction (left term) and
the expectation of the entropy of the model predic-
tion over the posterior of the parameters ω (right
term). It identifies instances where the model’s
predictions show uncertainty, when the left term is
high and the right term is low, indicating disagree-
ment between the posterior draws. BatchBALD
allows for the simultaneous selection of multiple
instances in a batch and strikes a balance between

selecting instances with high individual uncertainty
and ensuring diversity within the selected batch
(Kirsch et al., 2019), see Equation 3. In Batch-
BALD, Monte-Carlo dropout is applied multiple
times to deactivate certain neurons in the network
for an input instance, resulting in multiple posterior
draws. We implement the BatchBALD strategy us-
ing the BAAL7 library (Atighehchian et al., 2022).

H(y1:b|x1:b,Dtrain)− Eω∼p(ω|Dtrain)[H[(y1:b|x1:b, ω,Dtrain]] (3)

3 Experiment Setup

We employ a pool-based AL setup and word in
an experimental setting, meaning that we have a
training Dtrain and a test Dtest dataset. The pseu-
docode of the AL experimental setting is shown in
Algorithm 1.

Algorithm 1 Active Learning Loop

initDL ← Random(Dtrain, querySize)
DU ← Dtrain −DL
annRate← querySize/length(Dtrain)
ω0 ← copyParams(M)
M← train(M,DL)
while annRate < maxAnn do

q← ϕ(M,DU , querySize)
DL ← DL ∪ q
DU ← DU − q
annRate← +(querySize/length(Dtrain))
M← resetParams(M, ω0)
M← train(M,DL)
metrics← eval(Dtest,M)

An initial labelled dataset initDL, consisting of
2.5% of the total training data, is randomly gener-
ated and the remaining data from the unlabelled
pool DU . The initial parameters of model M is
trained on initDL. A query strategy ϕ(·) is applied
to select another 2.5% of samples from DU based
on the uncertainty estimates. New samples are
added to DL and used to trainM. In each active
learning step, the parameters ofM are reset to the
initial ω0 to prevent over-fitting of the data from
the first iteration (Gal et al., 2017; Hu et al., 2018).
The evaluation metrics are computed on the test set
Dtest at the end of each step. The AL step is itera-
tively executed until the maximum annotation rate
(maxAnn) is attained (Siddhant and Lipton, 2018).

7https://baal.readthedocs.io/en/latest/
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3.1 Evaluation Metrics

Performance Measures. The common scores
used to measure the models’ performance on the
RE over both corpora with all learning settings and
sampling strategies include Precision, Recall and
F1 scores. For the RE performance on the n2c2
corpus, we compute the binary classification results
for each relation type. For the DDI corpus, we com-
pute the 5-class (4 relation types and 1 None type)
results of different relation types.

Active Learning Step Time. In the AL experi-
ments, we evaluate the performance of three ma-
chine learning methods using up to 50% of the n2c2
and DDI training dataset respectively. At each AL
step, each query strategy samples 2.5% of the data,
for a total of 20 steps. We compare the perfor-
mance of different AL sampling strategies, such as
LC, BatchLC and BatchBALD, to a random base-
line (i.e. random sampling) (Settles and Craven,
2008; Shelmanov et al., 2019; Siddhant and Lip-
ton, 2018). Within our experimental framework,
we focus on the Step Time taken from querying
new instances to model retraining. We compare
the efficiency of different AL strategies in conjunc-
tion with different machine learning methods based
on the step time metrics. They provide invaluable
insights into the comparative effectiveness of the
strategies under investigation.

Token Annotation Rate. We omit the real-world
manual annotation process in the AL experiments.
However, an assumption is that longer samples
generally necessitate more time for reading, anal-
ysis and annotation (Kholghi et al., 2015). Conse-
quently, query strategies favouring the querying of
lengthier samples are likely to incur higher manual
annotation costs. To assess whether the process
queried shorter, longer, or uniformly all lengths
of samples in the unlabelled pool, we measure the
number of labelled annotation units in terms of
Token Annotation Rate (TAR) and Characters An-
notation Rate (CAR). These metrics (Equations 4
and 5) of the annotation effort are calculated when
new instances are sampled up to 50% of the train-
ing dataset.

TAR =
no. of labelled tokens

total no. of tokens
(4)

CAR =
no. of labelled characters

total no. of characters
(5)

4 Results and Analysis

4.1 Performance in two Corpora

Table 6 shows that both the Random Forest and
Clinical BERT methods achieve better F1 scores in
the AL setting using 50% of the data compared to
the passive learning setting using the entire train-
ing dataset in both corpora. In the n2c2 corpus, F1
scores are consistently above 90% for the major-
ity of relation types. Two key factors contribute
to these high scores. First, relying on entity types
to determine relation types simplifies the task, re-
quiring methods to focus on relation identification
rather than classification. Secondly, the distinct
structural patterns associated with most relation
types facilitate straightforward identification. In
particular, challenges arise with more complicated
types such as ADE-Drug and Reason-Drug, as high-
lighted in the 2018 n2c2 challenge (Henry et al.,
2020). Moreover, Clinical BERT achieves a no-
table improvement after just a few AL steps. This
improvement hints at a potential overfitting of the
whole n2c2 corpus training set with Clinical BERT.

The classification of drug-drug interactions in
the DDI corpus presents a more challenging task.
First, the model must not only identify these inter-
actions but also classify their types. This complex-
ity is exacerbated by the imbalance in the relation
annotations of the dataset, a factor that significantly
affects the F1 scores obtained by all methods in the
passive learning environment. However, the F1
scores achieved in AL setting demonstrate signifi-
cant performance with considerably less annotated
data.

4.2 Performance of ML Methods

In terms of performance, Clinical BERT achieves
the highest F1 scores on both datasets in all settings.
Notably, Random Forest emerged as the second-
best method in the AL setup. However, it still
presents a more challenging task of DDI corpus
due to the lack of a clear text structure of the rela-
tions and the requirement to identify and classify
different types of relations. Clinical BERT exhibits
a remarkable improvement in their performance on
the DDI corpus by utilising much fewer learning
samples of the annotated data (see Table 6 and Fig-
ure 2). This demonstrates the superior ability of
language models to comprehend language and gen-
eralise to various types of corpora and text-related
tasks. The underperformance of Random Forest on
the DDI corpus suggests that the features employed



(a) Corpus = DDI
Method Detection Effect Mechanism Advise Int Macro Micro
Random Forest .645 ± .01 2 .484 ± .02 2 .411 ± .01 2 .464 ± .01 2 .413 ± .03 1 .390 ± .02 2 .418 ± .00 2

BiLSTM .564 ± .03 4 .445 ± .03 2 .448 ± .03 4 .488 ± .03 4 .418 ± .04 1 .408 ± .03 4 .425 ± .02 4

Clinical BERT .882 ± .00 2 .792 ± .02 2 .847 ± .01 2 .888 ± .01 1 .579 ± .01 2 .815 ± .04 2 .839 ± .03 2

(b) Corpus = n2c2
Method Strength Duration Route Form ADE Dosage Reason Frequency Macro Micro
Random Forest .981 ± .00 2 .915 ± .00 2 .976 ± .00 2 .988 ± .00 3 .860 ± .00 3 .975 ± .00 2 .879 ± .01 3 .963 ± .00 2 .931 ± .00 3 .954 ± .00 2

BiLSTM .963 ± .00 1 .859 ± .01 2 .947 ± .01 2 .968 ± .00 4 .840 ± .02 1 .946 ± .00 1 .839 ± .03 2 .941 ± .01 4 .856 ± .04 2 .908 ± .01 1

Clinical BERT .992 ± .00 2 .908 ± .01 4 .993 ± .00 2 .990 ± .00 1 .888 ± .01 2 .992 ± .00 2 .935 ± .01 2 .992 ± .00 2 .944 ± .00 4 .969 ± .00 2

Table 6: F1 scores with the optimal query strategy in the AL setting, indicated by superscripts (1: Random Sampling,
2: Least Confidence, 3: BatchLC, 4: BatchBALD), are presented alongside the different machine learning methods.
The annotation set is capped at a maximum of 50% of the complete training dataset. The presented F1 scores in
both tables depict the mean and standard deviation of the best scores achieved for each relation type, alongside
macro and micro results for the entire test set under different query strategies. Superior results, when compared to
the passive learning setting with 100% training data, are highlighted in bold.

(a) Random Forest (b) BiLSTM networks (c) Clinical BERT

Figure 2: Micro-averaged F1 scores evolution of the different methods and query strategies during the AL process
on the DDI corpus. The x-axis represents the percentage of annotated data and the y-axis represents the scores. The
dashed black line indicates average performance using 100% of the data in the passive learning setting. Each line
represents the average performance evolution for a query strategy. The F1 scores are computed after every AL step.
The shaded area shows the standard deviation of this evolution across experiment repetitions.

(a) Random Forest (b) BiLSTM networks (c) Clinical BERT

Figure 3: Micro-averaged F1 scores evolution of the different methods and query strategies during the AL process
on the n2c2 corpus. Line charts depicting the evolution of scores of separately trained binary models on the different
n2c2 relation types are presented. The x-axis represents the percentage of annotated data and the y-axis represents
the scores.



Method Strategy n2c2 DDI
Min. Avg. Max. Min. Avg. Max.

Random
Forest

random .48 ± .02 .62 ± .02 .82 ± .05 1.08 ± .04 1.95 ± .12 3.34 ± .26
LC .48 ± .00 .64 ± .02 .88 ± .03 1.06 ± .06 1.97 ± .16 3.12 ± .18
BatchLC .66 ± .03 1.38 ± .04 1.94 ± .06 3.69 ± .19 14.10 ± .35 20.29 ± .79

BiLSTM
random .43 ± .01 .81 ± .01 1.20 ± .02 .85 ± .27 2.79 ± .32 4.77 ± .47
LC .43 ± .01 .82 ± .01 1.21 ± .02 .87 ± .25 2.79 ± .33 4.88 ± .48
BatchBALD 2.92 ± .01 3.18 ± .02 3.45 ± .03 30.17 ± 1.03 39.39 ± .87 48.48 ± 1.17

Clinical
BERT

random .72 ± .00 3.60 ± .02 6.57 ± .07 2.35 ± .02 21.64 ± .15 41.61 ± .07
LC .73 ± .02 3.61 ± .03 6.55 ± .05 2.35 ± .01 21.63 ± .16 41.92 ± .55
BatchBALD 2.96 ± .14 5.82 ± .30 8.83 ± .91 12.08 ± .16 31.43 ± .36 51.64 ± .61

Table 7: Minimum, average and maximum active learn-
ing step times (in minutes). Mean and standard devi-
ation are reported for each method and query strategy.
For the n2c2 corpus, results display a weighted average
across the different relation types.

Method Strategy n2c2 DDI
TAR (%) CAR (%) TAR (%) CAR (%)

Random
Forest

random 50.14 ± 0.17 50.16 ± 0.17 50.01 ± 0.20 50.08 ± 0.28
LC 47.88± 1.43 47.72± 1.46 38.11± 0.40 35.85± 0.29
BatchLC 65.94 ± 0.05 66.39 ± 0.06 45.82 ± 0.30 45.09 ± 0.70

BiLSTM
random 49.91± 0.24 49.88± 0.23 50.05 ± 0.10 50.04 ± 0.07
LC 51.01 ± 0.59 50.93 ± 0.55 49.96 ± 0.17 49.98 ± 0.16
BatchBALD 50.09 ± 0.08 50.07 ± 0.10 47.66± 0.23 47.84± 0.20

Clinical
BERT

random 50.27 ± 0.42 50.13 ± 0.44 47.84 ± 0.81 47.59 ± 1.14
LC 47.91± 0.70 47.55± 0.28 36.22± 0.49 37.81± 0.69
BatchBALD 48.91 ± 0.30 48.44 ± 0.20 47.56 ± 1.15 46.55 ± 0.69

Table 8: The tar and car percentages attained after an-
notating 50% of instances are reported. The mean and
standard deviation for each method and query strategy
on both corpora are presented. Results for the n2c2
corpus are a weighted average across various relation
types. The minimum tar and car values for each method
on each corpus are highlighted in bold.

may struggle in capturing the specific characteris-
tics necessary for accurate relation identification
and classification. Addressing this performance
gap between Random Forest and Clinical BERT
would necessitate a significantly higher investment
of effort in the feature engineering process for the
Random Forest method.

The results of the BiLSTM networks proposed
by Hasan et al. (2020) in the passive learning set-
ting reveal its suitability for the RE in medical
text. However, its performance in the AL process
is sub-optimal. The method exhibits highly vari-
able performance as illustrated in Figures 2 and
3. Although the model performance progressively
improved during the AL process, neither LC nor
BatchBALD demonstrates a discernible improve-
ment over the random sampling baseline. These
findings are also reflected in Table 6.

4.3 Effectiveness of AL Strategies

The analysis of the evolution of the F1 scores dur-
ing the AL process of the different query strategies
(Figures 2 and 3) shows that the LC strategy con-
sistently outperformed the random baseline across
the two corpora with both the Random Forest and
Clinical BERT methods. Passive learning involving
training a model on the entire training dataset, is

used as a reference to determine the possible high-
est performance. Conversely, neither BatchLC nor
BatchBALD consistently outperformed the random
baseline across the two corpora. These batch-based
strategies aim to select informative and represen-
tative batches of samples, overcoming the selec-
tion of redundant samples that simpler query strate-
gies may exhibit. The observed inability of these
batch-based query strategies to achieve significant
improvements in performance prompts further in-
vestigation.

4.4 AL Step Time of ML methods

If there were no time constraints and sufficient
computational resources, Clinical BERT would un-
doubtedly be the most appropriate method for RE
tasks in medical domains. However, in an AL set-
ting, where human annotators collaborate with the
ML models, the time required for retraining and
querying a new set of instances becomes an impor-
tant consideration in the selection of ML methods.
Table 7 shows the significant difference in the step
time of different ML methods that a human expert
can expect to invest in annotating a specific medical
text corpus, including both the annotation itself and
the waiting time for retraining and querying addi-
tional samples. For example, using the LC strategy,
the Clinical BERT method takes a total of 68.48
minutes on the n2c2 corpus and 410.88 minutes
on the DDI corpus. In contrast, the Random For-
est method only requires 12.19 and 37.43 minutes
respectively for each corpus. Consequently, this
aspect may overshadow the benefits of the supe-
rior generalisation capabilities of Clinical BERT,
potentially rendering this method unsuitable for an
interactive learning process.

4.5 Annotation Rates

Previous studies have measured the amount of an-
notation effort saved by different query strategies
to achieve specific performance goals through dif-
ferent annotation rates (Kholghi et al., 2015, 2016).
The inclination of AL strategies to select longer
samples from the dataset is likely attributed to their
potential for exhibiting increased uncertainty (Set-
tles, 2009). However, this practice may extend
the annotation time required by human experts for
thorough reading and analysis, especially if a query
strategy consistently opts for longer samples. In
our experimental setup, all employed strategies har-
nessed up to 50% of the available data. Conse-
quently, if both TAR and CAR values remain be-



low 50.00, the annotation process predominantly
involves querying shorter instances (see Table 7).
Conversely, if these values are above 50.00, the
AL process focuses primarily on querying longer
instances. This nuanced exploration highlights the
dynamic relationship between query strategies, in-
stance length and the resulting annotation effort.
In particular, potential annotation savings are ob-
served when using the LC strategy in conjunction
with the Random Forest and Clinical BERT meth-
ods.

5 Related Work

Previous research has shown that traditional ML
approaches yield comparable results in biomedical
RE tasks with limited data instances, while deep
learning models excel when more data is available
(Munkhdalai et al., 2018; Xu et al., 2017; Bose
et al., 2021b; Magge et al., 2018; Shelmanov et al.,
2019; Christopoulou et al., 2020; Alimova and Tu-
tubalina, 2020; Hasan et al., 2020). Previous works
have also demonstrated that by annotating fewer
samples selected with AL strategies, the same or
even better performance can be achieved in the field
of biomedical information extraction tasks (Zhang
et al., 2012; Kholghi et al., 2015; Shelmanov et al.,
2021; Sheng et al., 2020; Ein-Dor et al., 2020). In
a more recent study, Wright et al. (2022) used a
pre-trained SciBERT model for biomedical rela-
tion extraction, employing uncertainty sampling to
prioritize predictions.

Siddhant and Lipton (2018) provided an empir-
ical study of deep AL addressing multiple tasks.
(Kirsch et al., 2019) proposed BatchBALD, which
considered dependencies within an acquisition
batch and showed increased diversity of data points
and improved performance over BALD (Houlsby
et al., 2011) and other methods. Zhang et al. (2012)
proposed an AL framework for biomedical rela-
tion extraction, addressing key issues like query
strategies, data diversity selection, and informative
feature selection. The suggested query strategies
include an uncertainty-based method using Maxi-
mum Entropy and a density-based method with K-
Means clustering. Kholghi et al. (2015) empirically
compared AL query strategies for clinical informa-
tion extraction. They introduced a novel approach
incorporating informativeness with domain knowl-
edge, achieving equivalent performance with only
55% of the training data on the 2010 i2b2/VA con-
cept extraction task. Chen et al. (2015) evaluated

ten AL query strategies for named entity recog-
nition (NER), finding that uncertainty-based sam-
pling algorithms outperformed others. The varying
perspectives on annotation time considerations, as
seen in Chen et al. (2015) and Kholghi et al. (2015),
underscore the importance of carefully selecting
metrics in AL methodologies. Collectively, these
studies contribute to a deeper understanding of ef-
fective AL strategies and their impact on diverse
ML tasks in the medical information extraction
domain.

However, a compelling need emerges for a com-
prehensive exploration of the inherent trade-offs
in the performance of diverse ML methods. This
necessity is underscored by the observed lack of at-
tention to the critical balance between performance
and the cost implications associated with various
tasks in real-world applications. In response to this
gap, our research aims to conduct a nuanced analy-
sis of the broader implications, ultimately provid-
ing valuable insights to guide optimal ML methods
and AL strategies within the dynamic context of in-
teractive machine learning for medical information
extraction.

6 Conclusion

Our experimental results and comparative analysis
demonstrate the effectiveness of AL in optimising
Clinical BERT for RE tasks in both biomedical and
clinical corpora. This optimisation allows for a sig-
nificant reduction in the amount of annotated data
required, thereby reducing the costs associated with
annotating complex medical texts. Despite the no-
table advantages of Random Forest, characterised
by its simpler design and shorter AL step times, it
requires a significant up-front investment in feature
engineering. This requirement becomes particu-
larly pronounced when dealing with data from a
novel domain, thereby influencing the overall cost
of the annotation process. Clinical BERT bene-
fits from the integration of AL strategies, demon-
strating improved performance with significantly
reduced training data requirements. Considering
the AL step time of the Random Forest method
as an upper bound, future research efforts in opti-
mising BERT-based methods for biomedical and
clinical RE are imperative to address the challenges
associated with increased computational time and
potential inefficiencies during the interactive anno-
tation process.



Limitation

The experiments in this work focus on biomedical
and clinical corpora, which have specific linguis-
tic nuances and subtleties inherent to the medical
domain. As a result, the findings may not be uni-
versally applicable and seamlessly generalisable to
other domains characterised by different terminolo-
gies, structures and linguistic patterns. Although
the experiments acknowledge the potential impact
of increased computational time and resource re-
quirements, particularly in the context of interac-
tive annotation processes, the scalability of Clinical
BERT to larger datasets or real-time applications
may be limited by resource constraints and may
affect the efficiency of the AL process.
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A Statics of Datasets

Table 9 provides a breakdown of the training and
test set sizes within the DDI corpus, including
counts of instances annotated with various rela-
tion types. Instances labelled as Negative signify
the absence of identified relations between entities.
The data presented in Table 10 reveals the average
sequence length of instances categorized by dif-
ferent relation types. Sequence length serves as
an indicator of sentence complexity, impacting the
workload associated with analyzing and annotating
the sentences.

Relation Train Test Overall
Effect 1684 360 2044
Mechanism 1312 302 1614
Advise 823 221 1044
Int 189 96 285
Positive 4008 979 4987
Negative (NO-REL) 23697 4724 28421
Overall 27705 5703 33408

Table 9: Number of annotated relations in the DDI
corpus. Positive corresponds to the sum of Effect, Mech-
anism, Advise and Int

Relation Train Test
Effect 28.54 25.74
Mechanism 30.11 28.59
Advise 27.49 28.45
Int 37.13 35.79
Negative (NO-REL) 41.36 37.10
Overall 39.60 35.58

Table 10: Average sequence lengths (i.e. number of
tokens) in the DDI corpus

Table 11 provides statics of the training and test
subsets based on each relation type within the n2c2
corpus. Table 12 reveals the average sequence
length of the instances containing at least one rela-
tion type.

Relation Train Test Overallpositive negative total positive negative total
Strength-Drug 6579 8302 14881 4237 6018 10255 25136
Duration-Drug 402 236 638 426 142 568 1206
Route-Drug 2837 3108 5945 3544 3240 6784 12729
Form-Drug 4127 1836 5963 4374 1008 5382 11345
ADE-Drug 800 367 1167 732 249 981 2148
Dosage-Drug 1528 1690 3218 2694 869 3563 6781
Reason-Drug 2987 1499 4486 3407 928 4335 8821
Frequency-Drug 3484 6456 9940 4029 5189 9218 19158
Overall 22744 23494 46238 23443 17643 41086 87324

Table 11: Number of annotated relations in the n2c2
corpus



Relation Train Test
Strength-Drug 26.08 37.60
Duration-Drug 27.56 25.98
Route-Drug 27.59 41.70
Form-Drug 21.82 18.38
ADE-Drug 24.93 26.73
Dosage-Drug 29.51 23.30
Reason-Drug 26.38 28.27
Frequency-Drug 31.77 41.76
Overall 27.21 34.05

Table 12: Average sequence lengths (i.e. number of
tokens) in the n2c2 corpus
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