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Abstract

Since medical text cannot be shared easily due
to privacy concerns, synthetic data bears much
potential for natural language processing ap-
plications. In the context of social media and
user-generated messages about drug intake and
adverse drug effects, this work presents dif-
ferent methods to examine the authenticity of
synthetic text. We conclude that the generated
tweets are untraceable and show enough au-
thenticity from the medical point of view to be
used as a replacement for a real Twitter cor-
pus. However, original data might still be the
preferred choice as they contain much more
diversity.

1 Introduction

Medical text is difficult to share, even for research
purposes, as it contains information about patients
that might reveal an individual’s identity. This
makes natural language processing in that domain
difficult. Moreover, there have been concerns about
sharing even publicly available data from social
media in recent years. This is partially due to le-
gal reasons (e.g., X (Twitter)) but also due to pri-
vacy concerns. While data sensitivity can be at
least addressed by de-identification (removal of
personal health identifiers) and anonymization (ir-
reversible removal of all information that possi-
bly links back to an individual) (Meystre et al.,
2010), privacy aspects constitute an additional bar-
rier (see (Vakili et al., 2022; Volodina et al., 2023;
Ben Cheikh Larbi et al., 2023)).

Synthetic data generation bears much potential
and a way out of this misery, particularly with the
rise of generative models. Various attempts within
and outside the medical domain generate synthetic
clinical data and show that large datasets can be
easily generated and models trained on them can
compete with models trained on real data (Ive et al.,
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Ex1: I’ve heard a lot about people going blind after
inoculation, but the ears too. If you have pneumonia,
you can recover instantly with steroids, but the eyes
and ears...

Ex2: I’ve been taking azathioprine for 2 days now
and I feel like it’s working really well. But the side
effect is a rash all over my body..

Figure 1: Example of a source (top) and a pseudo
(bottom) tweet translated into English. The original
Japanese text can be found in the appendix.

2020; Libbi et al., 2021; Giuffrè and Shung, 2023).
Apart from that, the use of generative data has ad-
vantages such as structural similarity, information
relevance, and subjective assessment (Guillaudeux
et al., 2023). Furthermore, synthetic dataset have
been shown to be useful in, e.g., epidemiology
research, medical education and training, and algo-
rithm testing (Gonzales et al., 2023).

For example, Choi et al. (2017) employ Gener-
ative Adversarial Networks (GANs) (Goodfellow
et al., 2014) to generate (English) electronic health
records (EHRs) while Abedi et al. (2022) synthe-
size tabular medical data such as laboratory values.
Amin-Nejad et al. (2020) use GPT-2 (Radford et al.,
2019) amongst other models to create datasets of
discharge summaries in English. These data are
then used as either pure training/fine-tuning ma-
terial (Choi et al., 2017) or to augment existing
resources (Amin-Nejad et al., 2020; Abedi et al.,
2022), resulting in a better performance of the
trained models when compared to the low-resource
setup in which they are usually fine-tuned. Hiebel
et al. (2023) report that linguistic phenomena are
reproduced while privacy is preserved in their gen-
erated datasets of French clinical case reports. The
usefulness of the authors’ synthetic corpus is ex-
trinsically investigated by fine-tuning models for a
clinical named entity recognition task. The perfor-



mance of the models yields promising results.

Although the use of generated data in corpora is
highly significant from the viewpoint that medical
language resources are difficult to make public, few
studies evaluate the anonymity or authenticity of
the data, including medical aspects. Melamud and
Shivade (2019) investigate the privacy-preserving
characteristics and utility of synthetic EHRs by
introducing a new measure based on Pointwise
Differential Training Privacy (PDTP) (Long et al.,
2017). Another work is provided by Mclachlan
et al. (2018), who propose a framework to investi-
gate the “realism” of synthetic EHRs. They com-
pare the generated information with the rules, con-
straints, and concepts used in the original EHR
data. Their approach, however, does not apply to
unstructured user-generated texts.

In contrast to related work, this paper examines
the authenticity of synthetic user content with re-
spect to health-related topics in Japanese. More pre-
cisely, we examine whether artificially generated
user tweets about potential adverse drug effects
(ADE) are authentic and privacy-preserving and,
therefore, might be a valuable alternative resource
for future research.

2 Dataset

The baseline of this work is a synthetic corpus of
Japanese tweets in the context of drug intake and
symptoms (Wakamiya et al., 2023). The source
data (original) was collected using 68 medica-
tion names as keywords from a Japanese drug-
name dictionary1 in the Twitter API. During pre-
processing, URLs and user names were removed.
Only tweets containing mentions of drugs and
symptoms were kept in the data. T5 (Raffel et al.,
2020), a transformer-based encoder-decoder model,
was fine-tuned on these data and finally used to
generate 10,000 tweets per medication name. The
created texts were filtered and manually annotated
with 22 different adverse drug reactions. More de-
tails about the synthetic data can be found in the
appendix and in Wakamiya et al. (2023). In this
paper, we are examining how authentic these syn-
thetic data are. In the following, we distinguish
between source tweets, i.e., the original data, and
pseudo-tweets, i.e., the synthetics tweets.

1https://sociocom.naist.jp/hyakuyaku-dic/

3 Method

We analyze the data in different ways to measure
the authenticity and validate the anonymity of the
pseudo-tweets. First, we examine the source and
the pseudo data on the word level and compare the
vocabulary of both datasets. Next, we analyze if
the distribution of our target events in the synthetic
data is similar to that in the source data. Finally, we
directly compare a subset of synthetic and source
tweets manually as well as automatically with re-
spect to naturalness, comprehensibility, medical
correctness and anonymity.

3.1 Vocabulary

First, we compare the vocabulary of both corpora to
analyze the diversity of the source and the pseudo
data. Since there are considerably more source
tweets (441,151) than pseudo-tweets (10,000), we
sample 5 times 10,000 messages from the source
tweets and compare each sample to the pseudo-
tweets. To this end, we tokenize all tweets using
spaCy2 and report the number of tokens, types, and
the mean lengths of source versus pseudo-tweets.

Additionally, we compare the similarity of origi-
nal and pseudo tweets with the FAISS library3. All
tweets (original and pseudo) are embedded using
SentenceBERT (Reimers and Gurevych, 2019)4

and compared using cosine similarity. Finally,
we compute the type-token ratio (TTR) (Johnson,
1944) as a function of corpus size, and we check
the frequency of part-of-speech tags.5

3.2 Analysis of ADEs

We compare the distribution of adverse drug effects
in the pseudo data to their distribution/frequency in
the real world. We compare the data to the Japanese
Adverse Drug Event Report database (JADER) 6,
which contains information about medications and
ADEs. Since JADER reports every single ADE,
the relative frequency of an ADE is calculated by
dividing the number of reports for each adverse
drug reaction pair by the total number of reports
on the 22 ADEs for that drug. Using the frequency,

2https://spacy.io/api, version 3.7.2., model
“ja_core_news_trf”

3https://github.com/facebookresearch/faiss
4https://huggingface.co/sonoisa/

sentence-luke-japanese-base-lite
5More details on the corpus statistics can be found in Ap-

pendix B.
6https://www.pmda.go.jp/safety/info-services/

drugs/adr-info/suspected-adr/0003.html (in
Japanese)

https://sociocom.naist.jp/hyakuyaku-dic/
https://spacy.io/api
https://github.com/facebookresearch/faiss
https://huggingface.co/sonoisa/sentence-luke-japanese-base-lite
https://huggingface.co/sonoisa/sentence-luke-japanese-base-lite
https://www.pmda.go.jp/safety/info-services/drugs/adr-info/suspected-adr/0003.html
https://www.pmda.go.jp/safety/info-services/drugs/adr-info/suspected-adr/0003.html


we calculate Pearson’s and Spearman’s correlation
coefficients for each drug individually and for all
drugs globally. We also categorize ADEs into a
more frequent (MFG) and a less frequent group
(LFG) based on this frequency, for each drug in-
dividually and for all drugs globally, and compare
MFG and LFG using a t-test. As the source data is
not annotated, we draw only a comparison between
pseudo data and world knowledge (JADER), but
not to the source data. In addition, we examine
whether we can find ADEs in the pseudo data that
are unknown according to JADER.

3.3 Direct Comparison

Next, we directly compare the content of the source
and pseudo-tweets. For this, we randomly select
100 source tweets and 100 pseudo-tweets. We con-
duct a manual and an automatic (GPT-4 (OpenAI,
2023)) analysis, giving the following questions to
human annotators and GPT-4. Both of the human
annotators are native Japanese speakers and medi-
cally trained.

Q1: “Do you think a human wrote this message?”
(naturalness)

Q2: “Do you understand what the person wants to
say with this message?” (comprehensibility)

Q3: “Is this message medically correct?” (medical
correctness)

Q4: “Does the message contain any identifying
information?” (anonymity)

Each question could only be answered with “yes”
or “no”. The human annotators were encouraged to
answer quickly, i.e., without overthinking their re-
sponse. Based on the responses, we calculated the
inter-annotator agreement using Cohen’s κ (Cohen,
1960).

4 Results

In the following section, we briefly present the
results of our analyses. More details, particularly
tables and figures, can be found in the appendix.

4.1 Vocabulary

For the pseudo-tweets, we count 441,022 tokens
in total and on average 646,773 ± 1,568 tokens
for the sampled source tweets. When comparing
the number of types in the vocabulary, we find
6,499 different types in the pseudo data, whereas
the source tweets exhibit 21,079 ± 121 types per
random sample batch. Further, the mean length

of pseudo-tweets is 44 (median is 44), while the
source tweets have a mean length of 64 (median is
68). The results of the other statistics are summa-
rized in Appendix B.

4.2 Analysis of ADEs

The comparison between the overall drug-ADE
pairs is presented in Figure 2. The left figure in-
dicates that according to the frequency in JADER,
frequent ADE pairs in the pseudo data also occur
more frequently than the less frequent ADE pairs.
The right figure analyzes the single drug-ADE pairs
in more detail. A deeper analysis, however, shows
that we cannot find a correlation between the fre-
quency of drug-ADE pairs in our pseudo data and
their occurrence in the real world, as reported in
JADER. The figure shows, for instance, that var-
ious drug-ADE pairs occur with a much higher
frequency in the pseudo data than JADER. Con-
versely, we can observe some frequent drug-ADE
pairs hardly occur in the pseudo data.

Figure 2: The frequency of ADEs from JADER and
the pseudo data. (left): Comparison between MFG and
LFG in the pseudo data. (right): Scatter plot between
JADER and the pseudo data.

Figure 2 (right) does not show a strong associa-
tion between JADER and the pseudo data, but the
t-test result between MFG and LFG from all drug-
ADE pairs indicated some association. When look-
ing at the drugs individually, we found that only
two of the drugs, amiodarone and azathioprine,
were correlated with Pearson’s and Spearman’s
correlation coefficient, respectively. Although the
results of the t-tests in each drug showed no statis-
tically significant differences, each of the means of
MFG was greater than each of the means of LFG.

Next, we analyzed the drug-ADE pairs of the
pseudo data. We found six pairs that were not listed
in JADER, namely azathioprine-constipation,
amiodarone-insomnia, infliximab-insomnia,



Ex3: Colchicine has been used for a long time and I
have either constipation or diarrhea... I was told that
if I get any side effects I can reduce it... but so far
I’ve only had side effects.

Figure 3: Original tweet mentioning colchicine and
constipation. (Translated from Japanese into English)

colchicine-asthma, colchicine-constipation, and
colchicine-hemorrhagic cystitis. Of those six pairs,
however, three could be found in the drug leaflets
of the corresponding medications. For the remain-
ing three, we cannot judge if this is correct from a
medical perspective. Further analysis revealed that
the pair colchicine-constipation at least occurred
in the source data as shown in Figure 3, while
the combinations azathioprine-constipation and
colchicine-asthma did not.

4.3 Direct Comparison - Human

The human analysis shows a considerable disagree-
ment between the two annotators on what can be
considered a message written by a human (Q1).
Normally, a higher Cohen’s kappa closer to one is
desirable, but in this result the Cohen’s kappa closer
to zero is desirable. The closer to zero, the better,
because it means that the two human annotators are
choosing more randomly which tweets are written
by humans and which are generated by the model.
Moreover, the results show that both annotators
consider a slightly higher number of pseudo-tweets
human-like than those from the source data.

Regarding the tweets’ comprehensibility (Q2),
most can be understood by both annotators. Again,
there seems to be no major difference between
pseudo and source tweets. Interestingly, both anno-
tators agreed not to understand only eight pseudo
and 13 source tweets.

Although our two annotators are medical ex-
perts, the results show a considerable disagreement
(Cohen’s kappa of 0.290) regarding which mes-
sages can be considered medically correct (Q3).
However, there is a slight tendency towards source
tweets being considered by both as medically cor-
rect (37 original versus 29 pseudo-tweets). The
same applies to the joint agreement for medically
incorrect tweets (23 versus 25).

Finally, regarding the anonymity of the data
(Q4), the agreement of both annotators is very
strong. Only up to four tweets (overlap of one
tweet) were considered to contain identifying infor-
mation. Notably, none of those four tweets were

Ex4: Hanako, good evening... I couldn’t tell him
about my mental health... instead he gave me some
Calonal because of a pressure headache...

Figure 4: Example of a part of a source tweet that con-
tained a person’s name, manually replaced here with
‘Hanako’ for publication.

from the pseudo data. More details can be found in
the appendix.

4.4 Direct Comparison - Model

In contrast to the human analysis, GPT-4 only re-
sponded to the above-described questions for 198
tweets. Of those tweets, the model considered all
messages human-generated and nearly all under-
standable (196/198). Moreover, 144 tweets were
regarded as medically correct, of which a slightly
larger portion came from the pseudo-tweets. The
number of tweets considered medically correct by
GPT-4, but as incorrect by both annotators, was
30. On the other hand, the number of messages
considered medically incorrect by GPT but correct
by both annotators was six. Finally, no message
was considered by GPT-4 to be not anonymous.

5 Discussion

5.1 Vocabulary

Vocabulary inspection reveals a lower diversity of
the pseudo-tweets compared to the source text mes-
sages, i.e., the source data generally contains more
types and longer messages. The similarity compar-
ison shows that given the pseudo-tweets and 4,000
source tweets, 1% of the pseudo-tweets are very
similar to the original tweets, but not equal7. The
generation process added content or reformulated
the messages, leading to pseudo-tweets covering
the same topics as the original tweets. The dis-
tribution of POS tags is similar in both datasets.
Therefore, with respect to vocabulary, the pseudo
data seems to be diverse, but not as diverse and cre-
ative as the source data. This aligns with research
on the diversity of generated content (Chung et al.,
2023) and might lead to an easy-to-learn dataset
from which a machine-learning model cannot be
generalized to other data.

5.2 Analysis of ADEs

Based on the investigated distribution of drug-ADE
pairs, we conclude that the data is medically au-

7Except for one tweet, see details in Appendix B.



thentic to a certain degree. Further investigation by
medical experts would be needed to arrive at a final
conclusion.

5.3 Direct Comparison – Human Annotators

Naturalness A large number of pseudo-tweets
were considered to be written by humans, whereas
many source tweets were considered to be not
written by humans. Moreover, the inter-annotator
agreement on this task was very low (Cohen’s
kappa of 0.089). Therefore, we conclude that it is
difficult to detect tweets written by humans and that
our pseudo-tweets are sufficiently human-alike.

Comprehensibility Many tweets, even those
written by humans, were not understood, and in
fact, a larger percentage of the source tweets writ-
ten by humans did not make sense to the annotators.
This suggests that our pseudo-tweets are at least as
comprehensible as the source tweets.

Medical correctness The annotations show that
both annotators considered more source tweets
medically correct. On the other hand, the anno-
tators also show a strong disagreement with many
tweets. Therefore, it is difficult to conclude that
source data might be medically more accurate than
synthetic data. Conversely, we can see a similar
distribution of messages labeled as medically incor-
rect by both annotators (source=23; pseudo=25).
In other words, this means that one out of four mes-
sages is medically incorrect. Although our subset
was randomly sampled, this shows a concerning
tendency and raises concerns about health-related
information from social media.

Anonymity Most tweets did not include identi-
fying information, as critical information and mes-
sages were filtered out beforehand. Interestingly,
the only messages considered problematic regard-
ing anonymity were still from the source data, not
the pseudo data, as shown in Figure 4. However,
we cannot guarantee that pseudo-tweets per se do
not include identifying information, but we believe
that removing critical information before training a
generative model helps.

5.4 Direct Comparison – Model

While the question about comprehension might be
too abstract for GPT-4, it fails to identify messages
with identifying information. Moreover, regarding
medical correctness, the model identified multi-
ple tweets as correct, which, on the other hand,

were labeled by both humans as incorrect and vice
versa. Finally, regarding the differentiation be-
tween human-generated and synthetic tweets, GPT-
4 and humans come to a similar conclusion: they
are difficult to differentiate. However, GPT-4 is too
optimistic and assigns all messages to human-alike.

6 Conclusion

In this work, we analyzed synthetically-generated
tweets in the context of drug intake and adverse
drug reactions. The data was compared to (real)
user-generated messages regarding authenticity,
privacy preservation, and medical correctness. The
results show that the synthetic data has character-
istics similar to the source data. From a linguistic
point of view, the data shows less variation, but it
contains a similar number of data with question-
able medical correctness (as the original), and has
a similar authenticity. In addition to that, pseudo
data could serve as a “safety net” as it might be less
likely to provide identifiable information. Finally,
we believe that the findings are generally valid for
different languages; however, larger and more com-
plex models than T5 might increase the authenticity
and correctness level but might easily reproduce
sensitive information it has seen during training.
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Limitations and Ethical Considerations

JADER has a reporting bias because some of the
reports are voluntary, which may have affected the
results. The study targets generated Japanese social
media messages. However, most analyses should
also apply to other languages, especially those in
the original corpus (Wakamiya et al., 2023). We
recognize that the above data analysis is domain-
specific, but similar tests could also be conducted
for other areas.



Regarding ethical considerations, the following
three methods were implemented to avoid privacy
issues in the original Twitter data: Deleting the
usernames in training data for the model, delet-
ing the exact duplicates in the generated text from
the source, and, with manual work of annotators,
checking all of the synthetic data and making sure
no identifying information remains. Models using
original data were trained locally.

We further acknowledge that questions used to
judge tweets with GPT-4 and the corresponding
responses are (1) not reproducible as soon as an
updated version of GPT-4 is released, and (2) might
result in different responses when the questions are
slightly modified or set up differently.

Finally, to assess the authenticity and diversity of
the data, many more linguistic measures could be
applied. This paper only presents a few as a com-
plement to the medically inspired investigations.

References
Masoud Abedi, Lars Hempel, Sina Sadeghi, and Toralf

Kirsten. 2022. Gan-based approaches for generat-
ing structured data in the medical domain. Applied
Sciences, 12(14).

Ali Amin-Nejad, Julia Ive, and Sumithra Velupillai.
2020. Exploring transformer text generation for med-
ical dataset augmentation. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4699–4708, Marseille, France. European
Language Resources Association.

Iyadh Ben Cheikh Larbi, Aljoscha Burchardt, and
Roland Roller. 2023. Clinical Text Anonymization,
its Influence on Downstream NLP Tasks and the Risk
of Re-Identification. In Proceedings of the 17th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Student Research
Workshop, pages 105–111, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Edward Choi, Siddharth Biswal, Bradley Malin, Jon
Duke, Walter F. Stewart, and Jimeng Sun. 2017. Gen-
erating multi-label discrete patient records using gen-
erative adversarial networks. In Proceedings of the
2nd Machine Learning for Healthcare Conference,
volume 68 of Proceedings of Machine Learning Re-
search, pages 286–305. PMLR.

John Chung, Ece Kamar, and Saleema Amershi. 2023.
Increasing diversity while maintaining accuracy:
Text data generation with large language models and
human interventions. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 575–593,
Toronto, Canada. Association for Computational Lin-
guistics.

Jacob Cohen. 1960. A Coefficient of Agreement for
Nominal Scales. Educational and Psychological
Measurement, 20(1):37–46.

Mauro Giuffrè and Dennis L. Shung. 2023. Harnessing
the power of synthetic data in healthcare: innova-
tion, application, and privacy. npj Digital Medicine,
6(1):186.

Aldren Gonzales, Guruprabha Guruswamy, and Scott R.
Smith. 2023. Synthetic data in health care: A narra-
tive review. PLOS Digital Health, 2(1):e0000082.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems, volume 27. Curran Associates,
Inc.

Morgan Guillaudeux, Olivia Rousseau, Julien Petot,
Zineb Bennis, Charles-Axel Dein, Thomas Goron-
flot, Nicolas Vince, Sophie Limou, Matilde Karaka-
choff, Matthieu Wargny, and Pierre-Antoine Gour-
raud. 2023. Patient-centric synthetic data generation,
no reason to risk re-identification in biomedical data
analysis. npj Digital Medicine, 6(1):37.

Nicolas Hiebel, Olivier Ferret, Karen Fort, and Au-
rélie Névéol. 2023. Can synthetic text help clini-
cal named entity recognition? a study of electronic
health records in French. In Proceedings of the 17th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 2320–
2338, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Julia Ive, Natalia Viani, Joyce Kam, Lucia Yin, Somain
Verma, Stephen Puntis, Rudolf N. Cardinal, Angus
Roberts, Robert Stewart, and Sumithra Velupillai.
2020. Generation and evaluation of artificial mental
health records for Natural Language Processing. npj
Digital Medicine, 3(1):69.

W. Johnson. 1944. Studies in Language Behavior. Psy-
chological Monographs. American Psychological As-
sociation.

Claudia Alessandra Libbi, Jan Trienes, Dolf Tri-
eschnigg, and Christin Seifert. 2021. Generating syn-
thetic training data for supervised de-identification
of electronic health records. Future Internet, 13(5).

Yunhui Long, Vincent Bindschaedler, and Carl A.
Gunter. 2017. Towards measuring membership pri-
vacy. CoRR, abs/1712.09136.

S. Mclachlan, K. Dube, T. Gallagher, B. Daley, and
J. Walonoski. 2018. The ATEN Framework for Creat-
ing the Realistic Synthetic Electronic Health Record.
Technologies (BIOSTEC 2018), 11th International
Joint Conference on Biomedical Engineering Sys-
tems.

https://doi.org/10.3390/app12147075
https://doi.org/10.3390/app12147075
https://aclanthology.org/2020.lrec-1.578
https://aclanthology.org/2020.lrec-1.578
https://doi.org/10.18653/v1/2023.eacl-srw.11
https://doi.org/10.18653/v1/2023.eacl-srw.11
https://doi.org/10.18653/v1/2023.eacl-srw.11
https://proceedings.mlr.press/v68/choi17a.html
https://proceedings.mlr.press/v68/choi17a.html
https://proceedings.mlr.press/v68/choi17a.html
https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1038/s41746-023-00927-3
https://doi.org/10.1038/s41746-023-00927-3
https://doi.org/10.1038/s41746-023-00927-3
https://doi.org/10.1371/journal.pdig.0000082
https://doi.org/10.1371/journal.pdig.0000082
https://doi.org/10.1038/s41746-023-00771-5
https://doi.org/10.1038/s41746-023-00771-5
https://doi.org/10.1038/s41746-023-00771-5
https://doi.org/10.18653/v1/2023.eacl-main.170
https://doi.org/10.18653/v1/2023.eacl-main.170
https://doi.org/10.18653/v1/2023.eacl-main.170
https://doi.org/10.1038/s41746-020-0267-x
https://doi.org/10.1038/s41746-020-0267-x
https://doi.org/10.3390/fi13050136
https://doi.org/10.3390/fi13050136
https://doi.org/10.3390/fi13050136
http://arxiv.org/abs/1712.09136
http://arxiv.org/abs/1712.09136
https://doi.org/10.5220/0006677602200230
https://doi.org/10.5220/0006677602200230


Oren Melamud and Chaitanya Shivade. 2019. Towards
automatic generation of shareable synthetic clinical
notes using neural language models. In Proceedings
of the 2nd Clinical Natural Language Processing
Workshop, pages 35–45, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Stephane M Meystre, F Jeffrey Friedlin, Brett R South,
Shuying Shen, and Matthew H Samore. 2010. Au-
tomatic de-identification of textual documents in the
electronic health record: a review of recent research.
BMC medical research methodology, 10(1):1–16.

OpenAI. 2023. GPT-4 Technical Report. Publisher:
arXiv Version Number: 3.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):140:5485–140:5551.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Thomas Vakili, Anastasios Lamproudis, Aron Henriks-
son, and Hercules Dalianis. 2022. Downstream task
performance of BERT models pre-trained using auto-
matically de-identified clinical data. In Proceedings
of the Thirteenth Language Resources and Evalua-
tion Conference, pages 4245–4252, Marseille, France.
European Language Resources Association.

Elena Volodina, Simon Dobnik, Therese Lindströ m
Tiedemann, and Xuan-Son Vu. 2023. Grandma karl
is 27 years old – research agenda for pseudonymiza-
tion of research data. In 2023 IEEE Ninth Interna-
tional Conference on Big Data Computing Service
and Applications (BigDataService), pages 229–233.

Shoko Wakamiya, Lis Kanashiro Pereira, Lisa Raithel,
Hui-Syuan Yeh, Peitao Han, Seiji Shimizu, Tomo-
hiro Nishiyama, Gabriel Herman Bernardim An-
drade, Noriki Nishida, Hiroki Teranishi, Narumi
Tokunaga, Philippe Thomas, Roland Roller, Pierre
Zweigenbaum, Yuji Matsumoto, Akiko Aizawa, Se-
bastian Möller, Cyril Grouin, Thomas Lavergne, Au-
rélie Névéol, Patrick Paroubek, Shuntaro Yada, and
Eiji Aramaki. 2023. NTCIR-17 MedNLP-SC So-
cial Media Adverse Drug Event Detection: Subtask
Overview. In Proceedings of the 17th NTCIR Con-
ference on Evaluation of Information Access Tech-
nologies, NTCIR-17. National Institute of Informatics
(NII).

A Appendix

A.1 Corpus Generation

The synthetic data creation consists of two steps,
data generation and pre-processing. First, Japanese
tweets were collected from Twitter (X), using 68
drug queries extracted from a Japanese drug-name
dictionary8 and the public Twitter API9. The text
generation model was built from the collected
tweets to produce Japanese pseudo tweets. URLs
and user names in the original tweets were replaced
with masks. Using a Japanese medical named en-
tity recognizer, MedNER-CR-JA10, tweets without
any symptom expression were filtered out. T5 was
fine-tuned on the remaining tweets to generate syn-
thetic tweets mentioning a subset of 17 drugs.

During post-processing, the following tweets
were filtered out; (i) pseudo-messages that do
not mention any drug or symptom, (ii) pseudo-
messages that are identical to any of the original
tweets, and (iii) duplicates.

Finally, all tweets mentioning any of the 17
drugs were annotated manually. After counting
the number of annotations describing positive ADE
mentions, the 24 most frequent ones were chosen.
In two cases, two similar ADEs were merged into
one. Then, 22 ADEs were obtained as labels. More
details can be found in Wakamiya et al. (2023).

A.2 Tables and Figures about analysis of
ADEs and human comparison

Tables 1 and 2 and Figure 6 present the detailed re-
sults of the direct comparison of source and pseudo
data, analyzed by human annotators and GPT-4.
Figure 5 presents the detailed distribution of the
drugs and their ADE in the pseudo data compared
to JADER. Table 3 and Figures 10 and 11 show a
detailed overview of the data’s drug-ADE correla-
tion. Finally, Figure 8 presents all example tweets
from above in the original language (Japanese).

B Details on Corpus Statistics

The following will give more details on the cor-
pus statistics we used to compare the original and
pseudo-tweets. This is not exhaustive; there are
many more interesting analyses that can be applied
to the data.

8https://sociocom.naist.jp/hyakuyaku-dic/
9https://developer.twitter.com/en/support/

twitter-api
10https://huggingface.co/sociocom/MedNER-CR-JA
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Figure 5: Distributions between JADER and the corpus

Q1 A1
yes no

A2 yes 71 (31 / 40) 15 (7 / 8)
no 83 (41 / 42) 31 (21 / 10)

Cohen’s kappa 0.089
Q2 A1

yes no
A2 yes 126 (63 / 63) 38 (15 / 23)

no 15 (9 / 6) 21 (13 / 8)
Cohen’s kappa 0.281
Q3 A1

yes no
A2 yes 66 (37 / 29) 24 (7 / 17)

no 48 (23 / 25) 48 (23 / 25)
Cohen’s kappa 0.290
Q4 A1

yes no
A2 yes 1 (1 / 0) 1 (1 / 0)

no 2 (2 / 0) 196 (96 / 100)
Cohen’s kappa 0.393

Table 1: Results from human judgment by annotator1
(A1) and annotator2 (A2).*The numbers are counts of
original + pseudo (original / pseudo)

GPT-4 Answer Cohen’s kappa
yes no A1 A2

Q1 198 (98 / 100) 0 (0 / 0) 0.000 0.000
Q2 196 (97 / 99) 2 (1 / 1) 0.088 0.014
Q3 144 (67 / 77) 54 (31 / 23) 0.237 0.298
Q4 0 (0 / 0) 198 (98 / 100) 0.000 0.000

Table 2: Results from model judgment by GPT-4

Figure 6: Results from human judgment by A1 and A2
(Barplots of Table 1) .

B.1 Statistics
Type-Token Ratio The type-token ratio (TTR)
(Johnson, 1944) counts the number of types and
divides the result by the number of tokens as a mea-
sure of diversity in a corpus. However, this ratio
strongly depends on the corpus size, and therefore,
it is often shown as a function of the corpus size.

Part-of-Speech Tags We further calculate the
relative frequencies of the occurring POS tags in
the data using spaCy for tagging.

Similarity We index the pseudo-tweets with the
FAISS library and compare them using cosine sim-
ilarity with a sample from the original data. This



Figure 7: The relative frequency of the POS tags for the
pseudo- and source tweets.

Ex1: 接種後失明は良く聞くけど耳もなんだ肺
炎だとステロイドで即回復だけど目や耳って

Ex2: アザチオプリンを飲み始めて2日目だけど
めっちゃ効いてる気がする。でも副作用で全
身の発疹が凄い..

Ex3: コルヒチンは昔から使われてるし、便秘
か下痢のどっちかかな…副作用出たら減らし
てもいいから、次の病院まで飲み続けてって
言われたんだけど、副作用しか今のとこない
んだけど

Ex4: はなこちゃん，こんばんは... 精神的なこ
とは伝えられずに終わりました～，そのかわ
り気圧頭痛が酷くてカロナール出して…

Figure 8: Japanese version of examples Ex1–Ex4. Ex1:
source tweet. Ex2: pseudo tweet. Ex3: tweet mention-
ing colchicine and constipation. Ex4 where a person’s
name remained in the tweet (manually replaced here
with ‘はなこ’ for publication).

sample contained only 4,000 original tweets since
the computation was time-consuming.

B.2 Results and Discussion

Type-Token Ratio In Figure 9, we show the TTR
for both datasets (the first 20,000 tokens), plotted
against the corpus size. The source tweets clearly
show a higher type-token ratio which decreases
slower than the ratio of the pseudo-tweets.

Part-of-Speech Tags We show the relative fre-
quencies of the occurring POS tags in Figure 7.
The pseudo-tweets get tagged with 15 different
POS tags, while the original data gets 16 POS tags.
Nouns (NOUN), adpositions (ADP), auxiliaries

Figure 9: The type-token ratio as a function of corpus
size for the source (orange) and pseudo data (blue) for
an excerpt of the data.

Pearson Spearman KS
drug CC p-value CC p-value p-value

azathioprine 0.316 0.153 0.508 0.016 0.049
aspirin -0.154 0.493 -0.014 0.951 0.007
amiodarone 0.762 0.000 0.391 0.072 0.020
infliximab 0.040 0.859 0.176 0.435 0.109
colchicine 0.314 0.154 0.205 0.359 0.632
cyclosporine -0.096 0.670 -0.072 0.750 0.394
cyclophosphamide 0.110 0.627 0.205 0.361 0.109
cisplatin 0.184 0.411 0.269 0.226 0.872
tacrolimus 0.025 0.911 -0.137 0.542 0.394
minocycline -0.212 0.343 -0.064 0.776 0.218
mesalazine 0.104 0.646 0.102 0.652 0.632
methotrexate -0.215 0.336 -0.086 0.705 0.109
metformin 0.107 0.635 0.210 0.349 0.007
all drugs 0.088 0.140 0.126 0.034 -

Table 3: Pearson’s and Spearman’s correlation coeffi-
cient and p-values of the tests in each drug

(AUX) and punctuation markers (PUNCT)11 are
the most common POS tags for both corpora.

Similarity From the 4,000 samples we compared
to the pseudo-tweets, we retrieved 86 hits that
showed a cosine similarity higher than 0.9 and
one that was exactly the same. However, from
the 86 hits, only 39 were unique, i.e., one pseudo-
tweet can have several very similar, but not exact
nearest neighbors. The single pseudo-tweet that
was identical to the source tweet did not contain
any identifiable information and was basically a se-
quence of hashtags. However, this shows that even
though the generation process included a diversity
penalty, synthetic data might still be repetitive or
near-repetitive.

11https://universaldependencies.org/u/pos/

https://universaldependencies.org/u/pos/


Figure 10: The frequency between JADER and the corpus in each drug

Figure 11: Comparison between MFG and LFG in each drug
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