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Abstract: The engineering of reliable and trustworthy AI systems needs to mature. While facing unprecedented chal-
lenges, there is much to be learned from other engineering disciplines. We focus on the four pillars of (i)
Models & Explanations, (ii) Causality & Grounding, (iii) Modularity & Compositionality, and (iv) Human
Agency & Oversight. Based on these pillars, a new AI engineering disciple could emerge, which we aim to
support using corresponding methods and tools for “Trust by Design”.

1 INTRODUCTION

The current wave of Artificial Intelligence (AI) has
emerged as a leading technology in the digital trans-
formation, changing the economy, society, and our
lives, while attracting massive investment world-
wide. The past decade has been characterised by
Deep Learning (LeCun et al., 2015; Deng and Yu,
2014), Transformers (Vaswani et al., 2017; Vaswani
et al., 2023) and Large ”Foundation” Models Machine
learning methods have transformed AI from a niche
science to a socially relevant “mega-technology,” es-
pecially in the fields of image and video analysis,
as well as in text and language processing. This
new technology is made possible primarily by the
latest graphics processors and the availability of
vast amounts of data from social media and similar
sources.

However, we are reaching the limits of control
over these large, highly interconnected, AI-based sys-
tems. The complexity of existing AI models is often
beyond our understanding, and the methods and pro-
cesses to ensure safety, reliability, and transparency
are lacking. We must overcome these novel and seri-
ous limitations or face an inevitable dwindling public
and consumer acceptance of AI and dramatic losses
in business opportunities and markets. This is clearly
visible already in the automotive sector‘s broad re-
treat from highly automated driving. AI-based tech-
nology is also a key enabler in other economic sectors
– including healthcare, mobility, energy, and the dig-
ital industry itself. All of these markets depend on
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complex and highly connected AI systems designed
to support people in decision making and situational
analysis.

Despite all the successes, many are not aware that
deep learning does not support a real understanding of
the problem, but only reflects complex statistical rela-
tionships. Great disillusionment set in as problems
such as insufficient internal representation of mean-
ing (interpretability and transparency), susceptibility
to changes in the input signal (robustness), lack of
transferability to cases not covered by the data (gener-
alisation) and, last but not least, the thirst for big data
itself (efficiency, adequacy, sustainability) became ap-
parent.

Recently, however, a new overall approach to
solving these problems is being advanced by the term
“Trusted AI.” Trusted AI aims to create a new gener-
ation of AI systems that guarantee functionality, al-
lowing use even in critical applications. Develop-
ers, domain experts, users, and regulators can rely on
performance and reliability even for complex socio-
technical systems. Trusted AI is characterised by
a high degree of robustness, transparency, fairness,
and verifiability, where the functionality of existing
systems is in no way compromised, but actually en-
hanced.

2 MOTIVATION

Current machine learning systems perform quite well
and reliably in the context of their training data sets.
To be useful, however, they also need to predict, clas-
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sify, decide and act in situations that they were not
explicitly trained for. Therefore, they are evaluated
with test data sets that should not overlap with the
training data set. The measured level of ”generalisa-
tion” is an indication for how well they can perform
in general (at least with respect to the test data, which
is a limiting factor, indeed). Even a good level of such
generalisation is not sufficient, however, because the
systems are not able to distinguish between ”normal”
and ”abnormal” situations.

Robustness is the ability of software systems to
react appropriately to abnormal conditions (Meyer,
1997). For this purpose, it is a necessity to recognise
situations or contexts where (implicit) assumptions do
no longer hold. Without making those assumptions
explicit, it is impossible to detect the edge of compe-
tence and to adapt accordingly. Explicit assumptions
or (world) models include rules, norms or laws. These
models include physical and natural laws (thermo-
dynamics, electromagnetism, gravity, quantum me-
chanics, etc.), legal rules, socio-cultural norms, med-
ical models (anatomy, mechanistic models of dis-
ease transmission, etc.), and others – that are always
true, independent of the training data. Adaptation to
changes in or of the context may include changes of
rules. The use of model-based software engineering
allows to exclude impossible or to invalidate highly
improbable options and to enforce or guide learning
and adaptation towards the most plausible and realis-
tic outcomes. Many combinations of methods using
knowledge-based reasoning models and data-driven
learning components are possible (van Bekkum et al.,
2021) and contribute to mutual system-level enhance-
ments.

3 BUILDING TRUSTWORTHY AI
SYSTEMS FOR THE FUTURE

Some of the current problems related to a lack of
trust in AI systems are a direct result of the mas-
sive use of black-box methods that depend solely on
data (Morocho-Cayamcela et al., 2019). Instead, the
new AI generation has its foundation built on hybrid
AI systems (also known as neuro-symbolic or neuro-
explicit). These hybrids do not rely solely on data-
driven approaches but on the full range of AI tech-
nologies (“All of AI”), which includes symbolic AI
methods, search, reasoning, planning, and other op-
erations. “Trust by Design” is achieved through the
combination of Machine Learning with symbolic con-
clusions and the explicit representation of knowledge
in hybrid AI systems. Knowledge no longer needs to
be machine learned when it is represented by seman-

tic and other explicit models, which can also guide
the learning process in a direction that improves gen-
eralisation, robustness, and interpretability. This hy-
brid approach is also known as the third wave of AI
(Garcez et al., 2009; Garcez and Lamb, 2023). The
requirements are particularly strict when it comes to
applications with significant physical, economic, or
social risk. The AI systems used in such applications
are required – for example by the European AI Act –
to have been validated and certified.

With respect to the recent excitement about gener-
ative AI, a few critical considerations need to be high-
lighted. Generative AI is based on so-called ”Foun-
dation Models”, which can appear as Large Language
Models (LLM) or as similar models of still images
or videos. The transformer architectures that generate
these models convert huge amounts or text or other
media content into statistical models of co-occurrence
of tokens (parts of words or other features). The re-
sulting models can then be used to generate text, im-
ages and video as predictions of probabilistic patterns
of adjacency in the model’s huge space. For text, it
is also possible to extract summaries and to conduct
dialogues in natural language. At a first glance, these
models for generative AI seem to understand human
language and creative expression. However, as they
are uniquely based on producing probabilistic assem-
blies of tokens, they do not even even language it-
self. There is no grammar involved or any form of
semantics. Foundational Models are not trustworthy,
because they lack any kind of understanding of truth,
facts, time, space, concepts, reasons, causes and ef-
fects. As they are not consistent, transparent, robust
and reliable, it is very risky to trust them in critical
applications. Even when they seem to give reasonable
answers from time to time, it is impossible to predict
when they will fail and start to hallucinate.

3.1 Trusted AI Engineering

There is a dilemma to overcome in building trustwor-
thy AI systems (Thiebes et al., 2021; Ramchurn et al.,
2021): on the one hand, we expect AI systems to
decide autonomously and intelligently on our behalf,
which requires agency and delegation; on the other
hand, we require them to be predictable, verifiable,
safe and accountable. Of course, there are limits to
achieving all these goals and to guarantee correctness
under all circumstances and domains. Instead, there
is a trade-off to be made between entirely predictable
and correct versus plausible and adaptive behaviour.
What matters most is that expectations are managed
to create validated trust through experience.

When designing trustworthy AI systems, there are
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several important aspects that should be considered
to guarantee the characteristics of trustworthy AI. In
principle, these aspects apply to all software systems.
However, they are of the greatest relevance for com-
plex, intelligent systems for critical applications. AI
engineering should make use of the lessons learned
from software engineering and apply its engineering
principles, such as design patterns and architectures.

A fundamental difference between tradition soft-
ware and AI systems is that the outcomes are not
necessarily deterministic, but probabilistic, and that
there may be more than one ”correct answer”. Hence,
the goal is shifting from guarantees of correctness to-
wards verifying for plausibility.

Very importantly, an autonomous AI system
should be aware of its level of competence and self-
confidence of its results. The area of competence is
also known as the operational design domain (ODD),
but a system may perform well beyond its designed or
trained expertise by generalising also out of domain
(OOD).

The following four pillars of AI Engineering are
proposed as a framework for creating Trusted AI by
Design. Each of these pillars will be described in
more detail in the sections below, with a special fo-
cus on causality.

Models & Explanations. Reliable predictions about
system behaviour for insightful and plausible ex-
planations and simulations with generalised mod-
els from knowledge and training.

Causality & Grounding. Identification and predic-
tions of cause-effect relationships for informed
predictions and anchoring of meaning in real-
world context and phenomena.

Modularity & Compositionality. Design of com-
plex systems broken down into comprehensible
and manageable parts (functions and features), re-
liably composed in system architectures.

Human Agency & Oversight. Overview, final deci-
sion and responsibility by humans for actions of
AI systems, also when delegating tasks to au-
tonomous agents in collaborative teams.

3.2 Models and Explanations

Explicit models1 of the world or a suitable context in
question enable reliable predictions of the behaviour
of AI systems, both in the scope of training data

1The term “model” is used extensively in the ML com-
munity. It is necessary, however, to distinguish between the
statistical models of ML and the semantic models of knowl-
edge engineering. Here, we refer to the latter. See also in
(van Bekkum et al., 2021) for a unified taxonomy of AI.

and outside, because they generalise knowledge be-
yond the limited and biased scope of the training data.
Given a certain context, which can be very narrow or
broad, explicit models represent concepts, relation-
ships and rules that are always true in that context.
For example, the laws of gravity are applicable to the
whole universe. Models can be created by experts or
learned from experience and data. Combinations of
different types of models are particularly useful and
insightful. For example, neuro-symbolic approaches
are used to achieve this (Garcez et al., 2002b; Garcez
et al., 2002a; Bader and Hitzler, 2005; Lake et al.,
2017; Yu et al., 2021). In this way, models pro-
mote transparency and explainability and, thus, make
it possible to render the behaviour of the AI systems
understandable and plausible. In simulations, models
can enable the understanding – through experiments
– of situations that are difficult or impossible to ac-
cess otherwise. Privacy is thus maintained, as is the
avoidance of dangerous conditions.

Because models depend on a given context or do-
main, it is essential that agents using those models are
aware of their competence in the given situation and
are able to apply suitable models or adapt to situations
gracefully when changing or leaving their scope of
competence. Each context includes a corresponding
bias. Often, bias is attempted to be removed. How-
ever, agents need to be aware of their bias and to apply
it thoughtfully, because bias is a measure of informa-
tion, when bias-awareness exists.

3.3 Causality and Grounding

The need to move from correlation to causation is be-
coming more and more evident. If we want to ex-
plain why certain predictions are made or decisions
are taken, it is essential to know their causes (Pearl
et al., 2016; Pearl and Mackenzie, 2018). Causality
refers to the ability to identify and predict cause-and-
effect relationships, i.e. which effects are the results
of which causes and why. An AI system that can un-
derstand causal relationships is able to make informed
predictions and solve complex problems. Counterfac-
tual inference can be performed in a wider scope of
domain than given by the training data alone, because
answers can be found to questions that involve hy-
potheses about changes in the past (”what would have
happened if...?”), which give reasons for alternative
outcomes in the future.

Causal Models. Structural causal models (SCM)
and Structural Equation Models (SEM) (Pearl,
2010; Pearl et al., 2016) provide a concise method
for modelling and analysing causal relationships
as graphs (SCM) and sets of equations (SEM),
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as shown in figure 1. SCMs support the human
understanding and explanations, while SEMs are
more suitable for representing causality in combi-
nation with logical expressions to define the spe-
cific functions that relate the variables (F). Vari-
ables represent events, processes, states or ob-
jects.

Causal Inference. Causal inference is typically con-
cerned with the resulting effect when a corre-
sponding event (cause) occurs, according to a
given causal model, such that the respective de-
pendency can be verified. Causal inference asks
whether an event indeed causes a certain effect
by determining the likelihood that one event was
the cause of another. In contrast to statistical
correlations, causal relationships are asymmetri-
cal (Price, 1992; Kutach, 2013; Ismael, 2023), i.e.
that there is a directed relationship from a cause
to an effect, rather than a spurious co-occurrence
of events.

Counterfactuals refer to alternative choices that
could have been made in the past and the cor-
responding effects that they might have caused.
Therefore, they allow for exploring possibilities
that exist in imagined worlds – in contrast to what
actually happened – by intervening in the value
of specific variables and, hence, find alternative
outcomes according to the same model as usual.
Counterfactuals can represent situations that may
not be practical for observation due to practical or
ethical reasons, which enables the causal explo-
ration of a wider scope of domain.

Causal Discovery. Even when causal models are not
known in advance, causal discovery allows for de-
termining whether a change in one variable (rep-
resenting a state, action or event) indeed causes
a change in another, in order to distinguish be-
tween correlated and causal relationships in data
and to derive corresponding models. Approaches
to make the distinction are interventions, random
control trials and counterfactual reasoning (Eber-
hardt, 2017; Zhu et al., 2020; Schölkopf et al.,
2021; Schölkopf and von Kügelgen, 2022). The
use of known causal models can improve (lan-
guage) understanding and causal discovery can
bring understanding from data to a higher level,
i.e., formulate new hypotheses and insights that
transcend the previous body of knowledge (for ex-
ample, in a similar way as discovering the laws of
thermodynamics or electromagnetism).

Causal Machine Learning. Causally-informed Ma-
chine Learning (CML) uses causal models to in-
fluence and direct ML methods for improved pre-

X Y

Z

(a) Structural Causal Model (SCM).

U = {X ,Y}
V = {Z}
F = { fZ : Z = 2X +3Y}

(b) Structural Equation Model (SEM).

Figure 1: Causal Models.

dictability through reuse of domain knowledge, as
well as explainability and robustness through in-
terventions and counterfactuals (Vlontzos et al.,
2023; Kyono and van der Schaar, 2019; Zhang
et al., 2020; Rawal et al., 2023).

Shared causal models increase trust among team
members, because they help to explain to each other
why certain actions are to be taken (Janssen et al.,
2022). Delegation without reason or motivation is not
trustworthy (unless the authority or reputation of the
delegator is very high). This enables users to better
understand the rationale and have greater confidence
in others making a fair decision. Causality can also
be seen as an enabler (or even a requirement) for ex-
plainable artificial intelligence (Carloni et al., 2023).

There are several important aspects by which
causality can improve the trustworthiness of AI
systems. Besides precision and accuracy, which
are fundamental to trustworthiness in AI, they are
(Greifeneder, 2021; Ganguly et al., 2023; Bartling
et al., 2018; Yap and Tomlinson, 2016):

Transparency & Interpretability. The reasoning
behind decisions is explainable and easily un-
derstood by humans. Causal models provide the
reasons for predictions and causal explanations
help to build a correct mental model of the
problem.

Reproducibility. The ability to repeat experiments
and get the same results increases the trustwor-
thiness and accuracy of scientific output.

Fairness. Causal AI can remove bias, because it un-
derstands how variables are interconnected and
dependent on each other. Understanding causal
relationships between sensitive input variables
(such as gender or race) and predicted outcomes is
important for assessing biased behaviour. Coun-
terfactual fairness is achieved when the output is
identical for each sensitive input variable.

Robustness. Causal models can avoid the brittleness
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of most machine learning systems, due to spurious
correlations. They can handle data that is not in-
dependent and identically distributed (IID) or out
of distribution (OOD), because they can discern
between relevant and irrelevant data and variables
(Sherman and Shpitser, 2019; Zhang et al., 2023).

Privacy. The robustness of causal models helps in
preventing privacy attacks, because weaknesses of
trained models cannot easily be exploited, for ex-
ample in federated learning.

Safety & Accountability (Auditing). Regulations
for safe-guarding AI systems for use in critical
applications and domains demand impact as-
sessment (IA) to prevent from algorithmic and
data-driven harm by finding potential negative
effects before (large-scale) deployment. Causal
models that represent dependencies between sys-
tem design and impact can be used to assess and
mitigate corresponding risks by identifying which
system elements are responsible for undesired
effects.

Closely related to causality is understanding the an-
choring (grounding) of meanings in the real context.
A deep understanding of context and meaning re-
quires not only processing data, but also capturing the
real-world phenomena that the data represents, such
that predictions, decisions and actions are based on
them. This applies also to large language models, so
that statements are not only made based on statistical
probabilities, but in the knowledge of the concepts,
contexts, phenomena, and semantic and causal rela-
tionships grounded in reality (Searle, 1980; Harnad,
1990). Whether this knowledge necessarily requires
physical interaction of the agent with its environment
remains a subject of debate (Gärdenfors, 2019). Har-
nad argues for the need for sensations to induce and
stimulate representations via distal objects – things
that exist in the environment and emit signals that
can be perceived by means of a medium and means
of perception. Not all concepts are physical though,
which is a strength of abstract thinking, namely that
more abstract concepts can be formed, represented
and communicated from less abstract ones. Also, per-
ception is guided by intellect and constrained by the
available means of perception.

Layers of abstractions are fundamental for build-
ing rich architectures in software engineering and AI
systems are no exception. Semantic models, such
as ontologies (Fensel et al., 2001; Antoniou and
Van Harmelen, 2004), are representations of con-
cepts, their attributes and relationships, and, there-
fore, contribute to trustworthy AI systems by explain-
ing and constraining the meaning of those concepts.

The difference and close interaction between percep-
tion and reasoning on various levels of abstractions is
documented as System 1 and System 2 in (Kahneman,
2011).

3.4 Modularity and Compositionality

One of the fundamental design principles of (soft-
ware) engineering is modularity. Modularity guar-
antees that complex systems are broken down into
understandable and manageable parts (functions and
features) and reliably assembled into system architec-
tures. This increases the reliability of the individ-
ual components and their assemblies as systems of
systems. It is much easier to verify smaller compo-
nents than big monolithic artefacts. The evolution in
software engineering from structured to modular and
object-oriented programming enabled the design and
construction of complex systems. In well-designed
systems the transitions between successive compo-
nents can be controlled and protected, making them
explainable such that errors can be detected effec-
tively. The pre- and post-conditions of each compo-
nent can be validated and orchestrated in increasingly
complex systems of systems.

An important advantage of modular systems is
that compositional patterns of subsystems can be
identified and defined, which increases their reliabil-
ity and documentation through reuse (Gamma et al.,
1994; van Bekkum et al., 2021).

It is important to stress that software architectures
are not merely static artefacts, but they rely on the
interplay between structures and events – the organis-
ing principles and the dynamic evolution of complex
systems (Lévi-Strauss, 1962). Neither structure nor
events are meaningful on their own, but require and
depend on each other. In an extrapolated view, this re-
lationship may be applied to the combination of learn-
ing and reasoning. Meaning emerges from a system’s
structure and its components, when it is operated in a
dynamic context of perceiving and acting.

The principle of compositionality also applies
to knowledge models and languages (Tiddi et al.,
2023): larger constructs are created by joining to-
gether smaller units with specific, understandable,
and verifiable tasks. Abstract relationships can thus
be traced back to their components. These aspects are
applied when designing complex systems and should
also become a matter of course for AI systems.

3.5 Human Agency and Oversight

Human agency and oversight mean that in any case
a human should have the overview, final decision,
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and responsibility for the actions of an AI system
(human empowerment). Even if many tasks are in-
creasingly being transferred to autonomous AI sys-
tems (agents), the principle that humans supervise,
assess, and approve actions still applies. Keeping in
mind the above-mentioned dilemma in building trust-
worthy AI systems, delegation of tasks needs to be
interpretable by both humans and (software) agents –
in particular, when humans and agents collaborate as
hybrid teams in a symbiotic partnership. It is neces-
sary that suitable task descriptions are handed over to
the agents and that they understand and execute them
in the relevant context, considering the models, expla-
nations and causal relationships explained above.

For collaborative decision-making (CDM), it is
essential that each human and agent is aware of each
others’ points of view and understands that others
possess mental states that might differ from one’s own
- which is known as a Theory of Mind (ToM). ToM is
defined as the human cognitive ability to perceive and
interpret others in terms of their mental states, such as
beliefs, desires, goals, intentions and emotions, and
it is considered an indispensable requirement of hu-
man social life (Premack and Woodruff, 1978; Baron-
Cohen et al., 1985; Frith and Frith, 2005; Verbrugge
and Mol, 2008; Byom and Mutlu, 2013; Buehler and
Weisswange, 2020). Rather than reasoning only with
one’s own beliefs, desires, intentions, emotions, and
thoughts, a person or agent with the awareness of oth-
ers’ states of mind can consider different and mindful
acts, depending on a perceived context. This ability
allows them to more easily understand, predict, and
even manipulate the behaviour of others (Verbrugge,
2020).

When considering the collaboration and compe-
tition in hybrid teams of humans and autonomous
agents, we consider many-to-many situations where
multiple humans and multiple agents form hybrid
teams. The purpose of the agents is to empower hu-
mans with providing their complementary capabili-
ties, such as fast and precise information exchange
and analysis of large data sets. Agents can play many
different roles, but the responsibility for decisions re-
mains, in principle, with humans, for example by ver-
ifying, validating and approving proposals for deci-
sions. An essential aspect of meaningful collabora-
tion is to make mutual assumptions and expectations
explicit, such that they can be used in deliberation and
communication. This is a prerequisite for appropriate
delegation of tasks and the accurate and concise de-
scriptions of their underlying intentions.

Instead of relying on AI systems to take over hu-
man activities, as some have predicted, it is better to
focus on how humans and machines can complement

each other’s strengths (Marcus, 2022). For example,
radiologists are still needed to interpret MRI images
(Chan and Siegel, 2019), but they will have to col-
laborate with AI systems and those systems need to
support the human collaborators by providing insight
into their decision-making process. Therefore, a new
approach of hybrid or neuro-symbolic AI is neces-
sary for creating trustworthiness (Marcus and Davis,
2019).

Trustworthiness in interacting with artificially in-
telligent systems emerges from experience and as a
combination of various properties, such as fairness,
robustness, transparency, verification, and accuracy
(Harbers et al., 2008). AI systems are trusted when
we have confidence in the decisions that they take,
i.e. when we understand why they are made (Rudin,
2019), even when we disagree.

In a community with trustworthy interactions, it is
crucial to establish and enforce social norms (Haynes
et al., 2017; Emelin et al., 2020; Jiang et al., 2021;
Savarimuthu et al., 2008; Haynes et al., 2017). Such
norms can be of generic nature or valid only within
certain communities or teams and specify transpar-
ently what is expected behaviour, what is allowed or
forbidden and which are the consequences in case of
violations. In addition, knowledge and intentions, but
also norms, can change and need to be adapted in due
course. Otherwise, such systems and interactions can-
not be trusted any longer.

4 CONCLUSIONS

As the field of Artificial Intelligence is still, and again,
facing tremendous and overwhelming changes and
progress, there is a strong and quickly growing need
for trust in AI systems. The goal of Trust by De-
sign is proposed to be based on the four engineering
principles of (i) Models & Explanations, (ii) Causal-
ity & Grounding, (iii) Modularity & Compositional-
ity, and (iv) Human Agency & Oversight. Our in-
tention is to develop the insights above further into
practical methods and tools to benefit the AI com-
munity and its users. The Boxology in (van Bekkum
et al., 2021) provides a stepping stone to further de-
velop trustworthy AI engineering methods, based on
neuro-symbolic and causal AI.
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Lévi-Strauss, C. (1962). La pensée sauvage. Plon. Google-
Books-ID: OoEeAAAAIAAJ.

Marcus, G. (2022). Deep Learning Is Hitting a Wall.

AI Engineering for Trust by Design

363



Marcus, G. and Davis, E. (2019). Rebooting AI: Building
Artificial Intelligence We Can Trust. Vintage.

Meyer, B. (1997). Object-Oriented Software Construction.
Prentice Hall, Upper Saddle River, NJ, 2 edition.

Morocho-Cayamcela, M. E., Lee, H., and Lim, W. (2019).
Machine Learning for 5G/B5G Mobile and Wireless
Communications: Potential, Limitations, and Future
Directions. IEEE Access, 7:137184–137206. Confer-
ence Name: IEEE Access.

Pearl, J. (2010). An Introduction to Causal Inference. The
International Journal of Biostatistics, 6(2). Publisher:
De Gruyter.

Pearl, J., Glymour, M., and Jewell, N. P. (2016). Causal
Inference in Statistics: A Primer. John Wiley & Sons.
Google-Books-ID: I0V2CwAAQBAJ.

Pearl, J. and Mackenzie, D. (2018). The Book of Why: The
New Science of Cause and Effect. Basic Books, New
York, 1st edition edition.

Premack, D. and Woodruff, G. (1978). Does the chim-
panzee have a theory of mind? Behavioral and Brain
Sciences, 1(4):515–526. Publisher: Cambridge Uni-
versity Press.

Price, H. (1992). Agency and Causal Asymmetry. Mind,
101(403):501–520. Publisher: [Oxford University
Press, Mind Association].

Ramchurn, S. D., Stein, S., and Jennings, N. R.
(2021). Trustworthy human-AI partnerships. iScience,
24(8):102891.

Rawal, A., Raglin, A., Sadler, B. M., and Rawat, D. B.
(2023). Explainability and causality for robust, fair,
and trustworthy artificial reasoning. In Artificial Intel-
ligence and Machine Learning for Multi-Domain Op-
erations Applications V, volume 12538, pages 493–
500. SPIE.

Rudin, C. (2019). Stop Explaining Black Box Machine
Learning Models for High Stakes Decisions and Use
Interpretable Models Instead. arXiv:1811.10154 [cs,
stat]. arXiv: 1811.10154.

Savarimuthu, B. T. R., Cranefield, S., Purvis, M., and
Purvis, M. (2008). Role Model Based Mechanism
for Norm Emergence in Artificial Agent Societies. In
Sichman, J. S., Padget, J., Ossowski, S., and Nor-
iega, P., editors, Coordination, Organizations, Institu-
tions, and Norms in Agent Systems III, Lecture Notes
in Computer Science, pages 203–217, Berlin, Heidel-
berg. Springer.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalch-
brenner, N., Goyal, A., and Bengio, Y. (2021). To-
ward Causal Representation Learning. Proceedings of
the IEEE, 109(5):612–634. Conference Name: Pro-
ceedings of the IEEE.
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