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Abstract

3D visual grounding involves matching natural language
descriptions with their corresponding objects in 3D spaces.
Existing methods often face challenges with accuracy in
object recognition and struggle in interpreting complex
linguistic queries, particularly with descriptions that
involve multiple anchors or are view-dependent. In
response, we present the MiKASA (Multi-Key-Anchor
Scene-Aware) Transformer. Our novel end-to-end trained
model integrates a self-attention-based scene-aware
object encoder and an original multi-key-anchor
technique, enhancing object recognition accuracy and
the understanding of spatial relationships. Furthermore,
MiKASA improves the explainability of decision-making,
facilitating error diagnosis. Our model achieves the highest
overall accuracy in the Referit3D challenge for both the
Sr3D and Nr3D datasets, particularly excelling by a large
margin in categories that require viewpoint-dependent
descriptions. The source code and additional resources for
this project are available on GitHub:
https://github.com/birdy666/MiKASA-3DVG

1. Introduction
3D visual grounding serves as a crucial component in the

intersection of natural language processing and computer
vision. This task aims to identify and localize objects within
a 3D space, using linguistic cues for spatial and semantic
grounding. While existing research has made significant
strides, challenges remain. Key issues include the lack
of explainability in current models, limitations in object
recognition within point cloud data, and the complexity of
handling intricate spatial relationships.

Most existing 3D visual grounding models [2, 15, 16,
33, 41] consist of three parts: (1) object encoder, (2)
text encoder, and (3) fusion model. The object encoder
processes the provided point cloud and generates features
in the embedding space. However, because the points in a
point cloud are unordered and inconsistent in sparsity [26],
it is not straightforward to apply the methodology typically

(a) Target category: “chair” (b) “The chair in the front of the
blue-lit monitor.”

Figure 1. Our methodology utilizes a dual-prediction framework
for 3D visual grounding. First, we assign a target category score
based on object categorization, as detailed in Fig. 1a. Next, a
spatial score is integrated according to the object’s alignment with
the textual description, as shown in Fig. 1b.

used for 2D images. An additional challenge is that 3D
point cloud datasets are not as extensive as those for 2D
images [10, 25], which makes it difficult for the models to
correctly recognize object categories. While enlarging the
dataset could conceivably improve performance, we refrain
from doing so to ensure a fair comparison with existing
state-of-the-art methods. Existing works [6, 18, 27] mainly
use different techniques such as noise addition, dropping
out colors, and transformations to expand the sample space.
Though these techniques may increase the stability of the
produced object embeddings, the improvement is limited.

Inspired by previous works [20, 21, 39] which aims to
solve object recognition problem, we leverage the fact
that data availability on objects within a specific space
can provide valuable insights into the characteristics and
relationships of their surrounding entities. For instance,
when we come across a cuboid-shaped object in a
kitchen, we may naturally assume that it is a dishwasher.
Conversely, if we spot the same shape in a bathroom, it is
more plausible that it is a washing machine. Contextual
information is crucial in determining the true identity of
an object and gives us a nuanced understanding of our
surroundings.
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Therefore, by incorporating a scene-aware object
encoder that considers all nearby objects, we demonstrate
that the model’s object classification accuracy improves
before the data is fed into the fusion model.

Another important task is to represent the spatial
relations between objects. Previous works [15, 16] have
primarily focused on encoding the absolute locations of
objects in world coordinates, a method we find suboptimal.
Inspired by how humans use objects as anchors for spatial
reasoning and thereby shift the perceptual focus to these
anchor objects, our approach hypothesizes that encoding
spatial relations relative to anchors enhances the model’s
ability to accurately identify objects. This hypothesis has
been empirically validated in our experiments.

Therefore, we introduce the multi-key-anchor concept to
enhance spatial understanding in 3D models. This approach
translates the coordinates of potential anchors relative to
a target object and explicitly evaluates the importance of
nearby objects based on textual descriptions. Notably,
models like PointNet++ [26] are designed for rotational
invariance, often leading to directional ambiguity in object
features. Our method mitigates this issue by leveraging
the spatial context of key nearby objects, thereby implicitly
suggesting the orientation of the target object. For example,
a chair is typically placed facing a table or against a wall,
and the presence of the table or the wall implicitly defines
the direction of the chair. This approach provides a nuanced
understanding of object orientation and spatial placement.
We validate this claim experimentally, by showing a higher
improvement in view-dependent cases compared to the
overall accuracy.

Finally, instead of treating the information as input for a
black-box fusion module, we introduce a new architecture
that employs a more novel approach to the 3D visual
grounding task. Inspired by human-like object searching
behavior—for instance, when given the instruction “The
chair in the front of the blue-lit monitor.”, one would first
identify all the chairs in the room before pinpointing the
specific target, as illustrated in Fig. 1. Our model employs
late fusion and generates two distinct output scores. The
first score aims to identify the target object category, while
the second assesses the location and language expression,
informed by spatial data. These scores are designed to
collaborate, mitigating the influence of objects that may
superficially resemble the target or occupy positions that
seem to fit the verbal description but are not the intended
objects. We fuse these scores through a strategic fusion
mechanism, which enables the final target to distinguish
itself more clearly from distractors. By examining the two
scores and the final result, one can better diagnose the types
of errors the model may make, making the decision process
more explainable.

The main contributions of our work can be summarized
as follows:

• We introduce a scene-aware object encoder that
considers the contextual information and increases
models ability to understand the object category.

• We present the multi-key-anchor technique, which
enhances spatial understanding. This approach
redefines coordinates relative to target objects and
explicitly assesses the importance of nearby objects
through textual context. It addresses the directional
ambiguity often found in rotationally invariant models
like PointNet++ [26], by using spatial contexts to
imply target object orientation.

• We develop a novel, end-to-end trainable and
explainable architecture, that leverages late fusion to
separately process distinct aspects of the data, thereby
enhancing the model’s accuracy and explainability.

2. Related Works

2.1. 3D Visual Grounding

3D visual grounding, intersecting computer vision and
natural language processing, focuses on identifying objects
in 3D spaces using language. Unlike 2D grounding that
relies on images, 3D visual grounding utilizes point cloud
data. This transition from 2D models to point clouds
introduces a new layer of complexity, and marks a distinct
shift from conventional 2D grounding models [17, 23, 35]
due to the unique nature of point clouds [10]. Our
experiments and comparative analyses are conducted using
the Referit3D benchmark [2].

The methods for feature fusion for 3D visual grounding
have recently evolved. Initially, graph-based algorithms
were predominantly used [2, 14]. However, with the
rise of transformer models, the focus has shifted towards
these, given their effectiveness in multimodal data fusion
[1, 12, 15, 16, 33, 41]. Notable among these are LAR
[4], which synthesizes 2D clues from point clouds
for 3D visual grounding, SAT [33] that leverages 2D
image semantics in training, and 3DVG-Transformer [41],
using a relation-aware approach with contextual clues
for proposal generation. To enhance point cloud data
representation, MVT [15] maps 3D scenes into multi-view
spaces, aggregating positional information from various
perspectives. ViewRefer [11] builds upon this by resolving
view discrepancies through the integration of multi-view
inputs and inter-view attention. Furthermore, ViewRefer
utilizes GPT-3 [5] to generate multiple geometry-consistent
descriptions from a single grounding text, thereby enriching
the model’s interpretation of 3D environments.
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Figure 2. Architecture of our 3D Visual Grounding Model, which includes four main modules: a text encoder (Bert), a vision module
with a scene-aware object encoder, a spatial module that fuses spatial and textual data, and a multi-layered fusion module. The fusion
module combines text, spatial, and object features, employing a dual-scoring system for enhanced object category identification and
spatial-language assessment.

2.2. Context-Aware Object Recognition

3D object recognition and segmentation using point
clouds is a foundational task in computer vision. Most
established methodologies [25, 26] predominantly utilize
appearance features such as color and position to define
objects, achieving impressive outcomes. However, in
contexts where a comprehensive scene is involved, such as
a room filled with diverse objects, methods that incorporate
inter-object relationships and spatial context [9, 20, 21, 28,
34, 39] offer better performance. These models do not
just consider individual object features, but also the relative
placements and attributes of neighboring objects. This
allows for a more sophisticated understanding of complex
3D spaces.

2.3. Multi-Modal Features Fusion

In multi-modal features fusion, two primary fusion
approaches exist: early and late. Early fusion merges
features from different modalities at the outset and
trains a unified model, as commonly seen in 3D visual
grounding work [2, 15, 16, 33, 41]. This approach
benefits from direct inter-modality interactions but can be
challenging to fine-tune and lacks transparency regarding
its decision-making process. Late fusion, on the other hand,
processes each modality separately and fuses the resulting
logits or decision scores. Various techniques, from simple
averaging to attention-based methods, are used in existing
works [3,22,24,32,37,38]. The fusion strategy significantly
impacts the system’s robustness and accuracy, especially
when modalities provide conflicting cues.

3. Method
Fig. 2 presents our novel architecture for the 3D

visual grounding task, including key modules: a vision
module, a text encoder (Bert [8]), a spatial module,
and a fusion module. We maintain configurations for
Bert and PointNet++ [26] as in MVT [15] for consistent
comparison. The vision module, with our scene-aware
object encoder, refines object features by considering
surrounding objects. The spatial module encodes and
merges spatial features with textual data from Bert using
a transformer encoder. In the fusion module, comprising
NF layers, object-spatial features are progressively refined
with text and spatial information, enhancing spatial features
through refined anchor information. Our model concludes
with a dual-scoring system, generating scores for object
category identification and spatial feature assessment. This
approach mitigates the influence of distractors and enhances
the explainability of the model’s decisions.

3.1. Data Augmentation

Given the limitations and scarcity of 3D point cloud
datasets, data augmentation emerges as a crucial strategy.
To improve the model against overfitting and enhance
its ability to generalize essential features, we’ve adopted
different data augmentation techniques. This includes the
notable multi-view augmentation as presented in MVT [15],
which has demonstrated effectiveness. Additionally, we
place emphasis on augmenting color features, adjusting
contrast, and introducing noise. More details can be found
in the supplementary materials.
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Figure 3. Our novel spatial module captures relative spatial information from a single viewpoint by treating each object in the scene as
a potential anchor. This approach generates unique spatial maps, each offering a different perspective of the scene. These maps are then
undergo feature augmentation, where distances and angles are calculated, followed by normalization and scaling. Subsequently, a MLP
layer is employed to transform these low-dimensional features into higher-dimensional ones for effective fusion with textual data.

3.2. Scene-Aware Object Encoder

Traditional point cloud methods usually analyze objects
separately, missing contextual clues from other objects in
the same room. To overcome this, our model includes a
scene-aware object encoder that gathers information from
surrounding objects. This approach overcomes the limits
of standard object encoders. By considering this additional
context, our model better understands object categories,
leading to improved accuracy and performance.

While graph-based algorithms such as DGCNN [31],
GCN [19], and GAT [30] are often used for similar
tasks, they present their own set of challenges, such as
computational intensity and the complexity of defining a
suitable distance metric for determining neighbors. As a
result, we opted for a self-attention mechanism for feature
aggregation. This choice offers a range of advantages,
including computational efficiency, ease of training, and
consistently superior performance, making it the most
fitting solution for the objectives of our model. For N
objects in the room, represented as O = {O1, O2, . . . , ON}
where each Oi is a feature vector with D dimensions,
the scene-aware object features Osa

i are computed using
self-attention as defined in Eq. (1). In this process, Q =
WQ · O, K = WK · O, and V = WV · O represent the
queries, keys, and values, respectively, each transformed by
their respective learnable weight matrices WQ, WK , and
WV [29]. By aggregating this information, particularly
through the weighted sum of values (V ), each object
feature Osa

i becomes enriched with contextual data from its
surroundings. This approach ensures that the object features
capture more than just individual properties.

Osa
i =

N∑
j=1

exp(Qi ·Kj)∑N
k=1 exp(Qi ·Kk)

· Vj (1)

3.3. Spatial Features Encoding

Instead of relying on a single viewpoint for
understanding a 3D space, our model employs a novel
multi-anchor strategy to better comprehend spatial
relationships, as shown in Fig. 3. For N objects in the
room, this approach involves generating N feature maps,
each representing relative positions from N unique local
coordinate systems. We define a set of spatial maps for
a given set of object coordinates, P = {p1, p2, . . . , pN},
as M = {M1,M2, . . . ,MN}. Each map Mi, defined in
Eq. (2), is composed of the relative positions of all other
objects A = {aj |aj ∈ P and j ̸= i} to a target object pi.

Mi = {(aj − pi)|aj ∈ A} (2)

To enhance robustness against varying initial viewpoints,
our model incorporates the viewpoint augmentation strategy
similar to MVT [15]. We utilize a rotation matrix Rθk for
each viewpoint, which rotates the entire map by an angle θk.
This approach results in an augmented set Maug , defined in
Eq. (3), wherein each map Mi from the original set M is
represented under v different rotated views.

Maug = {Rθk(Mi) |Mi ∈ M, k ∈ {1, 2, . . . , v}} (3)

Each element of a map then goes through feature
augmentation to incorporate additional spatial features,
including distance and angles. These augmented features
are later on normalized and scaled to ensure stability.
Normalization and scaling details are in the supplementary
materials.

Subsequently, the map features undergo a dimensional
transformation T to align with the dimension D, as
described in Eq. (4). This process prepares the map features
for effective fusion with other features at later stages of the
model.

MD = T (Maug, D) (4)

4



3.4. Multi-Modal Feature Fusion

To create a multi-anchor spatial map, we combine
features from various modalities. Specifically, we merge
the object feature, spatial feature, and the text feature.
This integrative approach generates a new detailed spatial
feature that accurately represents an object’s location within
a room.

3.4.1 Text-Spatial Fusion

To optimize computational efficiency, we merge text
and spatial features at an initial stage instead of in
the multi-layer fusion module. We use a single
cross-attention layer, represented by A, followed by
a subsequent feedforward layer, denoted as F . This
approach is employed instead of merging these features
within the fusion module alongside additional features.
With N spatial maps at our disposal, this method
provides a computationally economical means of feature
integration. The fusion of the spatial map M with the
textual information T synchronizes spatial features with
corresponding text data, as expressed in Eq. (5):

M text
i = F(A(Mi, T )), ∀i ∈ {1, 2, . . . , N} (5)

3.4.2 Fusion Module

Our fusion module’s architecture consists of four key
components in each layer: (1) Text-Object Fusion, (2)
Object-Spatial Fusion, (3) Spatial Feature Aggregation, and
(4) View Aggregation. As data progresses through these
layers, the model incrementally adjusts anchor weightings
and extracts relevant spatial information based on textual
input. This progressive fusion method refines features
within specific spatial maps while dynamically updating
anchor features across the maps.

The effectiveness of this approach is particularly notable
in complex scenarios. Take, for example, the instruction
“Choose the suitcase that is in front of the bed near the
window curtains.” Here, the primary anchor (“bed”) is
contextualized by another reference point (“curtains”),
underscoring the need for coherent interaction between
different spatial maps. This scenario highlights the value
of our fusion process in managing intricate spatial relations.

Text-Object fusion & Object-Spatial Fusion:
The Text-Object Fusion component employs an
architectural approach akin to that of the Text-Spatial
Fusion in Eq. (5), incorporating both a cross-attention layer
and a feedforward neural network layer. Subsequently, the
text-object features are integrated into each spatial map by
addition and linear transformation. The augmented map
now encapsulates not only the spatial information but also
the characteristics of the anchor objects.

Target
Anchor

Target
Anchor

Target
Anchor

N

Score Matrix

Feed Forw
ard N

etw
ork

Aggregated
Spatial Features

Figure 4. Our novel attention-based spatial feature aggregation.
Each map designates a different object as the target, while treating
all other objects as anchors. The importance of each anchor
relative to the potential target object is represented in row i of the
score matrix, indicating the relevance of each anchor in the context
of the target, where WS and WF are learnable weight matrices.

Spatial Feature Aggregation & View Aggregation:
In our model, essential information is gathered from the
fused feature maps through an attention-based aggregation
stage, as depicted in Fig. 4. This stage employs attention
mechanisms to determine the relevance of potential key
anchors relative to the target object. The process effectively
consolidates these weighted anchors into a single spatial
feature for each object, enhancing the model’s grasp of
the spatial relationships of each object within the scene.
Subsequently, to ensure robustness against the initial
viewpoint, the features undergo further refinement by
aggregating views from various perspectives, a method
elaborated in Section 3.1.

Progressive Feature Enhancement:
The fusion module’s effectiveness hinges on the iterative
refinement of object-spatial features Ot, as detailed in
Eq. (6). In this process, wi

j denotes the significance of
anchor j within the fused feature map Mt

i, as illustrated in
Fig. 4. This approach integrates aggregated spatial features
into object features, facilitating progressive enhancement
across spatial maps. As a result, both anchor and spatial
features undergo continuous refinement with each layer,
progressively improving the model’s ability to accurately
represent the spatial dynamics of the scene.

Ot+1
i = Ot

i +

N∑
j=1

wij · Mt
ij , ∀i ∈ {1, 2, . . . , N} (6)
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3.5. Multi-Modal Predictions Fusion

Previous works [2, 15, 33] treat the fusion process as
a “black box”, where information is aggregated in the
early stages and then passed to a fusion module such as
a transformer decoder to produce a single set of logits.
While this method is effective, it offers limited insight
into the intricacies of the fusion process. In contrast,
our model adopts a segmented approach to the grounding
problem, tackling it through two distinct subtasks. The first
subtask determines the target category score by evaluating
the object’s correspondence with the text-described target
category. Subsequently, a spatial score is computed to
assess how well the object’s spatial configuration aligns
with the spatial description provided in the text.

In our methodology, directly merging logits, f1(X; θ1)
and f2(X; θ2) from different modalities can lead to
suboptimal results due to discrepancies in their scales. To
mitigate this, we employ a normalization function, g to
transform each logit to have zero mean and unit variance,
facilitating a uniform scale. Subsequently, we assign
weights, denoted as λ and µ, which are optimized as
hyperparameters through experimentation, detailed in the
supplementary materials. These weights are applied to the
normalized logits, enabling a balanced integration of the
modalities. The resulting final prediction P is represented
as in Eq. (7).

P = λ · g(f1(X; θ1)) + µ · g(f2(X; θ2)) (7)

3.6. Loss Function

The loss function L employed in our model is a
composite of multiple terms, each aimed at a specific aspect
of the 3D visual grounding task. Formally, the loss is
defined as Eq. (8).

L = Lref + αLtext + βLobj + γLobj scene (8)

where all terms are computed using cross-entropy loss.
Lref is the primary loss that evaluates the reference results,
measuring how accurately the model identifies the correct
target among distractors. The auxiliary losses serve to
fine-tune different components of the model. Specifically,
Ltext evaluates the model’s ability to correctly categorize
the target object from a given sentence (e.g., recognizing
“table” as the target category in the sentence “a table
near the window”). Lobj evaluates the categorization of
all objects in the 3D space. Lobj scene, which we might
alternatively name “Scene-Aware Object Categorization
Loss”, assesses the categorization performance but does
so after the scene-aware object encoder has been applied.
The hyperparameters α, β, and γ control the relative
contributions of these auxiliary losses and the choice of
their value is discussed in the supplementary material.

4. Experiment
4.1. Datasets

Natural Reference in 3D (Nr3D) [2] :
The dataset consists of 41.5k human utterances describing
707 unique 3D indoor scenes from ScanNet [7]. It
contains 76 fine-grained object classes. These utterances
were collected during a reference game played by
two individuals. One person acted as the speaker,
selecting an object from a set of distractors (ranging
from 1 to 6), while the other person identified the
target object based on the speaker’s instructions. Each
scenario in the data can be categorized as easy/hard and
view-dependent/view-independent, depending on the
number of distractors and whether the utterances depend
on a specific viewpoint.

Spatial Reference in 3D (Sr3D/Sr3D+) [2] :
Similar to Nr3D, Sr3D dataset contains 83.5k synthetic
utterances describing the 3D indoor scenes from ScanNet
[7]. Each utterance was generated from the template

target class+ spatial relation+ anchor class(es)

Sr3D+ expand the dataset by sampling that did not contain
more than one distractor were added to Sr3D . This resulted
in an increase to 114.5k total utterances.

4.2. Experimental Setup

4.2.1 Implementation Details

In the implementation of our proposed architecture, we
utilize a pre-trained BERT [8] model as the text encoder,
generating a 768-dimensional output. The object encoder
is implemented using the PointNet++ [26] framework. To
ensure a fair comparison with the MVT [15], the settings
for both the text and object encoders are aligned with
those used in MVT. Our fusion module is composed of
three layers. Importantly, all modules—including the text
encoder, object encoder, and fusion module—are trained
end-to-end, negating the need to train each component
separately. The optimization is carried out using the Adam
optimizer with a batch size of 12. All experiments were
conducted on an A100 GPU.

4.2.2 Evaluation Metrics

In our experiments, we focus on the datasets from
Referit3D, namely Nr3D and Sr3D. Evaluation proposals
are generated directly from the ground truth annotations.
The primary metric for evaluation is accuracy, which gauges
the model’s ability to successfully identify the correct target
among various distractors. A successful match is defined as
the model accurately pointing out the designated target from
a pool of distractors in the 3D space.

6



Method \Dataset Sr3D Nr3D
Overall Easy Hard VD∗ VI† Overall Easy Hard VD∗ VI†

ReferIt3D [2] ECCV 20 40.8% 44.7% 31.5% 39.2% 40.8% 35.6% 43.6% 27.9% 32.5% 37.1%
InstanceRefer [36] ICCV 21 48.0% 51.1% 40.5% 45.4% 48.1% 38.8% 46.0% 31.8% 34.5% 41.9%
3DVG-Transf. [41] ICCV 21 51.4% 54.2% 44.9% 44.6% 51.7% 40.8% 48.5% 34.8% 34.8% 43.7%
SAT [33] ICCV 21 57.9% 61.2% 50.0% 49.2% 58.3% 49.2% 56.3% 42.4% 46.9% 50.4%
MVT [15] CVPR 22 64.5% 66.9% 58.8% 58.4% 64.7% 55.1% 61.3% 49.1% 54.3% 55.4%
BUTD-DETR [16] ECCV 22 67.0% 68.6% 63.2% 53.0% 67.6% 54.6% 60.7% 48.4% 46.0% 58.0%
NS3D [13] CVPR 23 62.7% 64.0% 59.6% 62.0% 62.7% - - - - -
M3DRef [40] ICCV 23 - - - - - 49.4% 55.6% 43.4% 42.3% 52.9%
ViewRefer [11] ICCV 23 67.0% 68.9% 62.1% 52.2% 67.7% 56.0% 63.0% 49.7% 55.1% 56.8%
Ours 75.2% 78.6% 67.3% 70.4% 75.4% 64.4% 69.7% 59.4% 65.4% 64.0%
vs. BUTD-DETR [16] ECCV 22 +8.2% +10.0% +4.1% +17.4% +7.8% +9.8% +9.0% +11.0% +19.4% +6.0%
vs. Ns3D [13] CVPR 23 +12.5% +14.6% +7.7% +8.4% +12.7% - - - - -
vs. M3DRef [40] ICCV 23 - - - - - +15.0% +14.1% +16.0% +23.1% +11.1%
vs. ViewRefer [11] ICCV 23 +8.2% +9.7% +5.2% +18.2% +7.7% +8.4% +6.7% +9.7% +10.3% +7.2%

Table 1. Comparative accuracy on Sr3D and Nr3D Challenges. This table showcases the performance of various models across all
subcategories in the Sr3D and Nr3D datasets, highlighting the MiKASA Transformer’s enhancements. The increments in performance
achieved by MiKASA over previous methods are detailed for each subcategory, underlining its superior accuracy and effectiveness.
∗View-Dependent, †View-Independent

4.2.3 Baseline Comparison

7Table 1 provides a comparative analysis of MiKASA
against existing models in the Sr3D and Nr3D challenges
[2]. MiKASA leads in overall accuracy for both Sr3D
and Nr3D, achieving 75.2% and 64.4% respectively.
Specifically, it demonstrates exceptional performance in
the view-dependent category, achieving 70.4% in Sr3D
and 65.4% in Nr3D, and significantly surpasses previous
works. This performance underlines its capability to handle
complex scenarios requiring changes in viewpoint, proving
the effectiveness of our multi-key-anchor and features
fusion strategy.

4.3. Ablation Studies

Effectiveness of Spatial Module:
In Table 2 we conduct a detailed ablation study on
the spatial module. Removing the spatial encoder
completely and use MLP for direct object location encoding
significantly decreased accuracy to 45.0%. Removing the
feedforward layer led to a 20% reduction in GPU memory
usage, but caused a 2% accuracy drop to 62.4%. Omitting
text-spatial fusion from our model caused a 1.8% decrease
in overall performance, bringing it to 62.6%.

Spatial encoder ✓ - ✓ ✓
Feedforward layer ✓ ✓ - ✓
Text-Spatial fusion ✓ ✓ ✓ -
Overall acc 64.4% 45.0% 62.4% 62.6%

Table 2. Ablations of the spatial module, results highlighting the
essentiality of each component.

Object Encoder Accuracy
PointNet++ 63.8%
PointNet++ & GCN 65.5%
PointNet++ & Self-Attention Based 70.8%

Table 3. Comparison of object encoding strategies, presenting
the object recognition accuracy achieved with different object
encoding techniques. Showing the effectiveness of scene-aware
object encoder.

Effectiveness of Scene-Aware Object Encoder:
Table 3 demonstrates how incorporating scene context
enhances the performance of our object encoder, as
compared to a standard PointNet++ encoder [26]. We
introduced a scene-aware module after the PointNet++
layer in two variants: one employing Graph Convolutional
Networks (GCN) [19] and the other using a self-attention
mechanism [29].

For the GCN-based approach, we utilized Euclidean
distance in the 3D space to determine neighborhood
relations, specifically selecting the 10 nearest neighbors
as the basis for graph construction. Our results show
significant improvements in object classification accuracy.
While the standard PointNet++ encoder achieved an
accuracy of 63.8%, the GCN-based scene-aware encoder
increased accuracy to 65.5%.

The self-attention-based scene-aware encoder
further enhanced accuracy to 70.8%, showing the
best performance. This highlights the effectiveness of
scene-aware modules in improving object recognition by
utilizing information about nearby objects.

7



Category Score

Spatial Score

MiKASA

Ground Truth

(a) “The lamp between
the two beds.”

(b) “The smaller
radiator, close to the less
cluttered desks.”

(c) “The chair facing
wooden wall closest to
the bookshelf.”

(d) “The smaller box
closest to the door.”

(e) “The lower roll of
toilet paper next to the
toilet.”

Figure 5. Visual representation of the model’s decision-making process in diverse situations. Rows, from top to bottom, depict: (1) Choices
determined by category score, (2) Choices determined by spatial score, (3) Our model’s final selection after combining both scores, and (4)
The established ground truth. Columns from left to right showcase varying scenarios. The green bounding box refers to the chosen object,
and the red bounding box refers to the unchosen distractors.

Ablation Study on Spatial Features Aggregation:
Table 4 shows our proposed method excels particularly
in view-dependent scenarios. We substituted the
attention-based aggregate layer with a simple mean function
(I). This change led to a significant drop in accuracy, down
to 33.9%. In contrast, employing max pooling (II) achieved
a 61.7% accurac. It is worth noting that without the
attention mechanism, accuracy in view-dependent scenarios
falls significantly with mean and max pooling.

4.4. Multi-Modal Prediction

In Fig. 5, we illustrate MiKASA’s decision-making in
various scenarios. (a) shows accurate predictions where
category and spatial scores align. (b) highlights accurate
object identification with spatial relation challenges due to
nearby objects with similar spatial features. (c) depicts
scenarios where the model excels in spatial discernment,
which is crucial in situations with multiple objects of the
same category. (d) presents challenges in predictions where
spatial cues are minimal, exemplified by two boxes near a
door at a similar distance. Finally, (e) reveals cases where
accurate spatial scoring is offset by inadequate category
identification, such as with a poorly represented roll of toilet
paper. The figure shows our model’s decision-making is
more explainable and facilitates easier diagnosis of errors.
See the supplementary materials for more analysis.

Overall1 Easy Hard VD VI
I mean 33.9 42.7% 25.4% 32.8% 34.4%

↓30.5% ↓27.0% ↓34.0% ↓32.6% ↓29.6%
II max 61.4% 67.8% 55.2% 60.6% 61.7%

pool ↓3.0% ↓1.9% ↓4.2% ↓ 4.8% ↓2.3%
Ours 64.4% 69.7% 59.4% 65.4% 64.0%

Table 4. Ablations on fusion module

5. Conclusion
In our study, we introduced the MiKASA

(Multi-Key-Anchor Scene-Aware) Transformer, an
innovative model designed to address the challenges in
3D visual grounding. This model uniquely combines
a scene-aware object encoder with a multi-key-anchor
technique, significantly enhancing object recognition
and spatial understanding in 3D environments. The
scene-aware object encoder effectively tackles object
categorization issues, while the multi-key-anchor technique
offers improved interpretation of spatial relationships
and viewpoints. The results demonstrate that MiKASA
outperforms current state-of-the-art models in both
accuracy and explainability, underscoring its efficacy in
advancing 3D visual grounding research. For future work,
we suggest enhancing the model to explicitly preserve the
directional information of objects post-encoding, aiming to
further refine accuracy in view-dependent scenarios.
Acknowledgement: This research has been partially
funded by EU project FLUENTLY (GA: Nr 101058680)
and the BMBF project SocialWear (01IW20002).
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