
Modular Deep Active Learning Framework for Image Annotation: A
Technical Report for the Ophthalmo-AI Project

Md Abdul Kadira, Hasan Md Tusfiqur Alama, Pascale Maula, Hans-Jürgen Profitlicha, Moritz Wolfa, Daniel
Sonntaga,b

aGerman Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
bOldenburg University, Oldenburg, Germany

Abstract

Image annotation is one of the most essential tasks for guaranteeing proper treatment for patients and tracking

progress over the course of therapy in the field of medical imaging and disease diagnosis. However, manually

annotating a lot of 2D and 3D imaging data can be extremely tedious. Deep Learning (DL) based segmentation

algorithms have completely transformed this process and made it possible to automate image segmentation.

By accurately segmenting medical images, these algorithms can greatly minimize the time and effort neces-

sary for manual annotation. Additionally, by incorporating Active Learning (AL) methods, these segmentation

algorithms can perform far more effectively with a smaller amount of ground truth data. We introduce Med-

DeepCyleAL, an end-to-end framework implementing the complete AL cycle. It provides researchers with the

flexibility to choose the type of deep learning model they wish to employ and includes an annotation tool

that supports the classification and segmentation of medical images. The user-friendly interface allows for easy

alteration of the AL and DL model settings through a configuration file, requiring no prior programming ex-

perience. While MedDeepCyleAL can be applied to any kind of image data, we have specifically applied it to

ophthalmology data in this project.

1. Introduction

Optical Coherence Tomography (OCT) has been widely used in biomedical imaging. Ophthalmologists use

the segmentation of ocular OCT images for the diagnosis and treatment of eye diseases such as age-related

macular degeneration (AMD), diabetic retinopathy (DR), and diabetic macular edema (DME) [1]. In recent

years, Deep Learning (DL) based methods have achieved considerable success in medical image segmentation [2].

However, their progress has often been constrained as they require large data sets. Labeling and segmenting

medical image data is a time-consuming and expensive process as domain experts are required to annotate

them. Active learning can be beneficial for medical image segmentation since it reduces the burden of extensive

annotation effort [3].

Active Learning (AL) is a paradigm in supervised Machine Learning (ML) where the model interacts with

a user to label new data points. It is often used in scenarios with a large pool of unlabeled data where the

labeling process is expensive. By using the ML model to select which examples to learn from, the algorithm can

learn a concept with fewer examples than traditional supervised learning [4]. This work focuses on pool-based

AL, i.e. uses a fixed data pool to select samples for annotation. Active learning is an iterative process (Figure

1) that starts with a small, annotated data set to train the ML model. This model is then used to query the

remaining data from the unlabeled pool. Querying refers to the process of assigning scores to individual data

points, according to how informative they are. The most informative data points are then selected for the next

annotation round and added to the training data set. The cycle is repeated until the model reaches a given

target performance.

The objectives of this work are to create an end-to-end modular AL system for deep learning models, that sup-

ports the annotation process, data handling, and the AL iterations. It has been developed in the context of the

Ophthalmo-AI project (BMBF, see https://www.dfki.de/en/web/research/projects-and-publications/
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project/ophthalmo-ai), which focuses on Intelligent, Cooperative Medical Decision Support in Oph-

thalmology1. To that end, the authors trained a model for the segmentation of retinal OCT images. We em-

ployed an uncertainty score for the querying, since the available unannotated data contains many healthy eyes

and a large set of medical markers for the diseases. Previous projects in this area do not include an end-to-end

solution, do not focus on deep learning, and have to be integrated programmatically. Moreover they focus on

classification, while our framework offers support for segmentation.
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Figure 1: Design of the AL cycle and the functionality of the individual components: The first step consists of the annotation of an
initial data set through the Annotation Tool (AT). The annotation information is then forwarded to a Controller, which initiates
the update of the data set (2.) and triggers the next AL learning cycle (3.). The back-end then trains a deep learning model
and performs the querying of the non-annotated data (4.). The top n samples resulting from the querying are then sent to the
controller, which in turn sends the information to the AT (5). With the help of a data preparation tool, the AT then downloads new
samples (6.) and generates preliminary annotations with a pre-trained model. Those preliminary annotations serve to facilitate
the annotation process by proposing labels/segmentation, thus reducing annotation costs.

1.1. The Ophthalmo-AI Project

The developments in the Ophthalmo-AI project are intended to support ophthalmologists with an intelligent

assistance system that can help them make the best possible therapy decision by making a correct diagnosis

based on both image and clinical data. To generate comprehensible suggestions for medical staff, the AI system

will first label biological structures and pathological features in the image data. Then special AI models derive

diagnoses from the image findings and other information from the patient file, make therapy suggestions and

predict the success of the therapy. Interactive machine-learning methods are used to integrate the doctors’

knowledge of the case in question into the process. A large volume of treatment data collected and processed

on the special data integration platform ”XplOit” [5] is used for system development. The resulting augmented

1https://www.dfki.de/en/web/news/ohthalmo-ai-started
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intelligence system will be tested in clinical demonstrators for its practical suitability for macular degeneration

and diabetic retinopathy.

The project focuses on the two most common causes of blindness in people over fifty: age-related macular

degeneration and diabetic retinopathy. AMD is caused by aging processes in the central retinal cells (macula =

point of sharpest vision). Everyone has a buildup of waste products in this area throughout life, and some have

irregular blood vessels growing from the choroid under the retina. They leak fluid and blood, causing symptoms

of ”distortions” and progressive vision loss (”wet” form of ”late” AMD). Diabetic retinopathy can occur as a

result of diabetes. Here, too, blood components can escape into the retinal tissue. From this, pathological new

blood vessels – so-called “proliferations” – can grow on the retina. Heavy bleeding into the eye can occur from

these very vulnerable vessels, which can cause retinal detachment. Retinopathy often leads to DME, a swelling

in the area of the macula, which can lead to visual disturbances. The layered representation of the retina,

the ”optical coherence tomography” (OCT), makes it possible to detect the finest changes and swellings, such

as the presence of irregular blood vessels in the area of the macula. This is important for the diagnosis and

therapy monitoring of both diseases. New drugs are now available that suppress the growth of abnormal blood

vessels and reduce swelling in the macula. These drugs are injected directly into the vitreous cavity of the eye

(intravitreal drug delivery, IVOM). The IVOM must be repeated at different intervals, usually monthly, until

the vision has stabilized.

In the first project phase, both textual annotations in the patient files and annotations of the retinal struc-

tures (especially layers and drusen) are made using specially developed tools. To optimize the required working

time, a tool already supports the doctors with segmentation models and special graphic algorithms. To further

reduce the time-consuming annotation process, AL is used, which specifically selects those images that promise

the greatest benefit in the continuous improvement of the models. In the second step, the resulting neural

networks serve to support diagnoses and therapy suggestions and predict the success of the therapy. In order

to enable the doctors to understand the system’s decisions, in addition to the assessment of an existing disease,

explanations of the results are also given in the form of interactive segmentation maps of the characteristics

relevant to the diagnosis.

2. Related Work

Active learning is a strategy that focuses on the annotation of highly informative samples to improve model

performance in a cost-effective manner. This selection is based on factors such as uncertainty [6], data distri-

bution [7], expected model change [8], among others [9]. Uncertainty can be measured through probabilistic

analysis of predictions by selecting instances with the lowest confidence [6, 10], or by calculating class entropy

[11].

Applications of uncertainty-based approaches in deep neural networks have been explored in a few studies

[12]. Notably, Gal et al. [13] proposed an uncertainty estimation method using dropout-based Monte Carlo (MC)

sampling. This approach involves multiple forward passes with dropout throughout various layers, generating

uncertainty during inference. Ensemble-based methods, which measure uncertainty based on the variance

between predictions from numerous models, have also been utilized [14, 15, 16].

Active learning methods have been utilized for a range of segmentation tasks. Gorriz et al. [17] extended

the Cost-Effective Active Learning (CEAL) algorithm [18] for Melanoma segmentation, wherein they chose

both high and low-confidence samples for annotation. Mackowiak et al. [19] employed a region-based selection

approach with MC dropout to estimate model uncertainty, thereby reducing annotation costs. Moreover, Nath

et al. [14] proposed an ensemble-based approach, using multiple active learning frameworks that are jointly

optimized. They adopted a query-by-committee strategy for sample selection. Siddiqui et al. [12] also suggested

an active learning framework for multi-view dataset segmentation, quantifying model uncertainty based on the

Kullback-Leibler divergence of posterior probability distributions.

Gaillochet et al. [20] proposed a representative learning-based active learning strategy for MRI prostate

segmentation, where samples are selected for annotation at the batch level during training, rather than using
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(a) (b)

Figure 2: OCT: a) SLO with the positioning of the exposure on the retina (white square) and the position of a slice (red line), and
b) corresponding slice

typical stochastic batches. This innovative approach contributes to the speed of training convergence and

increases model robustness by concentrating on specific data points. Despite the progress in Active Learning

for various applications, there remains a scarcity of comprehensive studies dedicated to Active Learning for

OCT segmentation, with [21] being one of the few one can mention. This work by Li et al. [21] necessitates

the use of foundation models, as per Khan et al. [22], requiring pre-training on large-scale datasets from similar

domains. However, the practical application of this methodology could be challenged due to the difficulty in

data collection, particularly considering the strict constraints tied to data privacy. Kadir et al. [23] propose

EdgeAL technique, which uses edge information from OCT images as an a priori to improve the quality of

queries in Active Learning for Deep Segmentation model training. The main concept is to take advantage of

predictions’ uncertainty as they cross semantic region borders in the input images.

The active learning framework proposed in this paper is designed to accommodate and integrate all previously

mentioned active learning algorithms effectively. This encompassing approach facilitates seamless integration

with a wide range of deep learning architectures and configurations, contributing to its versatility and broad

applicability in the field.

3. OCT: Optical Coherence Tomography

OCT (optical coherence tomography) is a technique used to get a layered representation of the retina. This

enables sectional images of the back of the eye to be taken in high resolution by using a laser light. The retina

reflects this weak laser light differently; these reflections are measured and converted into detailed images by a

computer system. These images provide a precise insight into the finest structures and changes in the retinal

layers.

Besides a top-level view (called SLO) a number of slices (called b-scans) are recorded that allow a view

under the surface of the retina. Each of these slices shows the individual layers of the retina, whose changes

are essential for the assessment of the diseases under consideration and the choice of the right therapy (Figure

2). The implemented tool supports the annotation of up to 20 features within each slice, including the different

layers, fluid collections and other bio-markers (for more details see section 6). The SLO image is saved in a file

format called VOL together with the slices and metadata about the procedure, including a patient identifier,

the number of slices, distance to the eye, software or hardware versions, etc.
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4. Project Specific Objectives

The objective of this project phase is to create an AL end-to-end system that can easily be configured and

extended by AL users of all experience levels. To that end we build our architecture on top of frameworks that

are used by expert machine learning practitioners (PyTorch), but can easily be configured by non-experts. The

tool does not only handle training but is also connected to the data annotation tool [24] and handles the whole

process from data set compilation with the help of AL, data annotation up to model training. The benefits

for the users are: No manual integration of system components from very different backgrounds (e.g., data

annotation vs. model training) is needed. Moreover, the user has an easily scalable system at hand that can be

used for online and offline AL experiments. Since this framework was built as a decentralized system, individual

components can be replaced if necessary.

5. Architecture

Figure 3: Architecture of the Active Learning Infrastructure

MedDeepCyleAL is designed to optimize the process of annotating and training deep learning models. The

system’s four components (Figure 3), namely the Annotation Tool (AT), Controller, Data Manager, and Active

Learning Backend, work together seamlessly to create a decentralized and powerful platform for enhancing the

development of interactive deep learning tools.

The initial dataset is annotated with the help of an expert, without employing any AL strategy. This

annotated dataset is then forwarded to the Controller. It plays a pivotal role in ensuring the proper execution

of the AL cycle by coordinating and initiating the various modules within the MedDeepCycleAL system.

Upon receiving the annotated dataset, the Controller activates the Data Manager, which is responsible for

downloading and managing the dataset used for model training, as well as maintaining the pool of unannotated
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data. This process ensures that the training data stays up-to-date and relevant to the data available in the data

warehouse, allowing for more accurate model development.

Once the dataset is prepared, the Active Learning Backend proceeds to train a deep learning model based on

the model configuration. The trained model is then employed to rank the remaining unannotated data according

to the selected AL query method. The Controller picks the most important sample for further annotation based

on the ranking and presents it to the expert annotation tool interface for annotation. After the expert annotates

the queried samples, the controller initiates the training cycle again. This strategic approach to data selection

enables a more efficient use of resources and improved model performance with a limited amount of annotated

data.

5.1. Controller

The controller is in charge of coordinating all other components of MedDeepCyleAL. The controller is a

Flask server that, in line with the typical AL process, waits for the annotation tool to deliver some annotations

in order to trigger the data manager to create the initial data set. With the initial data set, the controller then

triggers the active learning backend to train a DL model on the initial data set, which is then used to rank the

remaining data in the pool of unannotated data points. The top n results from that list are then sent to the

annotation tool for the next AL iteration. With the resultant annotated data, the ontroller forwards to the

next active learning cycle.

5.2. Data-Manager

The Data Manager is developed as an independent module to support the annotation tool and machine

learning backend architecture. It provides APIs to access and process patient’s treatment data from the XplOit2

data server. The controller module accesses the data manager, and its functionalities can be divided into three

main parts: 1) Securely downloading required patient treatment data from the server to the local development

machine, 2) process the raw data, which are stored as a large Volume file, and 3) extract unannotated OCT

scan slices and other metadata, including patients’ health records (EHRs), diagnosis, and treatments. The Data

Manager also contains functionalities to store and access the annotations provided by the annotation tool for

OCT images. This module also provides APIs to access training/validation/test data sets, which are accessed

by active learning backend via the controller module. The main APIs of the Data Manager class and their

functionalities are briefly described below:

• initialize(root dir:Path, database:DB): Initializes the DataManager class using the tables in the

database containing patient attributes. Required patient files are stored in Volume format (.VOL) are

downloaded using the Xploit REST API.

• initialize with files(file path:Path) -> None: The DataManager class can also be initialized using

this function, if the required files are already downloaded from the server and stored in the local system.

• get unannotated set() -> List[Dict] : Returns a list of dictionary items containing the path of unan-

notated OCT images and associated meta data.

• remove from unannotated set(file list:List[Dict]) -> None: Removes an object from the unan-

notated set when a batch of OCT slices are annotated.

• update annotations(annotations:Dict[Dict]) -> None: Given the annotation values from the An-

notation Tool for an OCT image, this function produces the associated semantic masks and stores it in

an image file.

• get annotated set() -> List[Dict]: Returns a list of dictionary items containing the path to anno-

tated OCT images and their corresponding annotated masks.

2https://ophthalmo-ai.fraunhofer.de
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• get dataloader(DATA ENUM:str) -> list[Dict]: Returns the pre-processed data set for machine learn-

ing model training. Input argument is a literal of three choices DATA ENUM=[‘train’,‘validation’,‘test’].

5.3. Active-Learning Backend

We utilized a versatile deep learning backend tool, developed on the PyTorch-based framework VISSL, that

can be easily reconfigured and reused for training, testing, validation, and prediction. There are multiple benefits

to using this framework, as it enables us to construct a deep learning model, establish hyperparameters, and

train the model with a structured and adaptable YAML (Listings 1 and 2 are two example snippets taken from

the YAML file) blueprint file. To enable active learning in our machine learning model, we have integrated the

modAL framework, which is specifically designed for active learning. However, since our model also requires

segmentation functionality, we have added an additional layer on top of the VISSL and modAL integration.

This is necessary because VISSL was originally developed for unsupervised model training, and does not include

functionalities for segmentation model training. Additionally, the algorithms built into modAL only support

classification tasks, and not all active learning algorithms.

To enable segmentation functionality in our model, we have built additional features on top of the VISSL

and modAL integration. This enables our model to perform active learning for segmentation tasks, which was

not previously possible with the existing frameworks. By combining the strengths of modAL and VISSL with

our new segmentation features, we are able to create a powerful and flexible machine learning model that can

be trained using active learning techniques.

Listing 1: Snippet of the YAML configuration file for the model,
loss function and optimizer initialization

MODEL:

FEATURE_EVAL_SETTINGS:

EVAL_MODE_ON: False

TRUNK:

NAME: unet

UNET:

n_channels: 1

bilinear: True

WEIGHTS_INIT:

PARAMS_FILE: data/unet_best.pth

LOSS:

name: dice_loss

dice_loss:

softmax: True

ignore_index: -1

OPTIMIZER:

name: sgd

momentum: 0.9

Listing 2: Snippet of the YAML configuration file for data load-
ing, transformation and augmentation

DATA:

NUM_DATALOADER_WORKERS: 1

TRAIN:

DATA_SOURCES: [disk_filelist]

LABEL_SOURCES: [disk_filelist]

DATASET_NAMES: [seg_data]

BATCHSIZE_PER_REPLICA: 3

TRANSFORMS:

- name: RandomResizedCrop

size: 224

- name: ToTensor

- name: Normalize

mean: [0.485]

std: [0.229]

MMAP_MODE: True

COPY_TO_LOCAL_DISK: False

COPY_DESTINATION_DIR: ""

DATA_LIMIT: 3

COLLATE_FUNCTION: msk_collator

Our YAML configuration file outlines six essential aspects of our active learning tool: ACTIVE LEARNING,

MODEL, DATA, METERS, OPTIMIZER, DISTRIBUTED, and MACHINE.

1. ACTIVE LEARNING defines the AL algorithm and hyperparameters to be used for the tool.

2. MODEL specifies the deep learning model and its associated hyperparameters.

3. DATA outlines the data loading approach and the transformations to be considered during training and

testing.

4. OPTIMIZER specifies the optimization algorithm and its additional hyperparameters.

5. METERS determines the performance metrics to be assessed during evaluation.

7



6. DISTRIBUTED and MACHINE define the hardware configuration for training and testing.

This modular configuration of the YAML file allows us to flexibly add new functionalities to our active

learning tool, streamlining the process of integrating updates and improvements.

5.3.1. Segmentation network

Deep learning models requires a large set of annotated data for training. Instead of training a segmentation

model from the scratch we have adopted transfer learning [25] strategy for our segmentation model. We trained

segmentation model using a publicly available OCT dataset of similar task namely Annotated Retinal OCT

Images Database (AROI) [26]. The dataset consist of 1136 annotated OCT scans of 24 patients suffering from

age-related macular degeneration disease. Each scans has annotations for three retinal layers and three retinal

fluid layers. We train different state-of-the art foundation models for segmentation using AROI dataset including

U-Net [27], U-Net++ [28], Attention U-Net [29] and Y-Net [1]. Table 1 compares the segmentation results for

different architectures on AROI dataset.

The segmentation network utilized in this tool is based on the U-Net (Figure 4) architecture, as described by

Ronneberger et al. [27], Zhou et al. [28]. The network comes with pre-trained weights from Melinscak et al. [30].

In addition to U-net, we also conducted experiments using Y-net (YN)[31] and DeepLab-V3 (DP-V3) [12] with

ResNet and MobileNet backbones [10]. Table 2 presents the performance of various active learning algorithms

on 12% annotated data for different architectures.

Table 1: Class-wise Results for different Segmentation Models on AROI dataset [26]

Architecture Above ILM ILM-IPL/INL IPL/INL-RPE RPE-BM Under BM PED SRF IRF
U-Net 0.995 0.950 0.923 0.669 0.988 0.638 0.513 0.480
Attention U-Net 0.995 0.899 0.890 0.476 0.988 0.533 0.372 0.037
U-Net ++ 0.992 0.944 0.924 0.641 0.986 0.622 0.487 0.419
Y-Net 1.000 0.970 0.950 0.640 0.990 0.630 0.520 0.980

5.3.2. Sampling

Annotating large amounts of segmentation data can be tedious. To reduce annotation effort, active learning

is necessary. Several algorithms exist for active learning selection methods in semantic segmentation, including

softmax margin (MAR) [10], softmax confidence (CONF) [18], softmax entropy (ENT) [11], MC dropout

entropy (MCDR) [13], Core-set selection (CORESET) [16], (CEAL) [17], and regional MC dropout entropy

(RMCDR) [19], maximum representations (MAXRPR) [15], and random selection (Random).

Table 2: The Table summarizes 5-fold cross-validation results (mean dice) for active learning methods and EdgeAL on the Duke
dataset. EdgeAL outperforms other methods, achieving 99% performance with just 12% annotated data.

GT(%) RMCDR CEAL CORESET EdgeAL MAR MAXRPR
2% 0.40 ±0.05 0.40 ±0.05 0.38 ±0.04 0.40 ±0.05 0.40 ±0.09 0.41 ±0.04
12% 0.44 ±0.04 0.54 ±0.04 0.44 ±0.05 0.82 ±0.03 0.44 ±0.03 0.54 ±0.09
22% 0.63 ±0.05 0.54 ±0.04 0.62 ±0.04 0.83 ±0.03 0.58 ±0.04 0.67 ±0.07
33% 0.58 ±0.07 0.55 ±0.06 0.57 ±0.04 0.81 ±0.04 0.67 ±0.03 0.61 ±0.03
43% 0.70 ±0.03 0.79 ±0.03 0.69 ±0.03 0.83 ±0.02 0.70 ±0.04 0.80 ±0.04
100% 0.82 ±0.03 0.82 ±0.03 0.82 ±0.03 0.82 ±0.02 0.83 ±0.02 0.83 ±0.02

We conducted a five-fold cross-validation to evaluate the performance of each active learning algorithm. Our

findings suggest that EdgeAL and MAXRPR are the most effective in selecting the best queries for training

with a minimal amount of annotation. We presented the results in Table 2.

5.4. Annotation Tool

After the backend finishes training and querying, the controller sends the queried samples to the annotation

tool. The annotation tool calls the OCT preparation tool which downloads OCTs from XplOit, adding additional

random OCTs and loads data into annotation tool. 3 slices per OCT are chosen, the middle and two randomly

on either half of the OCT. Doctors are then annotating these slices with the tool. Finished annotations are sent

back to the controller. They are also sent to XplOit for storage and access for use by project partners.
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Figure 4: Visual representation of U-net architecture [27]

6. Intelligent User Interfaces

6.1. The Annotation Tool

The annotation tool that is used for image annotations is a fork of HUMAN [24]. Its main goal was to be as

flexible and adaptable to a variety of annotation tasks as possible. The name HUMAN stands for Hierarchical

Universal Modular ANnotator, reflecting the main features of this tool: It provides a variety of modular

question types like multiple-choice, yes-no or setting bounding boxes that can be arranged via an internal state

machine. These modules can be self contained or rely on each other, i.e. there can be a follow up task depending

on a previous annotation. E.g. for semantic image labeling, one task could be drawing one or multiple bounding

boxes, the next task could be labeling these with a predefined object name. The architecture (Figure 5) also

allows the input for a task to come from another source, e.g. raw data or a classification model. For the

example above a segmentation model could then provide the bounding box coordinates for the bounding box

labeling task. The tool is implemented as a native JavaScript web application (Figure 6) with a Flask server

backend. This has the advantage of better compatibility with various operating systems, parallel annotations

and automated annotation distribution to different users. The procedures for setting up a data annotation

protocol and annotating data instances are described in algorithm 1. The administrator must launch a server

and create a state machine protocol before the algorithm may begin. In the Appendix A, a sample state machine

protocol is given. All the annotated information is stored in an SQLite database. Appendix B provides an

overview of the tool’s workflow along with some example annotations.
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Algorithm 1: Protocol Setup and Data Annotation

Result: Annotated data instances
1 Step 1: Start the server;
2 Step 2: Administrator defines a state machine protocol;
3 YAML file with task configuration and chaining ;
4 Step 3: Upload raw data into the database;
5 Manually via Upload Console or automatically via OCT Preparation Tool ;
6 Step 4: Register users for data annotation;
7 while Not all data instances are annotated do
8 Annotation Process:;
9 User logs in;

10 State machine assigns a data instance;
11 Perform annotations;
12 State machine transitions until end state;
13 Annotations are saved in the database;
14 Assign new data instances for annotation;

15 end

OCT Specific Changes

For efficient annotations of OCT images, some changes were needed. For OCT annotations it is often

necessary to jump back and forth between tasks. This made it necessary to abandon the hierarchical features

of HUMAN in favor of the possibility to jump between states.

6.2. Diagnostic Decision Support Prototype

A study by Brinkman et al [32] shows that there is a significant risk of related diseases being accidentally

diagnosed as AMD. In order to provide diagnostic support for AMD to healthcare professionals, one of the

project goals is to provide a diagnostic support system (DSS). The project’s the clinical partners identified five

diseases that are at risk of being diagnosed as AMD. To support prototype development for each disease 20

images have been provided by the partners in the data warehouse. Up to date a preliminary prototype has been

developed. It evaluates medical markers that indicate an alternate diagnosis with the help of the segmentation

of the retinal layers, provided by a DL model, and classical computer vision methods, that operate on top of the

segmentation. F.ex. to compute the choroidal thickness, the segmentation of the choroidal layer at the center

of the image can be used. In order to improve the prototype, it is desirable to incorporate more interactivity.

In [33] Bhattacharya et. al explore different approaches to a data-centric design in medical DSS. Here, the

authors developed a dashboard for monitoring diabetes onset, aimed at healthcare professionals and patients.

While the main focus of this work lies on exploring the impact of design choices onto the usefulness of the

application, one notable feature are the what-if explorations. These allow the users to explore the effects of the

input parameters (such as waist circumference, alcohol intake, etc.) onto the predicted diabetes onset.

Our prototype providing risk assessment for misdiagnosing AMD is aimed at healthcare professionals only.

It is founded on marker-based reasoning, thus providing a reasoning-framework that healthcare professionals

are accustomed to. For the new prototype version it is planned to incorporate a marker ranking, that can be re-

ordered (Figure 7 visual component number 3). This allows the user to better understand the reasoning behind

the risk prediction, which can be adjusted through drag-and-drop by the user, incorporating their feedback and

promoting the interactive aspect of the tool.

7. Discussion

Our AL framework MedDeepCyleAL provides a framework for AL experiments that supports segmentation

and classification in medical images. It can easily be used with different deep learning architectures and self-

supervised models can be incorporated. Different experiments are planned with regard to AL.
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Figure 6: Example OCT annotation in HUMAN. Left side, from top to bottom: a progress bar, the current layer or fluid to be
annotated, continue and uncertain buttons, drawing tools, the SLO and a list summarizing all annotations. Right side: The slice
in which the annotation is to be done. The current annotation is marked red, the others are transparent and colored corresponding
to the mark in the summary list.

7.1. Partial Labeling

Here, we hypothesize that some parts of the retinal images of AMD patients are easier to segment than

others. While the upper-most layer is easily distinguished from the background/vitreous eye, distinguishing

neighboring layers is more challenging. We are training a DL model on retinal OCT images, whose input is

a 2D image of the retina and that creates a (semantic) segmentation of the input image. While the common

approach involves training a model on a fully labeled image, our approach only requires labeling in specific

areas. Which areas will be presented to the annotator for labeling is determined through AL. Note that in most

AL approaches, the AL algorithm would be used to compile a training set for a deep learning model. In this

experiment, we use a pre-defined, fixed set of images. With the help of AL, it is determined what layers/medical

markers of an individual image will be annotated. Instead of training the model with a fully annotated ground

truth, we use a weighted loss that effectively masks out non-annotated areas. Thus, we reduce annotation cost

not by reducing the required data set size to attain a certain score but reduces the amount of annotations that

need to be added to individual images.

7.2. Active Selection with Self-Supervised Learning

Along with active learning, another paradigm to reduce the annotation effort is self-supervised training that

learns from a large pool of unlabeled data in an unsupervised way. Self-supervised learning (SSL) has gained

attention as it can utilize large amounts of unlabeled data, which are often readily available. It leverages the

inherent structure or information present in the input data itself to create supervised learning tasks. The model

learns to predict certain aspects of the data, such as filling in missing parts, generating transformed versions, or

clustering group of similar samples closer and diverse samples afar (contrastrive learning) [34]. Recent studies

suggest using self-supervised learning with active learning can be a powerful combination that leverages the

benefits of both approaches [35]. Neural models for our task can be pre-trained using large pool of unlabeled

OCT slices by applying self-supervised tasks in order to learn meaningful representations of the data. And by

integrating SSL optimization in the sample selection of our active learning framework, we plan to evaluate their

performance on medical imaging domain.

12



Figure 7: Proposed interactive DSS prototype to differentiate between AMD and other mis-diagnosed diseases, the pink circles
indicate individual visual components (VC). VC1 provides an overall patient overview, including treatment history (which consists
of injections vs no injections for AMD treatment) and an risk evaluation indicating how likely it is that the patient has been
misdiagnosed. VC2 illustrates the individual markers with their evaluation through the system. This allows the user to investigate
individual markers in-depth. VC4 provides a data-centric reasoning panel to illustrate the contribution of the individual markers
to the risk prediction. VC3 is the interactive component of the demo. Here, the user may re-order the marker ranking which leads
to a retraining of the risk assessment system in the back-end.
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7.3. The Benefit of Active Learning for the Annotation Process

In AL, the models that are gradually trained, are sometimes used to provide suggestions to the annotators

in order to speed up the annotation process. In this experiment, we measure the time-wise benefit of such an

approach for the segmentation of retinal layers. The underlying hypothesis is that, while the models trained on

the partial data set may not be as accurate, suggestions generated with their help still provide a speed-up in

the annotation process. Since the purpose of uncertainty sampling in AL is to provide challenging examples,

this benefit has to be present for challenging data points.

We expect this effect to take place the moment the provided suggestions are exact enough, such that they can

be corrected with an effort that falls below the creation of the same annotation from the very beginning, or that

the suggestions are good enough for some annotation classes, such that the annotator may skip the particular

example at all. A known challenge from previous studies is the distinction between secondary effects and the

actual benefit of the described method. For one it is difficult to measure the inter-annotator difference and then

it provided to be difficult to differentiate between the learning effect of performing the annotation process (f.ex.

learning to use the tool) and benefit of the described method. We are countering the former by choosing an

appropriate amount of annotators and the latter by giving the annotators some example annotations to get to

know the tool.
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Appendix A. Annotation Tool Protocol for Annotating the Inner Limiting Membrane Layer

Listing 3: Example protocol consisting of a load state loading an OCT an image segmentation task for the Inner Limiting Membrane,
a categorial question for the type of Macular Foramen (none, pseudo lammelar or full-thickness), and a summary state providing
a summary of all annotations at the end.

s t a r t :

type : l o a d

data loader : OCTLoader

t r a n s i t i o n s :

- next :

t a rg e t : s e g i l m

s eg i lm :

type : o c t S e gm e n t a t i o n

ques t ion : I n n e r L i m i t i n g Membrane

annotat ion type : l i n e

t r a n s i t i o n s :

- " * ":

t a rg e t : m a c u l a r f o r am e n

macular foramen :

ques t ion : Ma cu l a r Foramen

type : s e l e c t

opt ions :

- ’ - ’

- pseudo

- l ame l l a r

- f u l l −th i ckne s s

t r a n s i t i o n s :

- ’* ’:

t a rg e t : summary

summary:

type : s umma r y o c t

ques t ion : Summary

t r a n s i t i o n s :

- ’* ’:

t a rg e t : end
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Appendix B. Example Annotation Workflow

16



References

[1] A. Farshad, Y. Yeganeh, P. Gehlbach, and N. Navab, “Y-Net: A Spatiospectral Dual-Encoder Network

for Medical Image Segmentation,” in Medical Image Computing and Computer Assisted Intervention –

MICCAI 2022, L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li, Eds. Cham: Springer Nature

Switzerland, 2022, pp. 582–592.

[2] W. Yuan, D. Lu, D. Wei, M. Ning, and Y. Zheng, “Multiscale Unsupervised Retinal Edema Area Seg-

mentation in OCT Images,” in Medical Image Computing and Computer Assisted Intervention – MICCAI

2022, L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li, Eds. Cham: Springer Nature Switzerland,

2022, pp. 667–676.

[3] V. Nath, D. Yang, H. R. Roth, and D. Xu, “Warm Start Active Learning with Proxy Labels and Selection

via Semi-supervised Fine-Tuning,” in Medical Image Computing and Computer Assisted Intervention –

MICCAI 2022, L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li, Eds. Cham: Springer Nature

Switzerland, 2022, pp. 297–308.

[4] B. Settles, “Active Learning Literature Survey,” University of Wisconsin, Madison, vol. 52, 07 2010.

[5] G. Weiler, U. Schwarz, J. Rauch, K. Rohm, T. Lehr, S. Theobald, S. Kiefer, K. Götz, K. Och,
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