
Semi-Supervised Similarity Learning in
Process-Oriented Case-Based Reasoning∗

Nicolas Schuler1,3 , Maximilian Hoffmann1,2 , Hans-Peter Beise3, and Ralph
Bergmann1,2

1 German Research Center for Artificial Intelligence (DFKI), Branch University of
Trier, Trier, Germany

2 University of Trier, Trier, Germany,
3 Trier University of Applied Sciences, Trier, Germany

{hoffmannm,bergmann}@uni-trier.de
{schulern,beise}@hochschule-trier.de

Abstract Supervised learning is typically challenging with insufficient
amounts of labeled training data and high costs for label acquisition, cre-
ating a demand for unsupervised learning methods. In the research area
of Process-Oriented Case-Based Reasoning (POCBR), this demand is
created by training data that is manually-modeled and computationally-
expensive labeling methods. In this paper, we propose a semi-supervised
transfer learning method for learning similarities between pairs of seman-
tic graphs in POCBR with Graph Neural Networks (GNNs). The method
aims to replace the fully supervised learning procedure from previous
work with an unsupervised and a supervised training phase. In the first
phase, the GNNs are pretrained with a triplet learning procedure that
utilizes graph augmentation and random selection to enable unsupervised
training. This phase is followed by a supervised one where the pretrained
model is trained on the original labeled training data. The experimental
evaluation examines the quality of the semi-supervised models compared
to the supervised models from previous work for three semantic graph
domains with different properties. The results indicate the potential of
the proposed approach for improving retrieval quality.

Keywords: Semi-Supervised Learning · Transfer Learning · Process-
Oriented Case-Based Reasoning · Deep Learning

1 Introduction

Case-Based Reasoning (CBR) [1] is a research field in artificial intelligence, fo-
cusing on experience-based problem-solving. The key components of a CBR ap-
plication [31] are a case base which contains cases of experiential knowledge,
similarity measures for determining which case of the case base is suited to solve
a new problem, adaptation knowledge to enable modifications of cases for un-
seen situations, and a vocabulary that defines the underlying domain of the data
∗ The final authenticated publication is available online at https://doi.org/10.1007/

978-3-031-47994-6_12

https://orcid.org/0009-0007-4098-1244
https://orcid.org/0000-0002-7932-5822
https://orcid.org/0000-0002-5515-7158
https://doi.org/10.1007/978-3-031-47994-6_12
https://doi.org/10.1007/978-3-031-47994-6_12

and the application. The focus of this work is the retrieval phase of a CBR ap-
plication, in which the case base is searched for the most similar, hence most
useful, cases w. r. t. a query. Thereby, similarity measures determine the simi-
larity value between the query and the cases, with a higher similarity resulting
in a higher problem-solving capability. Process-Oriented Case-Based Reasoning
(POCBR) [3, 24] aims to integrate the CBR principles with process-oriented
applications such as cooking assistance [25], manufacturing [23], and argumen-
tation [22]. A retrieval in the context of POCBR typically assesses the simi-
larity between semantically-annotated processes with similarity measures based
on graph isomorphism checks [3]. Their inherent computational complexity [28]
paired with large case bases can, thus, lead to long retrieval times and a limited
practical applicability.

Different approaches tackle these shortcomings by approximating seman-
tic graph similarities with computationally-inexpensive similarity measures that
are, for instance, based on graph feature selection [4] or embeddings of entity-
relationship triplets [20]. This paper builds upon an approach where whole-graph
embeddings are learned by message-passing Graph Neural Networks (GNNs)
[16,17]. These GNNs embed semantic graphs with three consecutive operations:
First, all nodes and edges including semantic annotations and types are embed-
ded to an initial vector representations. The node representations then iteratively
share information with each other by merging representations of neighboring
nodes according to the edge structure. The whole-graph embedding vector is
finally determined by aggregating the representations of all nodes. The result-
ing embedding in the latent, low-dimensional feature space can then be used
to calculate the graph similarity, e. g., by a vector similarity measure such as
cosine similarity or other distance-based measures such as normed Euclidean
distance. The GNNs are trained with pairs of semantic graphs and ground-truth
similarities that stem from a similarity measure based on graph matching [3].
The goal of the approach is to speed up retrieval by using GNNs as (fast) simi-
larity measures to predict graph similarities, rather than computing them with
computationally-expensive measures [16,17].

In this paper, we replace the fully supervised training procedure by a semi-
supervised transfer learning method [21,34] that uses an unsupervised and a su-
pervised training phase. In the first, unsupervised phase, the GNNs are trained
with a triplet learning procedure [33]. Following is a second supervised training
phase, where the original supervised training procedure from previous work [17]
is employed. The motivation is to reduce the effort for label computation com-
pared to a solely supervised approach, since an unsupervised training phase can
be expected to reduce the amount of labeled data for a subsequent supervised
training. This strategy has proven to be effective in other domains [35]. To the
best of our knowledge, its application to the task of similarity learning between
semantic graphs is novel. The remainder of the paper is structured as follows:
Section 2 describes foundations on the used semantic graph representation for-
mat and on embedding semantic graphs with GNNs. Additionally, related work
on unsupervised learning is discussed. The proposed approach of semi-supervised

transfer learning with semantic graphs is presented in Sect. 3. This approach is
experimentally evaluated and compared with previous work in Sect. 4. Finally,
Sect. 5 concludes the paper and shows areas of future work.

2 Foundations and Related Work

The foundations include the semantic workflow representation and its corre-
sponding similarity measure that is the base for the concept and the experimen-
tal evaluation (see Sect. 2.1). In addition, semantic graph embedding with GNNs
is examined (see Sect. 2.2) and related work concerning unsupervised learning
with graphs (see Sect. 2.3) and unsupervised learning in CBR literature (see
Sect. 2.4) is discussed.

2.1 Semantic Workflow Representation and Similarity
Assessment

The workflow representation format used in the remainder of the paper is the
NEST graph format, introduced by Bergmann and Gil [3] and common in
POCBR literature (e. g., [17, 22, 23, 37]). A NEST graph is defined as a quadru-
ple W = (N, E, S, T) where N is a set of nodes, E ⊆ N × N a set of edges,
S : N ∪ E → Σ a function assigning a semantic description to each node and
edge from the semantic metadata language Σ, and T : N ∪ E → Ω a function
assigning a type from Ω to each node and edge. Σ is usually given by the do-
main definition in the form of an ontology or some other knowledge model. An
exemplary NEST graph representing a sandwich recipe is given in Fig. 1. The
sandwich starts by executing the cooking step coat (represented as a task node)
with the ingredients mayo and baguette (represented as data nodes). A slice
of gouda is then laid on the coated baguette to finish the simple sandwich. All
nodes are connected by edges to indicate relations, e. g., layer consumes baguette.
The workflow components, i. e., nodes and edges, are further specified by using
semantic annotations (as shown for the example coat). The semantic annotation
of this example defines a list of auxiliaries and the time to complete the task.
In general, semantic annotations can be arbitrarily complex with different data
types (e. g., numerics, strings, dates, etc.) and different compositions that form
a tree structure, making similarity computation complex [17].

To calculate the similarity between two given NEST graphs, Bergmann and
Gil [3] introduce a similarity measure based on the local-global principle [31].
The global similarity of two NEST graphs is determined by a graph matching
procedure that takes into account the local similarities of the semantic annota-
tions of mapped nodes and edges. In this process, nodes and edges of the query
graph are mapped by an injective function to nodes and edges, respectively, of
the case graph. Thereby, the nodes and edges are mapped onto each other in
an A* search with the goal of maximizing the global similarity. The matching
process is complex and can take a long time for larger graphs, since the num-
ber of possible mappings grows exponentially with the number of nodes and

mayo

coat layer

sandwich
dish

task	node data	node control-flow dataflow part-of

coat

Duration:	2	(Integer)

Auxiliaries:	Spoon,	Knife	(List)
baguette

gouda

Sandwich
Recipe

workflow
node edge edge edge

Fig. 1. Exemplary Cooking Recipe represented as NEST Graph.

edges (see [36] for a quantitative analysis). This emphasizes the need for fast,
lightweight similarity measures, such as similarity approximation by GNNs [17],
to speed up POCBR applications.

2.2 Semantic Graph Embedding

Hoffmann and Bergmann [17] present two Siamese GNNs, i. e., the Graph Em-
bedding Model (GEM) and the Graph Matching Network (GMN), for speeding up
similarity-based retrieval in POCBR. The GEM and GMN, illustrated in Fig. 2,
are trained to predict graph similarities by transforming the graph structure and
the semantic annotations and types of all nodes and edges into a whole-graph
latent vector representation. These vectors are then combined to calculate a sim-
ilarity value. Both models follow a shared general architecture composed of four

Embedder

Propagation
Layer

Aggregator

Fig. 2. GEM (left branch) and GMN (right branch) (taken from [16]).

components: First, the embedder transforms the features of nodes and edges to
initial node and edge embeddings in a vector space. These features comprise se-
mantic annotations and types and are encoded and processed in a very specific

way for semantic graphs (see [17] for more information). Second, the propagation
layer gathers information for each node from its local neighborhood by passing
messages [12]. Specifically, the vector representation of a node is updated by
merging its vector representation with those of neighboring nodes connected by
incoming edges. This process is iterated multiple times. Subsequently, the aggre-
gator combines the node embeddings at that state to form a vector representa-
tion of the entire graph. The graph similarity between two graphs is eventually
computed based on their vector representations in the vector space, for instance,
utilizing a vector similarity measure like cosine similarity.

The two models exhibit differences in how they implement the propagation
layer and the final graph similarity. These differences result in a trade-off between
expressiveness and performance. Specifically, while the GMN provides greater
expressiveness than the GEM, it is also associated with a higher computational
cost. For a more in-depth exploration of these variances, we refer to Hoffmann
and Bergmann [17]. Furthermore, an integral part of the training procedure is
to learn the general (implicit) characteristics of semantic graphs without the
concrete focus on similarity. This motivates using the GEM and the GMN in an
unsupervised or semi-supervised training setup to reduce the needed amount of
labeled training data.

2.3 Unsupervised Learning with Graphs

A popular model architecture for unsupervised learning with graphs are Siamese
Neural Networks (SNNs), originally introduced by Bromley et al. [5] (see [8] for
an in-depth review). These neural networks are used by a variety of unsupervised
[13], semi-supervised [32], and supervised [17] approaches. At its core, an SNN
is a multitude of identical networks sharing trainable parameters [32]. For graph
representation learning, specifically, the neural network itself can be any GNN
that processes graphs and yields a vector-space representation. To train the
shared weights of the networks, different loss functions can be employed, which
include, for instance, triplet loss [33].

Another popular model architecture for unsupervised learning with graphs
are Graph Autoencoders (GAEs) (see [14] for an in-depth review). These models
consist of an encoder, reducing the dimensionality of the input data to a (simple)
vector representation, and a decoder, increasing the dimensionality of the vector
representation. The training procedure has the goal of improving the encoder
and decoder to the point where the decoded data closely matches the original
input data. In particular, GAEs offer several features that make them suitable
models for POCBR applications. First, their flexible nature allows utilizing a
variety of architectures [14] for the encoder, which in turn can also be used to
pretrain an encoder that might be used later in a different context. In addition,
an autoencoder enables the decoding of the embedded graph from the latent
space back to its initial representation, enabling generative model architectures.
Albeit initially developed for relational graphs such as social networks, Kipf and
Welling [19] present variational GAEs as a generative model that is generally
also applicable to semantic graphs representing processes.

2.4 Unsupervised Learning in CBR

In the present work, unsupervised learning of graph representations is paired
with supervised graph embedding and transfer learning. For a more compre-
hensive discussion of related deep learning and transfer learning applications
in the CBR context, see previous work [17, 30]. Approaches utilizing unsuper-
vised learning in CBR research are examined in the following: In the field of
textual CBR, Naqvi et al. [27] use an unsupervised autoencoder to fine tune a
deep language model to adopt it to a specific CBR domain in the context of
prognostics and health management. Amin et al. [2] utilize word embeddings for
unsupervised text vectorization and word representation learning with SNNs in
CBR to perform customer service tasks. Similarly, Lenz et al. [22] apply super-
vised and unsupervised methods from textual CBR to argument graphs, that is,
arguments represented as a graph, in the context of similarity-based retrieval.
The work focuses on semantic textual similarity, which is improved by utilizing
unsupervised word embeddings and similarity measures beyond simple vector
measures. Chourib et al. [9] apply unsupervised k-means clustering to generate
representations of medical knowledge from the case base for similarity estima-
tions and quality assessments. For POCBR in particular, Klein et al. [20] use
a generic triplet embedding framework for unsupervised triplet representation
learning in the context of similarity-based retrieval. However, this work did nei-
ther consider the entire graph structure nor the semantic annotations of nodes
and edges [20].

These examples show that many of the approaches do not focus on graph-
structured data and are thus not suitable to be applied in POCBR applications.
To the best of our knowledge, the proposed approach is novel in the sense that
it combines unsupervised learning, supervised graph embedding, and transfer
learning in a POCBR context.

3 Semi-Supervised Transfer Learning with Semantic
Graphs

In order to reduce the effort for labeling training data for supervised graph sim-
ilarity learning tasks in POCBR, the approach proposed in this paper aims at
using semi-supervised transfer learning with SNNs. An overview of the compo-
nents and the main steps is given in Fig. 3. The approach uses three separate
learning paradigms that are combined and explained in the remainder of this
section, i. e., unsupervised triplet learning, supervised graph similarity learning,
and a transfer learning scenario.

Transfer learning acts on the highest level of the architecture and combines
the other two components. The general idea is that knowledge gained from a
source domain in the pretraining phase (see step 2) can be transferred to a
target domain in the adaptation1 phase (see step 3) [21, 34]. In our context,
1 Please note that the term “adaptation” refers to its meaning in the context of transfer

learning in the remainder of the paper and is not referring to the reuse phase in CBR.

Pretraining

Augmented
Dataset

Labeled
Dataset

Similarity
Learning

Unsupervised
Learning

Data
Augmentation

Preprocessing Adaptation

Trained
Model

Pretrained
Model

1
2 3

Fig. 3. Architecture for Semi-Supervised Transfer Learning With Its Three Main Steps.

a graph embedding model, acting as the knowledge, is transferred from the
pretraining phase, an unsupervised learning procedure, to the adaptation phase,
a supervised learning procedure. A preprocessing phase for data augmentation
(see step 1) precedes the pretraining phase to create a large unlabeled dataset
to be used by the unsupervised learning method. The underlying assumption
is that unsupervised pretraining with augmented data reduces the need for a
large amount of labeled data in a subsequent supervised training, as supported
by literature [35]. However, to apply this strategy, all phases of the transfer
learning process must be designed to be compatible.

3.1 Unsupervised Triplet Learning

The pretraining phase employs an SNN with a triplet loss [33] for learning un-
supervised graph embeddings (see Fig. 4). As the concrete models to be used in
the SNN configuration, we use the GEM and GMN from previous work [17] (see
Sect. 2.2). The idea is to generate similar embeddings for similar graphs and
dissimilar embeddings for dissimilar graphs (in terms of vector space similarity).
Since we do not compute the ground-truth similarities for graphs in the training
data, the loss function operates on graph triplets of an anchor, a negative, and
a positive, maximizing the similarity for the pair of the anchor and the posi-
tive and minimizing the similarity for the pair of the anchor and the negative.
More formally, the triplet loss is defined in Eq. 1: Let T = (xa, xp, xn) be a
triplet consisting of one input vector for anchor xa, positive xp, and negative
xn. Let f(xi) = mi ∈ Rn denote the embedding of an input vector xi as the
n-dimensional embedding mi. To train a model based on the triplet loss, the
loss function L is minimized with α as a margin hyperparameter and N as the
cardinality of a batch of triplets [33].

L =
N∑
j

max{0, ∥ma
j − mp

j ∥2 − ∥ma
j − mn

j ∥2 + α} (1)

The main challenge for this training method in an unsupervised context is
to put together triplet training examples of an anchor, a negative, and a posi-
tive. There are different solutions in literature, depending on the type of data,
the learning task, and other factors (e. g., [15,29]). We propose to reuse popular

E
m

b
e
d
d
in

g

Triplet Loss{ }
Embedded Graph Vectors

A P N

Random Selection

Data Augmentation

A

P

N

Fig. 4. Unsupervised Triplet Graph Embedding using an Anchor (A), a Positive (P),
and a Negative (N).

methods that originally stem from the domain of computer vision [6]. In this
domain, an anchor is commonly selected from the training set and the positive
is generated based on the anchor by data augmentation, while the negative is
randomly selected from the training set. For instance, Chen et al. [6] use data
augmentation like rotation, cropping, color distortion, filtering, and blurring of
images. However, while the random selection of a graph from the dataset to
generate the negative is trivial, the generation of the positive via data augmen-
tation is challenging due to the complexity of the underlying semantic graphs
(see Sect. 2.1).

3.2 Semantic Graph Augmentation

In this unsupervised setup, a challenge arises when defining suitable positives xp

using data augmentation methods [11], as it requires configuring the augmenta-
tion techniques in a way that ensures the positive samples are actually similar
to the anchor. So called hard or semi-hard triplets [15] are needed. In a semi-
hard triplet, the negative’s embedding has a greater vector-space distance to the
anchor’s embedding than the positive’s embedding, but still within the range of
the margin parameter α (see Eq. 1). A hard triplet is stricter, such that the neg-
ative’s embedding must be closer to the anchor’s embedding than the positive’s
embedding. As there are no similarity labels to ensure this property for gen-
erated triplets, the data augmentation methods can only work with heuristics.
This is particularly challenging for the domain of semantic graphs due to their
characteristics and definition of similarity (see Sect. 2.1) where small changes,
for instance on the level of a single semantic annotation, can have large effects on
the global similarity. We present two methods of semantic graph augmentation
in the following (see [10, 26] for a comprehensive overview of graph augmen-
tation techniques) that are simple by design. Their purpose is to demonstrate
the aspect of semantic graph augmentation and to be used in the experimen-
tal evaluation. A thorough investigation of other, more complex augmentation
methods is beyond the scope of this work and, therefore, postponed to future
work.

The first method augments processes by randomly changing the order of two
subsequent task nodes in the control-flow sequence. Looking at the example in
Fig. 1, the method would swap the order of coat and layer, resulting in layer
being the first and coat being the second task node in the control-flow sequence.
In a larger graph, the other parts of the control-flow remain unchanged. The
method can be parameterized by the number of swaps and a random seed to
ensure reproducibility. The second method randomly deletes edges of a certain
type to augment processes. For instance, in Fig. 1, the method could randomly
delete two of the shown part-of edges. The connected nodes remain unchanged.
The method can be parameterized by the number of deletions, the type of the
edges to delete, and a random seed to ensure reproducibility. While both aug-
mentation methods are simple, they are still fundamentally different regarding
the resulting augmented processes. The first augmentation method maintains
the syntactic correctness of the augmented process in terms of the NEST graph
format (see Sect. 2.1). This means that the augmented process could, for in-
stance, be executed in a process execution engine. The second method does not
preserve syntactic correctness, making the augmented process unusable for exe-
cution or other tasks that require syntactic correctness. Both methods, however,
do not preserve semantic correctness that is defined by the POCBR domain
and similarity models, e. g., , “a baguette cannot be layered before coated”. The
method we employ is based on the assumption that neural networks are still
able to learn the basic structure and composition of the original processes from
the augmented processes, even if the latter do not feature syntactic or semantic
correctness.

3.3 Graph Embedding with GEM and GMN

The GEM and the GMN (see Sect. 2.2) are used for the task of graph embedding
in the pretraining phase with triplet learning and in the adaptation phase. Their
task in the adaptation phase is supervised embedding of graph pairs, which ex-
actly matches their original purpose (see previous work, e. g., [17], and Fig. 2).
However, the triplet learning method in the pretraining phase requires adjust-
ments to the models. The GEM is not used, as originally introduced, with pairs
but with triplets of graphs in the pretraining phase. These graph triplets are also
processed with shared parameters. As the GEM supports processing tuples of
graphs independent of their number out of the box, this change is more focused
on the implementation. The modifications to the GMN are more substantial due
to the cross-graph matching procedure in the propagation layer that is integral
to the superior prediction quality of the GMN compared to the GEM. That is,
this matching procedure requires pairs of graphs to function properly due to the
involved information propagation between the two graphs (see Fig. 2). Since the
triplet learning procedure in the pretraining phase works with graph triplets,
i. e., anchor, positive, and negative, the GMN must be adjusted. We employ the
GMN to compute embeddings for two graph pairs, i. e., a pair of anchor and
positive and a pair of anchor and negative. The four resulting graph embedding
vectors are then reduced to three for computing the triplet loss. The reduction is

done by aggregating the embedding vectors of both anchors in a trainable pro-
cedure, which, in this work, is implemented by an MLP. These adjustments to
the GEM and the GMN allow the unsupervised pretraining and the supervised
adaptation of both models in the transfer learning process.

4 Experimental Evaluation

The experimental evaluation compares similarity-based retrieval between the
proposed semi-supervised transfer learning approach and the supervised base-
line approach (as introduced in Sect. 2.2). We evaluate the quality of the retrieval
results in terms of the similarity prediction error and the errors in the order of
the retrieval results (see Sect. 4.1 for more details). The evaluation consists of
multiple experiments, where the effects of different amounts of labeled training
data are investigated. In total, 36 different retrievers with different model config-
urations are compared in three workflow domains. The aim of the evaluation is
to investigate the effect of the proposed approach on the quality of the retrieval
results.

4.1 Experimental Setup
The experiments involve three different case bases from different domains. These
domains are the cooking domain (CB-I), the data mining domain (CB-II), and
the manufacturing domain (CB-III). CB-I comprises 40 cooking recipes, man-
ually modeled and then expanded to 800 workflows through the generalization
and specialization of ingredients and cooking steps (more details in [17, 25]).
The case base contains a total of 660 training cases, 60 validation cases, and 80
test cases. In CB-II, the workflows are derived from sample processes provided
with RapidMiner. The case base consists of 509 training cases, 40 validation
cases, and 60 test cases. Additional information on this domain can be found
in [37]. CB-III encompasses workflows originating from a smart manufacturing
IoT environment, representing sample production processes. The case base in-
cludes 75 training cases, nine validation cases, and nine test cases (more details
in [23]).

The workflows of these domains are augmented with the two methods de-
scribed in Sect. 3.2 to increase the size of the dataset. The augmentation is
done in the following set of steps: First, for each workflow of the initial original
dataset, one random part-of edge is deleted. In the second step, the set contain-
ing the original and the augmented workflows from the first step are augmented
again by changing the order of one random pair of subsequent task nodes. Thus,
the result is a new, unlabeled dataset containing four times the amount of data
of the initial dataset, with parts of the dataset being syntactically and seman-
tically correct and some being not. The augmented datasets are only used for
the unsupervised training process in the pretraining phase, while the supervised
adaptation phase only uses the original, non-augmented data. To evaluate the
effect of the amount of labeled data that is available for training, each super-
vised training procedure in the adaptation phase is conducted once with 100

percent, 50 percent, and 25 percent of the labeled training data, respectively.
Please note, the number of graph pairs used as examples for training, testing,
and validation is exactly the square of the respective numbers of graphs given
before. For supervised training, there is one ground-truth similarity value cal-
culated for each possible graph pair and for unsupervised training, we select
each possible graph pair as anchor and negative and select the positive from
the list of augmentations of the anchor. This ultimately results in the following
number of supervised/unsupervised training cases: 435,600/6,494,400 for CB-I,
259,081/4,145,296 for CB-II, and 5625/90,000 for CB-III. All unsupervised and
supervised models are trained until convergence based on the training progress
on the validation data (early stopping).

The examined metrics cover the retrieval quality. Quality is measured in
terms of Mean Absolute Error (MAE) and correctness (see [7] for more details).
The MAE (lower values are better) measures the average absolute difference
between the ground-truth similarity and the predicted similarity of the retrievers.
The correctness metric, which ranges between -1 and 1 (higher values are better),
evaluates the degree to which the predicted ranking aligns with the ground-truth
ranking by penalizing inconsistencies where the predicted ranking contradicts the
order of the ground-truth ranking for a given pair of workflows. Consider two
arbitrary workflow pairs p1 = (Wi, Wj) and p2 = (Wk, Wl). The correctness
value is reduced if p1 is ranked before p2 in the predicted ranking, despite p2
being ranked before p1 in the ground-truth ranking, and vice versa.

4.2 Experimental Results

Table 1 shows the results of the experimental evaluation for all models in all
domains regarding the metrics introduced before. The models are grouped into
semi-supervised and supervised and the percentage of total labeled data used
in the supervised training step. The values highlighted in bold font mark the
best metric values among a domain for a particular model (i. e., GEM or GMN).
The median relative distance gives the aggregated difference between the semi-
supervised and supervised models of the respective metric, with positive values
indicating a better performance of the semi-supervised model and vice versa. The

Table 1. Evaluation Results.

25% 50% 100% 25% 50% 100% 25% 50% 100% 25% 50% 100%
Correctness 0.271 0.219 0.148 0.352 0.315 0.406 -0.006 0.061 0.030 0.363 0.477 0.411 260% -3%

MAE 0.270 0.286 0.162 0.076 0.070 0.054 0.382 0.283 0.296 0.097 0.076 0.056 29% 8%
Correctness 0.335 0.333 0.178 0.478 0.562 0.581 0.246 0.355 0.329 0.407 0.543 0.532 -6% 9%

MAE 0.299 0.280 0.198 0.067 0.054 0.053 0.331 0.406 0.430 0.077 0.070 0.059 31% 13%
Correctness 0.414 0.349 0.358 0.670 0.747 0.781 0.258 0.301 0.195 0.464 0.479 0.583 60% 44%

MAE 0.153 0.145 0.111 0.051 0.046 0.032 0.399 0.386 0.402 0.078 0.081 0.064 62% 43%

Med. Rel. Diff.

GEM GMN

C
B-

II
I

C
B-

II
C

B-
I

Semi-Supervised Supervised
GEM GMN GEM GMN

results regarding the MAE show a stronger performance of the semi-supervised
over the supervised models. The only exception is the GEM (50%) of CB-I,
where the supervised model outperforms the semi-supervised one. It is particu-
larly notable that the semi-supervised GEMs trained on 25% of the data con-
sistently outperform their supervised counterparts trained on 100% of the data.
The results w. r. t. the correctness show no clear dominant training method. In
the smallest domain CB-III, the semi-supervised models show a stronger per-
formance than the supervised models. The results in CB-I and CB-II, however,
are mixed and give no clear indication on the superiority of either the semi-
supervised or the supervised models w. r. t. correctness. The median relative
differences indicate two aspects: First, the simpler GEM model profits more
from the semi-supervised training than the already stronger performing GMN
model, though both models show an increased performance w. r. t. their MAEs.
Second, the smallest domain CB-III profits much more from semi-supervised
training than the two larger domains CB-I and CB-II, with improvements of up
to 83%.

We want to further discuss the correctness values and the influence of smaller
amounts of labeled data. The correctness values can generally not be improved
as much as the MAE values throughout the experiment. We suppose the focus
on minimizing the similarity prediction error in training to be the main reason
for this. The results might be different when training directly to improve the
correctness, as done in previous work [18]. Furthermore, it can be observed that
the median relative differences of CB-III show the strongest results in this com-
parison. The reason for this might be that it is by far the smallest dataset and,
thus, benefits more from additional unlabeled training data. However, the effect
of smaller amounts leading to a higher relative difference of the semi-supervised
compared to the supervised model is not consistent within the domains. For in-
stance, the MAE values of the GEMs of CB-II show a relative difference of 9.7%
for 25%, 31% for 50%, and 54% for 100% of the dataset.

In summary, the quality results show a consistent improvement of the MAE
metric and mixed effects w. r. t. the correctness when comparing semi-supervised
and supervised learning.

5 Conclusion and Future Work

The proposed approach presents a semi-supervised transfer learning method for
similarity learning in POCBR applications. Thereby, previous work on super-
vised graph similarity prediction is combined with an unsupervised pretraining
phase that uses a large, unlabeled and augmented dataset. The goal is to re-
duce the amount of labeled training data needed in this procedure, with the
underlying assumption that unsupervised pretraining with augmented data en-
ables this. The experiments compare the proposed semi-supervised models with
baseline supervised models in retrieval scenarios w. r. t. retrieval quality. Over-
all, the experimental results indicate that the semi-supervised models predict
similarities more accurately.

In future work, it is planned to increase the efficacy of the introduced SNN
architecture by improving the data augmentation process with other augmenta-
tion methods. These methods should deal with the specific properties of semantic
workflows, which complicates the use of standard augmentation methods, as de-
scribed in [10, 26]. Furthermore, future work should aim at implementing the
proposed unsupervised training method with GAEs, which are briefly discussed
in Sect. 2.3. A major benefit of using GAEs is the ability to extend the de-
coding process for enabling the generation of new graphs (so-called Variational
GAEs [19]). Graph generation might be an important topic for many active re-
search areas of CBR and POCBR such as case reuse (e. g., [23, 37]).

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 7(1), 39–59 (1994)

2. Amin, K., et al.: Advanced similarity measures using word embeddings and siamese
networks in CBR. In: Adv. in Int. Syst. and Comp., pp. 449–462. Springer (2019)

3. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic
workflows. Information Systems 40, 115–127 (2014)

4. Bergmann, R., Stromer, A.: MAC/FAC Retrieval of Semantic Workflows. In: Proc.
of the 26th Int. Florida Artif. Intell. Res. Society Conf. AAAI Press (2013)

5. Bromley, J., et al.: Signature Verification Using A "Siamese" Time Delay Neural
Network. IJPRAI 7(4), 669–688 (1993)

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for con-
trastive learning of visual representations. In: Proc. of the 37th ICML, Virtual
Event. vol. 119, pp. 1597–1607. PMLR (2020)

7. Cheng, W., et al.: Predicting Partial Orders: Ranking with Abstention. In: ML and
Knowl. Disc. in Databases, Part I. LNCS, vol. 6321, pp. 215–230. Springer (2010)

8. Chicco, D.: Siamese neural networks: An overview. In: Methods in Molecular Bi-
ology, pp. 73–94. Springer US (2020)

9. Chourib, I., Guillard, G., Farah, I.R., Solaiman, B.: Structured case base knowledge
using unsupervised learning. In: 2022 6th International Conference on Advanced
Technologies for Signal and Image Processing (ATSIP). IEEE (2022)

10. Ding, K., Xu, Z., Tong, H., Liu, H.: Data Augmentation for Deep Graph Learning.
ACM SIGKDD Explorations Newsletter 24(2), 61–77 (2022)

11. van Dyk, D.A., Meng, X.L.: The art of data augmentation. Journal of Computa-
tional and Graphical Statistics 10(1), 1–50 (2001)

12. Gilmer, J., et al.: Neural message passing for quantum chemistry. In: Proc. of the
34th ICML, Australia. vol. 70, pp. 1263–1272. PMLR (2017)

13. Gong, Y., Yue, Y., Ji, W., Zhou, G.: Cross-domain few-shot learning based on
pseudo-siamese neural network. Scientific Reports 13(1) (2023)

14. Hamilton, W.L.: Graph Representation Learning. Springer International Publish-
ing (2020)

15. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. CoRR abs/1703.07737 (2017)

16. Hoffmann, M., et al.: Using siamese graph neural networks for similarity-based
retrieval in process-oriented case-based reasoning. In: Case-Based Reason. Res.
and Dev.: 28th Int. Conf. ICCBR 2020, Spain, Proc., pp. 229–244. Springer (2020)

17. Hoffmann, M., Bergmann, R.: Using graph embedding techniques in process-
oriented case-based reasoning. Algorithms 15(2), 27 (2022)

18. Hoffmann, M., Bergmann, R.: Ranking-Based Case Retrieval with Graph Neural
Networks in Process-Oriented Case-Based Reasoning. The International FLAIRS
Conference Proceedings 36 (2023)

19. Kipf, T.N., Welling, M.: Variational graph auto-encoders. CoRR abs/1611.07308
(2016)

20. Klein, P., Malburg, L., Bergmann, R.: Learning Workflow Embeddings to Improve
the Performance of Similarity-Based Retrieval for Process-Oriented Case-Based
Reasoning. In: 27th ICCBR 2019, Germany. pp. 188–203. Springer (2019)

21. Kudenko, D.: Special issue on transfer learning. Künstliche Intell. 28(1), 5–6
(2014)

22. Lenz, M., et al.: Semantic textual similarity measures for case-based retrieval of
argument graphs. In: 27th ICCBR 2019, Germany, pp. 219–234. Springer (2019)

23. Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control loops for
adaptive workflow management in smart factories. Journal of Int. Inf. Syst. (2023)

24. Minor, M., Montani, S., Recio-García, J.A.: Process-oriented case-based reasoning.
Information Systems 40, 103–105 (2014)

25. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer
(2018)

26. Mumuni, A., Mumuni, F.: Data augmentation: A comprehensive survey of modern
approaches. Array 16, 100258 (2022)

27. Naqvi, S.M.R., et al.: CBR-based decision support system for maintenance text
using NLP for an aviation case study. In: 2022 Prognostics and Health Management
Conference (PHM), London, 2022. IEEE (2022)

28. Ontañón, S.: An overview of distance and similarity functions for structured data.
Artificial Intelligence Review 53(7), 5309–5351 (2020)

29. Ott, F., et al.: Cross-modal common representation learning with triplet loss func-
tions. CoRR abs/2202.07901 (2022)

30. Pauli, J., Hoffmann, M., Bergmann, R.: Similarity-Based Retrieval in Process-
Oriented Case-Based Reasoning Using Graph Neural Networks and Transfer Learn-
ing. The International FLAIRS Conference Proceedings 36 (2023)

31. Richter, M.M.: Foundations of similarity and utility. Proceedings of the Twentieth
International Florida Artificial Intelligence Research Society Conference (2007)

32. Sahito, A., Frank, E., Pfahringer, B.: Semi-supervised learning using siamese net-
works. In: Liu, J., Bailey, J. (eds.) AI 2019: Adv. in Artif. Int. - 32nd Australasian
Joint Conference, Australia. LNCS, vol. 11919, pp. 586–597. Springer (2019)

33. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: CVPR, USA. pp. 815–823. IEEE (2015)

34. Tan, C., et al.: A survey on deep transfer learning. In: 27th International ICANN,
Greece. LNCS, vol. 11141, pp. 270–279. Springer (2018)

35. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. Journal
of Big Data 3(1) (2016)

36. Zeyen, C., Bergmann, R.: A*-Based Similarity Assessment of Semantic Graphs. In:
Case-Based Reason. Res. and Dev.:, LNCS, vol. 12311, pp. 17–32. Springer (2020)

37. Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of Scientific Workflows by
Means of Process-Oriented Case-Based Reasoning. In: Case-Based Reason. Res.
and Dev.:, LNCS, vol. 11680, pp. 388–403. Springer (2019)

	Semi-Supervised Similarity Learning in Process-Oriented Case-Based Reasoning

