
Knowledge-aware Object Detection in Traffic Scenes

Jean-Francois Nies1,2, Syed Tahseen Raza Rizvi1, Mohsin Munir1, Ludger van Elst1 and Andreas
Dengel1,2

1German Research Center For Artificial Intelligence (DFKI) Kaiserslautern, Germany
2RPTU Kaiserslautern-Landau, Kaiserslautern, Germany

{firstname.lastname}@dfki.de
[12pt]

Keywords: Knowledge Graphs, Perception, Computer Vision, , Autonomous Driving, Knowledge Integration

Abstract: Autonomous driving is a widely popular domain that empowers the autonomous vehicle to make crucial deci-
sions in a constantly evolving traffic scenario. The role of perception is pivotal in the secure operation of the
autonomous vehicle in a complex traffic scene. Recently, several approaches have been proposed for the task
of object detection. In this paper, we demonstrate that the concept of Semantic Consistency and the ensuing
method of Knowledge-Aware Re-Optimization can be adapted for the problem of object detection in intricate
traffic scenes. Moreover, we also introduce a novel method for extracting a knowledge graph encoding the
semantic relationship between the traffic participants from an autonomous driving dataset. We also conducted
an investigation into the efficacy of utilizing diverse knowledge graph generation methodologies and in- and
out-domain knowledge sources on the efficacy of the outcomes. Finally, we investigated the effectiveness of
knowledge-aware re-optimization on the Faster-RCNN and DETR object detection models. Results suggest
that modest but consistent improvements in precision and recall can be achieved using this method.

1 INTRODUCTION

The problem of Object Detection (Zou et al., 2023)
can be expressed informally as the question ”What
objects are where?”. More formally, it incorporates
both the definition of bounding boxes, which encom-
pass objects of interest as closely as possible, and the
ability to assign correct labels to each such box. Re-
cently, research conducted in this field, primarily uti-
lizing convolutional neural networks (CNN), has al-
ready resulted in the development of object detection
systems that are capable of surpassing human per-
formance for specific tasks. (Altenberger and Lenz,
2018). Such systems typically employ deep CNNs
and are widely used in a range of practical applica-
tions, such as autonomous vehicles and facial detec-
tion systems.

Although a human observer would have the ability
to reason about the scene it is observing, a model such
as a convolutional neural network would have lim-
ited ability to dismiss or correct the erroneous detec-
tions (LeCun et al., 2015). The presence of additional
objects, the time and location of the objects, and their
relative positions in relation to one another may all
provide crucial clues to an observer. However, the

incorporation of this context into a machine learning
model is a complex undertaking. Contextual informa-
tion necessitates the provision of machine-readable
form, frequently resulting in substantial amounts of
supplementary data, which can be processed along-
side conventional inputs. Nonetheless, this approach
has garnered significant attention. In addition to
immediate enhancements in performance, Informed
Machine Learning may also offer’soft’ benefits in
terms of explainability and accountability. (von Rue-
den et al., 2023)

Although it is feasible to construct models that
incorporate external knowledge from the ground up,
there may be instances where the essential training
data is not accessible, or where a proprietary model
must be regarded as a ’black box’. In either case, the
ability to perform knowledge-based re-optimization
of the outputs of arbitrary models may be desirable.

In this paper, we adapt the knowledge aware ob-
ject detection approach for the task of object detection
in traffic scenes. This paper investigates the impact of
semantic consistency on the effectiveness of the ob-
ject detection approaches. We also examined the im-
pact of combining diverse knowledge sources and the
methods for estimating semantic consistency on the



final detections. Moreover, we examine the efficacy
of various sources and knowledge-graph generation
techniques on the performance of the more recent De-
formable Transformer (DETR) architecture.

2 RELATED WORK

The field of object detection is a dynamic area of re-
search that has numerous immediate applications. It
should therefore come as no surprise that several ap-
proaches are currently under active investigation.

Convolutional neural networks remain a funda-
mental part of object detection models, but many re-
cent models have enhanced their capabilities by in-
troducing different additional mechanisms. For ex-
ample, the Faster R-CNN model (Ren et al., 2016)
is widely used as a baseline for other object detection
models. It utilizes an RPN or region proposal network
to identify regions of interest before applying a con-
volutional neural network to the actual task of recog-
nition within these regions. By contrast, the DETR
architecture (Carion et al., 2020) prepends its CNN
backbone to another model, composed of encoding
and decoding transformers, such that the CNN acts as
a dimensionality reduction mechanism.

On the other hand, the YOLO family of mod-
els (Redmon and Farhadi, 2018) typifies the one-shot
object detection approach, named in contrast to the
two stages of an FRCNN-like detector with separate
region proposal and classification stages. A YOLO-
style model, as indicated by expanding the acronym
to ”You Only Look Once”, instead uses a single stage.

Although these models are capable of extracting
large amounts of relevant information from input im-
ages, they do not generally leverage external, contex-
tual knowledge such as causal or semantic relations
between different depicted objects and image meta-
data. For example, an image containing cars is more
likely to contain an omnibus than a lobster. Given the
intuitive nature of this methodology, it is not surpris-
ing that the issue of incorporating additional knowl-
edge in object detection has been examined from nu-
merous perspectives beyond the one that is at the core
of this paper.

Liu et al.(2021) (Liu et al., 2021) employed a simi-
larity network to measure the pairwise semantic simi-
larity between objects, in a method somewhat similar
to the one discussed in this paper. However, unlike
semantic consistency, this is not related to the likeli-
hood of co-occurence of concepts. Instead, semantic
similarity is a measure of the likelihood that two ob-
jects belong to the same class, regardless of which
class this may actually be. Others, such as Zhu et

al. (Zhu et al., 2021) have proposed architectures that
are capable of a more sophisticated integration of not
only semantic, but also spatial information, in order to
enhance the performance of object detection models.
Chen et al. (Chen et al., 2020) demonstrated that such
an approach can yield improved performance, espe-
cially on small objects.

Menglong et al. (2019) (Menglong et al., 2019)
applied a similar approach to the task of image classi-
fication or object recognition. For this, they described
a method in which labels assigned by one or several
existing classifiers are used to construct a knowledge
graph. The semantic similarity between any two cat-
egories is assigned based on the frequency at which
these classifiers confuse them. This information is
then utilized to enhance image classification by mod-
ifying the classifiers output to better reflect the do-
main knowledge gathered, and determining the de-
gree of confidence associated with outputs based on
their plausibility.

The construction of knowledge graphs is mov-
ing beyond simple text databases, and into the field
of Multi-Model Knowledge Graphs, organically inte-
grating image and text data into a single structure and
explicitly connecting images to explicit visual proper-
ties, as in Zhu et al. (Zhu et al., 2022).

MacAodha et al. (Aodha et al., 2019) took advan-
tage of the fact that many images available today are
tagged with temporal and geographic metadata and
extended the conventional object detection models to
consider this metadata as additional context. This is
accomplished by utilizing an assessment of the co-
occurrence of objects at specified times and locations.

Von Rueden et al. (von Rueden et al., 2023) pro-
pose the concept of ’informed machine learning’ as
a broad term that encompasses all forms of machine
learning that utilize external information sources, and
present a comprehensive and useful taxonomy.

Finally, Castellano et al. (Castellano et al., 2022)
demonstrate a novel application of these techniques
by utilizing a combination of knowledge graphs and
deep learning techniques to analyze artworks, and
provide a corresponding knowledge graph.

3 DATASET

We evaluated the impact of Knowledge-Aware Re-
Optimization on the Cityscapes Dataset (Cordts et al.,
2016), which was originally designed for scene un-
derstanding as applied to urban scenes. It comprises
a total of 5000 stereoscopic images, each of which
is accompanied by meticulous annotations at the in-
stance and pixel levels, as well as supplementary an-



Class Training Validation
Person 12044 (33.1%) 3450 (34.4%)
Rider 1080 (2.9%) 542 (5.4%)
Car 19113 (52.6%) 4378 (43.7%)

Truck 312 (0.8%) 93 (0.9%)
Bus 245 (0.6%) 98 (0.9%)

Train 118 (0.3%) 23 (0.2%)
Motorcycle 492 (1.3%) 148 (1.4%)

Bicycle 2903 (7.9%) 1281 (12.7%)
Total 36307 10013

Table 1: Distribution of classes across the partial Cityscapes
dataset

notations with coarser annotations. In our instance,
we take into account the annotations at the instance
level.

In order to incorporate the depth information re-
quired for certain applications, the dataset comprises
pairs of stereoscopic images, i.e., images that were
simultaneously captured by two cameras situated at
a slight distance from each other but oriented in the
same direction. This would allow for depth per-
ception, as the perspective of the left and right eye
would differ from human vision. As depth informa-
tion was beyond the scope of our experiments, we
adhered to the methodology outlined by T. Beemel-
manns (Beemelmanns, 2022) for formatting cityscape
datasets. This entails that only the left-hand image
was retained from each pair of stereoscopic images,
resulting in a dataset consisting of single images.

The number of instances in the training and vali-
dation components of the dataset is given in table 1.
This table also illustrates a limitation of the dataset,
namely the large class imbalance present across both
the training and validation sets. Thus, the number of
e.g., pedestrians (designated as ’Person’ in the dataset
label but distinct from a ’Rider’ on a bicycle or mo-
torcycle) in the validation set exceeds the number of
trains or buses by two orders of magnitude. The
classes corresponding to Trucks, Buses, and Trains
are particularly underrepresented. Nonetheless, the
ratio of each classification in relation to the total num-
ber of instances in both sets remains consistent, with
the exception of the categories ’Car’ and ’Bicycle’,
wherein the training and validation sets differ by 5
percentage points.

4 METHODOLOGY

In this paper, we adapt the concept of semantic con-
sistency (Fang et al., 2017) for the domain of au-
tonomous driving to encode the relationship between

traffic participants as knowledge. We investigate the
impact of knowledge integration on the performance
of object detection models in traffic scenes by utiliz-
ing environmental knowledge. This knowledge-aware
re-optimization framework relies on a semantic con-
sistency matrix to ensure consistency. For any two
concepts, this matrix gives a semantic consistency
value, which is an indication of how likely instances
of these two concepts are to occur simultaneously in
an image. The semantic consistency of a concept with
itself is also important, as multiple instances of the
same concept in a single image are more likely for
some concepts than others.

The framework as a whole is devoid of any partic-
ular object detection method or implementation, in-
stead treating the object detection model as a black
box. The model’s output is modified to better align
with the semantic consistency matrix, whereby the
scores for each class are elevated or decreased to en-
hance the overall consistency of the detection. To reg-
ularize the model and avoid being overly restricted
in cases which do not conform to the expected dis-
tribution, significant changes in class scores are also
penalized. An overview of the re-optimization work-
flow is shown in 1. For our experiments, we used
FRCNN (Ren et al., 2016) and DETR (Carion et al.,
2020) object detection models.

The main challenge for this approach lies in ob-
taining the semantic consistency matrix, S. We com-
pared the performance of baseline models with three
different methods, including the frequency-based
method and the knowledge graph-based method, as
well as our novel hybrid method.

4.1 External Knowledge Sources

4.1.1 Frequency-Based Semantic Consistency

The frequency-based approach generates a semantic
consistency matrix directly from the annotated train-
ing data utilized for the backbone model, necessi-
tating the availability of this training set. Fang et
al. (Fang et al., 2017) have noted that this may pose
a drawback in practical applications where the train-
ing data may be proprietary or otherwise unavail-
able, and also report a lower performance for this
method. Conversely, however, it may be useful for
situations where no suitable knowledge graph is avail-
able. The frequency-based method for determining
semantic consistency is based on the co-occurrence
of concepts. Hence, it is presumed that the objects
that frequently occur together in the training set ex-
hibit a greater degree of semantic consistency, as per
equation 1.



Sl,l′ = max(log
n(l, l′)N
(n(l)n(l′))

,0) (1)

where n(l) and n(l′) are the individual frequen-
cies of the respective concepts l, l′, n(l, l′) denotes the
number of co-occurrences of the two concepts and N
is the total number of instances. As the number of
co-occurrences of multiple instances of a single class
may also be relevant, a distinct ’handshake’ equation
is employed in this instance, adhering to the same
conventions, as per equation 2

n(l, l) = n(l)
n(l)−1

2
(2)

4.1.2 Knowledge Graph-Based Semantic
Consistency

The Knowledge Graph-Based Semantic Consistency
method is the second approach for assessing semantic
consistency. Unlike the frequency-based method, it
possesses the capability to be utilized even on pre-
trained models that lack training data.

To achieve this objective, it is imperative to con-
struct an external knowledge graph whose vertices
represent distinct concepts and whose edges connect
the concepts that are semantically related. In order
to process the knowledge graph, we adhered to the
methodology outlined by Lemmens et al. (Lemmens
et al., 2023), who provided significant elucidation to
the initial work performed by Fang et al.(Fang et al.,
2017). This method involves two stages.

Initially, the pre-existing graph, in our instance,
ConceptNet5 (Speer et al., 2012), has been cropped to
exclusively encompass positive relations (i.e., omit-
ting relations such as antonyms and contradictions)
and is limited, without any loss of generality, to the
English-language versions of concepts.

Subsequently, the semantic consistency matrix is
derived from this knowledge graph by means of a se-
ries of random walks commencing from each concept
of interest, corresponding to a desired label of the ob-
ject detection model. The random walk then traverses
the graph, but also has a low probability of resetting
to the original node with every step to avoid remain-
ing stuck in local groups (Random Walk with Restart,
RWR) (Tong et al., 2006). The probability of reaching
any given node from the starting node eventually con-
verges towards a steady-state after a sufficient number
of iterations.

4.1.3 Hybrid Semantic Consistency

In this paper, we evaluated the performance of our
own hybrid approach for estimating semantic consis-

tency, derived from a combination of the frequency-
based and knowledge-graph based approaches. It
is intuitive that the semantic consistency of a well-
designed out-of-domain and generic knowledge graph
will be correlated with the degree to which these con-
cepts are intertwined within the corpus on which the
graph is based. However, this may not be ideal in ev-
ery situation. If a model is to be applied in a specific
use-case instead of general-purpose object detection,
the class distribution it encounters may be different
from that suggested by a consistency matrix derived
from a generic knowledge-graph. As an illustration, a
knowledge graph derived from an encyclopedia may
exhibit a limited number of mentions of pedestrians,
while a greater emphasis is placed on trains. Whereas,
an object detection model intended for self-driving
vehicles is likely to encounter the opposite scenario.

As the knowledge graph-based method demon-
strated superior performance in comparison to the
frequency-based method in general, we investigated
the feasibility of creating a knowledge graph that is
tailored to our dataset based on frequency data. We
presume that a meticulously crafted dataset may pos-
sess greater relevance to the domain of application of
the model than a generic knowledge model. The steps
of hybrid approach are as follows:

• We generate a matrix M1 of co-occurrences for
each class across our dataset.

• Then we generate a knowledge graph G based on
M1 by creating a vertex and concept for each la-
bel present in the co-occurrence matrix, and con-
necting them when the corresponding number of
co-occurrences exceeds a threshold γ.

• A random walk is performed on this new graph G,
and the semantic consistency matrix is generated
as in the case of ordinary graph-based semantic
consistency.

We thus obtain a semantic consistency matrix with
the same structure as that produced by other methods.

4.2 Knowledge-Based Re-optimization

After generating our semantic consistency matrix S,
we proceed with the actual re-optimization. This is
accomplished by determining the minimal loss func-
tion that takes into account both semantic consistency
and the original input.

Formally, given two bounding boxes b,b′, we call
Pb,l ,Pb′,l′ the probability returned by the model for a
label l resp. l′ for either box. The loss function to
be minimized is given by equation 3, where L is the
number of concepts and B number of bounding boxes.



Figure 1: The basic principle of knowledge-based re-optimization. Using a semantic consistency matrix, the model output p
is changed to a re-optimized output p̂
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This function can be decomposed into a sum of
two terms, weighted by the hyperparameter ε ∈ (0,1),
which must be determined in practice for each dataset.
ε governs the relative weight of the semantic consis-
tency values and the backbone’s output. It is therefore
normally constrained to a range of 0< ε< 1. The first
term in equation 3 effectively demands that the total
square error between the final output for semantically
similar concepts be minimized. The semantic consis-
tency acts like a weight for the nested sum operations,
meaning that differences between wholly orthogonal
concepts (Sl,l′ = 0) will have no effect at all on the
final value.

The second term, in equation 3, imposes a cost
for overly large deviations from the backbone model’s
output. The square error between the final output P̂
and the model’s output P is modified by a coefficient
and added for all classes and bounding boxes, effec-
tively acting as a check on the re-optimization. The
cost function given in 3 is then minimized. This is ac-
complished by setting the gradient of E(P̂) w.r.t. P̂b,l
to zero.

4.3 Metrics

The implementation of Lemmens et al. (Lemmens
et al., 2023) made use of an Area-Under-Curve (AUC)
style of average precision calculation, computing
class-wise average precision for a range of recall
thresholds running from 0 to 1.0. We retained this
system, as it is especially useful for automatic param-
eter searches, where it implicitly balances the priority

of precision and recall even if only the former is ex-
plicitly targeted.

4.4 Experiment Structure

As a first step, we established a baseline of perfor-
mance metrics by evaluating the performance of both
architectures on the validation set of the cityscapes
dataset. We then attempted to find an optimal combi-
nation of re-optimization hyperparameters. As there
are several such parameters, we resorted to an auto-
matic parameter search using Optuna (Akiba et al.,
2019), including the weight parameter ε, the num-
ber of adjacent boxes and classes considered for re-
optimization, and an internal score threshold for re-
optimized outputs. Given that the precision-recall
curve metrics used already encompass recall in com-
puting precision, we verified that choosing accuracy
as the sole optimization target had no negative effect
and carried out our experiments on this base.

Initial evaluation indicated that the best results on
the unoptimized baseline were obtained when consid-
ering the 100 highest-scoring detections. As this cri-
terion was also used by Fang et al. (Fang et al., 2017),
we opted to follow this convention. However, we
also considered an alternative method, using a score
threshold instead of a static number of detections, and
the use of different values for both the number of de-
tections and the threshold. The results are detailed in
section 5.

5 RESULTS

We investigated various implementations of baseline
models and found that numerous object detection
frameworks differed in terms of input formats, out-
put formats, or both, presenting a challenge for inte-
gration with knowledge-based re-optimization, even



when an explicit API is provided. As an example,
Yolov3 (Redmon and Farhadi, 2018), as implemented
in the mmdetection framework, necessitates image in-
put to be provided as a file path, and returns a list of
bounding boxes and confidence scores per class. In
contrast, the implementation of Faster R-CNN built
into Pytorch necessitates image inputs in the form of
pytorch tensors, and returns a dictionary containing
labels, scores, along with bounding boxes in contin-
uous tensors. It is therefore necessary to implement
explicit format conversions for each architecture.

5.1 Faster-RCNN

In this section, we present and analyze the key results
obtained with the Faster R-CNN architecture. These
findings were computed based on the 100 top-scoring
detections, and are presented for the optimal hyperpa-
rameter configuration for the given experiment. Two
examples of the effects of re-optimization are given in
Figure 2. We trained an FRCNN model for 40 epochs
using a learning rate of 0.01, decaying to 0.0001 after
15 epochs, based on a pretrained ResNet50 backbone
in pytorch.

Method mAP Recall Small Med Large
Baseline 25.35 35.60 12.26 34.77 57.43

KG 25.22 35.88 11.93 35.40 57.93
Freq. 25.40 35.84 12.21 35.11 57.80

Hybrid 25.01 35.87 11.94 35.00 58.40
Table 2: Effects of different re-optimization methods on the
FRCNN model’s performance. Numbers in brackets give
the difference from the baseline.

All methods, as shown in table 2, provided some
gain in recall, with the largest gains being made
using the knowledge graph-based semantic consis-
tency, which achieved a gain of 0.28%. However,
the knowledge-graph (KG) method also resulted in
a 0.13% decrease in mAP. The hybrid method fared
worse in both respects, with smaller recall gains
(0.27%) and greater mAP losses (0.34%). Finally,
the frequency-based method resulted in an increase
in recall slightly smaller than the previous methods
at 0.24%, but also no loss of mAP (+0.05%). These
results are broadly consistent with those reported for
other application of the same method. (Lemmens
et al., 2023).

Upon further examination of the results, it is evi-
dent that the average values discussed earlier do not
result from a uniform change in all classes in a sin-
gle direction. The knowledge graph-based and hybrid
methods traded the mAP values for recall on certain
classes, while achieving increased precision on oth-
ers. It appears that the classes that have a smaller rep-

Figure 2: Examples of un-optimized output (red) being ad-
justed to a re-optimized label (green), with the correspond-
ing confidence score. (Faces and license plates redacted
manually)

Class
AP

Base KG Freq Hybrid
Person 25.29 24.92 24.42 25.32
Rider 29.76 29.40 29.75 29.73
Car 44.28 43.74 44.26 42.73

Truck 19.36 19.45 19.49 19.46
Bus 36.83 36.86 36.86 36.90

Train 12.14 12.15 12.15 11.82
Motorcycle 14.87 15.00 15.04 15.11

Bicycle 20.28 20.26 20.33 19.95

Class
Recall

Base KG Freq Hybrid
Person 33.51 33.78 33.48 33.94
Rider 41.31 40.26 41.25 40.18
Car 49.87 50.67 49.82 50.76

Truck 31.51 32.58 32.69 32.37
Bus 46.37 46.84 46.73 46.63

Train 23.48 23.91 23.91 23.91
Motorcycle 27.18 27.65 27.72 27.99

Bicycle 31.21 31.35 31.14 31.19
Table 3: Class-wise breakdown of Precision and Recall us-
ing Re-Optimization with an FRCNN backbone



resentation in the dataset, such as buses and motor-
cycles, are benefited by this approach. Thus, e.g. the
hybrid method increased precision for Motorcycles by
0.24% and recall by 0.81% Conversely, the precision
scores for the classes with the greatest support in the
dataset, such as Person and Car, exhibit a slight de-
crease in precision. Cars thus soffere a loss of 0.04%
in precision with the hybrid method, despite a 0.89%
increase in recall. The frequency-based method was
more consistent, with increases in precision across
the board, except for the Car class. The latter effect
may be tentatively explained by the fact that this class
makes up a substantially larger portion of the training
set (53.6 %), from which the frequency-based con-
sistency matrix is derived, than of the validation set
(43.7%), to which it is applied.

5.2 Deformable Transformers

In this section, we consider the results achieved with
the different re-optimization methods applied to an
implementation of the DETR architecture (Carion
et al., 2020) on the Cityscapes dataset. As before, we
will focus primarily on metrics computed for the 100
highest-scoring detections.

Performance for DETR was typically lower than
for FRCNN, primarily due to slightly lower recall,
as may be seen in table 4. However, the effects
of the knowledge-aware re-optimization largely fol-
lowed the same pattern. A challenge stemmed from
the large imbalance of classes within the cityscapes
dataset. While FRCNN was not visibly affected by
this, we found that DETR suffered from degraded per-
formance on the underrepresented classes. Based on
the findings discussed below, it seems probable that
a larger, more balanced training set or data augmen-
tation focued on the least-represented classes would
have greatly strengthened the results achieved with
DETR.

The DETR model was trained for 50 epochs using
the default hyperparameters set in the Deformable-
DETR implementation by Zhu et al. (Zhou et al.,
2020) with ResNet50-Backbone using the default pre-
trained weights provided by the implementation.

Method mAP Recall Small Med. Lrg
Baseline 21.84 35.48 17.46 44.63 62.71

KG 21.81 35.63 17.47 44.71 63.18
Freq. 21.58 35.70 17.46 44.70 63.06

Hybrid 21.81 35.61 17.46 44.71 63.03
Table 4: Effects of different re-optimization methods on the
DETR model’s performance. Numbers in brackets give the
difference from the baseline.

At 2.52% in the baseline, precision for the ’Train’

Class
AP

Base KG Freq Hybrid
Person 28.58 28.54 28.53 28.40
Rider 27.53 27.59 27.59 27.74
Car 49.03 48.95 48.95 49.10

Truck 11.88 11.88 11.91 12.32
Bus 17.13 17.04 17.05 18.33

Train 2.52 2.55 2.53 3.94
Motorcycle 14.70 14.62 14.61 15.44

Bicycle 23.36 23.33 23.33 23.71

Class
Recall

Base KG Freq Hybrid
Person 40.75 40.77 40.77 40.10
Rider 37.22 37.24 37.23 36.94
Car 57.66 57.71 57.71 57.23

Truck 29.73 30.57 29.46 28.51
Bus 29.25 29.42 29.39 29.40

Train 23.77 23.84 23.84 23.19
Motorcycle 26.76 26.76 26.76 26.74

Bicycle 38.71 38.72 38.71 37.88
Table 5: Class-wise breakdown of Precision and Recall us-
ing Re-Optimization with a DETR backbone

class is very low compared to the other classes, with
only 2.52%. This may be attributed to its limited rep-
resentation in the training set, with a mere 118 (0.3%
of total) instances, and in particular in the validation
set, with only 21 samples for trains (0.2% of total).

Conversely, when comparing the performance of
Faster RCNNN in table 3 with that of DETR in ta-
ble 5, it is observed that DETR’s precision and re-
call for the highest-scoring classes ’Person’ and ’Car’
match or surpass FRCNN’s performance (57.66% vs
44.28 precision for cars, resp. 40.75% vs. 33.51 recall
for pedestrians) despite lower average values overall.
As shown in table 1, these are also the most repre-
sented classes in the dataset.

However, the overall results for knowledge-based
re-optimization on the Deformable DETR backbone
exhibit a clearer pattern of improvements overall
when compared to FRCNN, with the hybrid re-
optimization method achieving a greater increase in
Precision across 7 out of 8 classes. On the under-
represented ’Train’ class, the hybrid re-optimization
method was also able to achieve a larger precision in-
crease of 1.42%, as well as an increase of 1.2% for
the ’Bus’ class.

6 CONCLUSIONS

This paper employs the knowledge-based object de-
tection approach to identify objects in traffic scenes.



In this paper, we investigated the potential of utiliz-
ing knowledge-aware re-optimization for object de-
tection on the Cityscapes dataset by applying the re-
optimization model to the baseline models in the do-
main of autonomous driving. These experiments were
conducted employing three distinct methodologies for
the generation of knowledge graphs, including our
novel hybrid knowledge graph generation approach.

The evaluation results suggest that certain ob-
ject detection models may benefit from treating the
knowledge-aware component. It was observed that
more advanced architectures, such as transformers,
possess sufficient sophistication that external knowl-
edge as currently implemented may have a detrimen-
tal impact on their performance. Hence, it is impera-
tive for the community to explore new approaches to
incorporate practical knowledge into the object detec-
tion frameworks.
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