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Abstract

Complex Event Processing (CEP) is a widely used paradigm to detect and
react to events of interest for various applications. Numerous companies, in-
cluding Twitter and Google, build on CEP in a broad spectrum of applications
to perform real-time data analytics. Many of these applications require to ef-
ficiently adapt to the dynamic environmental conditions and changes in the
quality requirements. An essential building block to perform adaptations in
CEP is through an operator, which encapsulates the event detection logic in
the form of a query often coupled with an execution state. Despite significant
contributions to concepts for operator specification, placement, and execu-
tion, there are multiple research gaps concerning adaptivity, efficiency, and
interoperability in CEP. Thereby, this thesis identifies and contributes appro-
priate methods and their analysis to overcome these fundamental research
gaps in CEP: (i) The lack of adaptivity between CEP mechanisms hinders
meeting the changing quality requirements of applications. (ii) Absence of
suitable network-centric abstractions that hinder efficient event processing.
(iii) Absence of suitable programming abstractions that hinder reuse of CEP
mechanisms across multiple programming models.

To close the first gap, we contribute a novel programming model, named
TCEP, that enables transitions between so-called operator placement mecha-
nisms. The programming model provides methods for the research questions
‘when’ and ‘how’ to perform a transition while ensuring crucial properties of
transition such as seamlessness. In particular, we propose transition strate-
gies that minimize the costs for operator migrations and ensure seamlessness
in performing adaptations. A learning-based selection algorithm guarantees a
well-suited operator placement mechanism for given quality requirements. By
integrating and evaluating six operator placement mechanisms, we showed
that the programming model allows the use of distinct mechanisms for adap-
tations, and it provides a better understanding of their cost and performance
characteristics. Our extensive evaluation study using a real-world workload
and implementation shows that TCEP can adapt to the dynamic quality re-
quirements of applications in a quick, seamless, and low-cost manner.

To close the second gap, we propose a novel unified communication model
named INETCEP. The proposed concepts of INETCEP contribute to the re-
search question of ‘how’ to enable efficient continuous event stream process-
ing and network-centric CEP query execution. We build INETCEP using the
concepts of Information-centric Networking, which has been proven to fa-
cilitate in-network programmability. As part of the unified communication
model, we propose an expressive meta query language and query execution
algorithms for CEP that efficiently place operators over Information-centric
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Networks. Our detailed evaluation study of INETCEP shows that event for-
warding can be achieved in a very short time of a few microseconds. Similarly,
using our network-centric abstractions, CEP queries can be resolved at very
high incoming event rates in a few milliseconds while incurring no event loss.

Finally, we propose a novel unified CEP middleware, named CEPLESS,
based on the serverless computing principles to close the third gap. The
middleware provides concepts for the research question of ‘how’ to specify
CEP queries independent of their programming and execution environment.
Specifically, the middleware contributes a programming abstraction that
hides away the complexity of heterogeneous CEP programming models from
the application developers. Moreover, we propose mechanisms for an effi-
cient exchange of events using so-called in-memory queues and allow event
processing across different execution models. By extending the CEPLESS mid-
dleware programming abstraction with five different programming languages,
we show extensibility as well as the platform and language independence of
the concept. Our evaluation using a real-world workload and implementa-
tion shows that event processing using the CEPLESS middleware is equally
performant as native CEP systems.

Overall, this thesis contributes (i) a novel programming model and meth-
ods for transitions in CEP systems to support changing quality requirements,
(ii) a novel unified communication model and efficient algorithms that ac-
celerate query execution using the concepts of Information-centric Network-
ing, and (iii) a novel serverless middleware with programming abstractions
to achieve efficient execution and reuse of multiple and heterogeneous CEP
execution environments.
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Kurzfassung

Complex Event Processing (CEP) ist ein weit verbreitetes Paradigma, das An-
wendungen unterstützt, Ereignisse zu erkennen und auf diese zu reagieren.
Zahlreiche Unternehmen, unter anderem Twitter und Google, nutzen CEP in
vielfältigen Anwendungsfeldern, um Echtzeit-Analysen in Form der Ereignis-
verarbeitung über Ereignisströme durchzuführen. Viele dieser Anwendungen
erfordern die dynamische Anpassung an sich ändernde Rahmenbedingungen
und Qualitätsanforderungen. Ein zentraler Baustein bei der Adaption von
CEP ist der Operator, welcher Logik und entsprechenden Zustand der Da-
tenanalyse umfasst. Trotz signifikanter Forschungsanstrengungen zu Kon-
zepten und Mechanismen hinsichtlich Spezifikation, Platzierung und Aus-
führung von Operatoren, besteht eine erhebliche Forschungslücke bei der
Unterstützung von Adaptivität, Effizienz und Interoperabilität von CEP. Ent-
sprechend identifiziert und trägt diese Arbeit mit geeigneten Methoden so-
wie deren Analyse dazu bei, drei fundamentalen Problemen in der dynami-
schen Anpassung von CEP entgegenzuwirken: (i) die fehlende Adaptivität von
CEP-Mechanismen, die das Erfüllen von sich dynamisch ändernden Quali-
tätsanforderungen solcher Anwendungen erschwert, (ii) fehlende netzwerk-
zentrische Abstraktionen, die eine effiziente Datenanalyse in Form der Ereig-
nisverarbeitung behindern und (iii) fehlende Programmierabstraktionen, die
die Wiederverwendung von CEP-Mechanismen über mehrere Programmier-
modelle hinweg einschränken.

Entsprechend der ersten Forschungslücke trägt diese Dissertation zu ei-
nem neuen Programmiermodell namens TCEP bei, dass Transitionen zwi-
schen Mechanismen der Operatorplatzierung unterstützt. Die als Teil des
TCEP Programmiermodells konzipierten Verfahren leisten einen Beitrag zu
Konzepten zur Durchführung von Transitionen, insbesondere hinsichtlich
der Forschungsfragen ‘wann’ und ‘wie’ Transitionen nahtlos durchgeführt
werden sollen. Die konzipierten Transitionen stellen sicher, die Kosten
für Operator-Migrationen in Folge von Anpassungen zu minimieren. Ein
auf Lernverfahren basierter Auswahlalgorithmus garantiert die Verwen-
dung geeigneter Operator-Platzierungsmechanismen entsprechend gegebe-
ner Qualitätsanforderungen. Durch die Integration und Evaluierung von
sechs Operator-Platzierungsmechanismen wird gezeigt, dass das Program-
miermodell von TCEP die Verwendung unterschiedlicher Mechanismen zur
Anpassung unterstützt und ein besseres Verständnis der Kosten- und Leis-
tungsmerkmale ermöglicht. Als Teil einer umfangreichen Evaluierungsstudie
mit realistischer Arbeitslast und Implementierung zeigt, dass TCEP schnell
und kostengünstig Anwendungen an dynamische Qualitätsanforderungen
anpassen kann.
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Weiterhin wird in dieser Dissertation mit INETCEP ein neues einheitli-
ches Kommunikationsmodell vorgestellt, dass beiträgt die zweite identifi-
zierte Forschungslücke zu schließen. Die als Teil von INETCEP entwickel-
ten Konzepte ermöglichen durch Nutzung und Erweiterung von Konzepten
der Informations-zentrischen Netze (ICN) die Ausführung von Operatoren
auf Ressourcen eines Rechnernetzes. Das auf die Anforderungen von CEP
und ICN abgestimmte vereinheitlichte Kommunikationsmodell ermöglicht
Effizienzgewinne in der Verarbeitung von kontinuierlichen Ereignisströmen.
Durch eine eigens für ICN konzipierte ausdrucksstarke Meta-Sprache, kön-
nen Operatoren einfach auf ICN Ressourcen von ICN abgebildet und platziert
werden. Eine detaillierte Evaluierung von INETCEP zeigt, dass die Weiter-
leitung von Ereignissen über ICN mit geringer Verzögerung im Bereich von
wenigen Mikrosekunden erreicht werden kann. In ähnlicher Weise werden
CEP Anfragen, selbst bei einer sehr hohen Eingangslast, über die in INETCEP
bereitgestellten netzzentrischen Abstraktionen in wenigen Millisekunden auf-
gelöst, ohne dass es zu Verlusten von Ereignissen kommt.

Schließlich werden als Teil der konzipierten CEPLESS Middleware Kon-
zepte zur vereinheitlichten Nutzung verschiedener CEP Programmiermodelle
und deren integrierte Nutzung in heterogenen Ressourcenumgebungen vor-
geschlagen. Diese basieren auf Prinzipien des sogenannte Serverless Compu-
ting. Die Konzepte und Abstraktionen in CEPLESS ermöglichen eine Program-
mierung und Spezifikation von CEP Abfragen unabhängig von der Ressour-
cenumgebung, in der sie ausgeführt werden. Dies verbirgt die Komplexität
der Vielfalt und Heterogenität bestehender CEP Programmiermodelle vor den
Anwendungsentwicklern. Die Konzeption neuer Mechanismen, die den Aus-
tausch von Ereignissen über sogenannte In-Memory Queues erreichen, kön-
nen Ereignisse effizient über verschiedenen Ressourcenumgebungen verar-
beiten. Die Erweiterbarkeit und Unabhängigkeit der Spezifikationskonzepte
werden durch die Integration von fünf verschiedenen Programmiersprachen
in CEPLESS aufgezeigt. Die als Teil der Dissertation durchgeführten Studien
unter realen Bedingungen belegen, dass durch die Konzepte der vereinheit-
lichten Ereignisverarbeitung über CEPLESS keine Leistungsnachteile gegen-
über nativen CEP Systemen entstehen.

Insgesamt leistet diese Dissertation Beiträge (i) zu einem Programmiermo-
dell und Methoden zur Durchführung von Transitionen, die hochdynamisch
die Platzierung von CEP-Operatoren unterstützen, (ii) zu einem neuen ein-
heitlichen Kommunikationsmodell und entsprechenden Konzepten, die eine
Ausführung von Operatoren als Teil Informationszentrischer Netze beschleu-
nigen und (iii) zu Verfahren und Programmierabstraktionen, die basierend
auf dem Paradigma des Serverless Computing die effiziente Ausführung, Wie-
derverwendung und Zusammenführung verschiedenster CEP Systeme über
heterogene Ressourcenumgebungen erreichen.
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tween the former publications and the chapters of this thesis. None of the
text in this thesis is directly taken from the publications. However, figures,
tables, algorithms, notations, and results that exclusively represent the core
concepts, have been used consistently in this thesis to prevent discrepan-
cies with the true data that is formerly published. The list of all the author’s
scientific publications is available in the previously presented Chapter Au-
thor’s Publications.

Chapters Publications

Chapter 2, Fundamentals and State-of-the-art Luthra et al. [1, 2, 3, 4, 5]

Chapter 3, Scenario and System Architecture Luthra et al. [1, 2, 3, 5, 9]

Chapter 4, Mechanism Transitions in Operator
Placement

Luthra et al. [1, 2, 8, 9, 10, 11, 12],
Weisenburger et al. [7], Alt et al. [6]

Chapter 5, Network-centric Query Execution Luthra et al. [3, 4]

Chapter 6, Unified Serverless Middleware Luthra et al. [5, 13]

Table 1: List of peer-reviewed scientific publications used in the corresponding chap-
ters of this thesis.

High-quality scientific work is a result of a collaborative environment. This
thesis is no exception, which is carried out in the scope of the DFG (German
Research Foundation) funded Collaborative Research Center 1053 – MAKI
(Multi-Mechanism Adaptation for the Future Internet)1. MAKI combines in-
terdisciplinary research areas of computer science, electrical engineering and
information technology, and economics to achieve a highly adaptive and ef-
ficient Future Internet. Therefore, the below-mentioned publications result
from a collaborative effort of researchers from the computer science, electri-
cal engineering, and economics departments either associated with the MAKI
project or the Multimedia Communications Lab of the Technical University
of Darmstadt. In the following, the pronoun “I” is used exclusively in this
chapter to describe the contributions of the author of this thesis to each pub-
lication. The contributions of the co-authors, and their affiliations, are also
described. The co-authors where no dedicated institution is provided are col-

1MAKI – Multi Mechanism Adaptation for the Future Internet https://www.maki.
tu-darmstadt.de/ [Accessed in May 2021].
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leagues at the Multimedia Communications Lab of the Technical University
of Darmstadt or associated with the MAKI project. In the remaining thesis,
the pronoun “we” is used instead, which refers to all the co-authors of the
respective contribution.

The contributions provided in this thesis were continually supervised by
Prof. Dr. Boris Koldehofe (Professor at the University of Groningen, Nether-
lands) and Prof. Dr.-Ing. Ralf Steinmetz. The author of this thesis got feed-
back from Prof. Koldehofe on the methodology, system model, and written
publications. Furthermore, Prof. Steinmetz supervised the work conducted
in this thesis as well as the publications. In the below description, I have
discussed their concrete contributions. However, wherever not explicitly men-
tioned, they generally contributed via continuous supervision.

Chapter 2, Fundamentals and State-of-the-art, presents an extensive anal-
ysis of the background and literature work associated with the three core
problems addressed by this thesis, adaptivity, efficiency, and interoperability
in the context of Complex Event Processing (CEP) systems. In this chapter,
I (i) identify the central requirements for the problems and (ii) perform an
extensive analysis to discover the fundamental research gaps addressed by
this work towards the aforementioned problems. Concerning the adaptivity
problem, I conducted a review of the existing Operator Placement mecha-
nisms, Self-Adaptive Systems in the domain of CEP, and currently available
open-source and commercial CEP systems. The discussion related to the re-
view is partially published in [1], which is an extension of our previous work
in [2]. Concerning the efficiency problem, the systematic review of the cur-
rent networking architectures related to the Information-centric Networking
paradigm concerning the categorisation of pull- and push-based architec-
tures is under submission in [3], which is an extension of the work published
in [4]. Concerning the interoperability problem, the thesis work in [1] helped
to get a common understanding of the system model of serverless platforms
within the Cloud Computing paradigm presented in this chapter. I improved
the literature work analysis based on serverless computing and CEP systems
published in [5]. All the co-authors of the previous works [1, 3, 5] helped
review the written manuscript.

Chapter 3, Scenario and System Architecture, I present a common scenario,
system model, and architecture related to the three core contributions of this
work. The analysis of the traffic scenario related to the adaptivity problem
was previously published in [1], and the fraud detection scenario was dis-
cussed in [5]. I developed a common system model and scenario for this work
that serves as a foundation for the later proposed methods and concepts. No-
tably, I modelled the event processing concepts such as an event, operator
graph, operator state, and query, the deployment infrastructure such as fog-
cloud, nodes, and quality requirements for the CEP system. Moreover, the
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specialised modelling of concepts related to the contributions like transitions,
unified communication and queue models are presented in the respective
chapters. Parts of the system model corresponding to the respective problems
of adaptivity, efficiency, and interoperability were previously published in [3,
4, 5], respectively. Prof. Koldehofe reviewed and gave feedback to improve the
system model discussed in this work.

Chapter 4, Mechanism Transitions in Operator Placement proposes a solu-
tion to the adaptivity problem based on mechanism transitions methodology.
The original idea related to mechanism transitions originated from the MAKI
project1 headed by Prof. Steinmetz, where numerous researchers investigate
the transition methodology in the context of communication systems. I con-
ceptualized a programming model, named TCEP, that enables specification of
adaptable CEP mechanisms. Moreover, I conceptualized the methods for cost-
efficient transitions between Operator Placement mechanisms and an adap-
tive and performance-based selection of mechanisms for transitions. Employ-
ing transitions, TCEP can fulfill the conflicting quality of service requirements
of consumer queries. Towards the contribution to this chapter, I identified
the scenarios in the context of the Internet of Things (IoT) applications such
as traffic control and smart health monitoring that could benefit from the
concept of transitions in between mechanisms of CEP systems. Moreover, I
identified and analyzed mechanisms in CEP systems, particularly Operator
Placement, Elasticity and Reliability mechanisms, as suitable candidates for
transitions. These findings got published in [12, 8]. Prof. Koldehofe reviewed
and gave feedback to improve the scenario and the written manuscript. The
publication got contribution from the B.Sc. thesis of Niels Danger [2] in terms
of scenario description, which was motivated and supervised by the author
of this dissertation.

In a subsequent publication [2], I addressed the research problem of adap-
tivity for the Operator Placement mechanism by employing cost-efficient tran-
sitions. In particular, I modelled the system and proposed the design, imple-
mentation, and evaluation of transition execution algorithms that enables
cost-efficient and seamless transitions while maintaining the correctness of
the results. Furthermore, I proposed a learning-based selection of mecha-
nisms for a transition. Prof. Koldehofe described the initial idea in the sub-
project C2 of MAKI1, contributed to the formal definition of transition, its
costs, and the written manuscripts. This work was conducted in collabora-
tion with Prof. Dr. Guido Salvaneschi (former PI in subproject C2 of MAKI
and currently Assistant Professor at the University of St. Gallen) and his
Ph.D. student Pascal Weisenburger from the Software Technology Group in
the Technical University of Darmstadt (Research Associate in the subproject
C2 of MAKI). Prof. Salvaneschi and Pascal developed a domain-specific lan-
guage for CEP systems in [7] that allows the specification of the quality of
service requirements for the Operator Placement mechanism. TCEP uses this

xvii



specification language to signify changes in the quality of service require-
ments to execute cost-efficient transitions that fulfill the defined quality re-
quirements. I contributed to the better understanding of the requirements
for Operator Placement mechanisms in order to improve the language and
its semantics based on the required mechanisms in the TCEP system. TCEP

received contributions from the M.Sc. thesis of Raheel Arif [3] that led to the
implementation of a Docker-based virtualisation and naive transition strate-
gies for comparison, and a lab project of Sebastian Hennig [1] that led to
the extension of the work with GENI and CloudLab infrastructure, which
was motivated and supervised by the author of this dissertation. All the co-
authors of the aforementioned works [2, 7] contributed to the written text of
the manuscript. I published the overall idea for transitions in the CEP mech-
anisms established in this doctoral thesis in a doctoral symposium in [10].
Follow-up work on TCEP is currently under revision in [1]. In this article, I
developed a programming model that led to an analysis of six distinct Oper-
ator Placement mechanisms and a cost-efficient selection of Operator Place-
ment mechanism based on the observed performance at runtime. I worked
on the programming model used for the analysis [9], cost analysis of the pro-
posed algorithms, and the extensive evaluation of the proposed algorithms
by utilizing the deployment model based on the distributed resources. Niels
Danger helped in the implementation, testing, and bug fixing of the mecha-
nisms as a student assistant. Furthermore, Prof. Koldehofe, Prof. Dr. Ioannis
Stavrakakis, and anonymous reviewers (single-blind revision process) helped
in the review of the written manuscript [1].

Chapter 5, Network-centric Query Execution introduces network-centric pro-
cessing of CEP operators and solves core research issues related to realising
network-centric CEP on the edge networking architectures of Information-
Centric Networking (ICN). The original idea of leveraging ICNs for CEP re-
sulted from a discussion with The An-Binh Nguyen after a collaboration [19].
As a result, I performed a literature review on the currently available ICN
architectures and found that none of the existing traditional ICN architec-
tures look into the problem of continuous query execution for streaming ap-
plications. Subsequently, we (Binh and I) supervised the M.Sc. thesis of Ali
Haider Rizvi [4], where the student performed a further analysis of existing
work and implemented a proof of concept using an existing ICN architec-
ture called Named Function Networking with simple CEP functionalities such
as filters and joins. I modelled and conceptualized a unified communication
model, INETCEP, towards the following contributions: (i) unified communi-
cation mechanisms to enable continuous data stream processing, (ii) query
execution algorithms to resolve CEP queries, and (iii) deploy queries over the
ICN substrate. Moreover, two IoT benchmarks based on the DEBS Grand
Challenge 2014 and a disaster field test were established, which was par-
tially supported by the lab project of Pfannemüller et al. [2]. Simultaneously,
I collaborated on INETCEP with Jonas Höchst and Patrick Lampe (Research
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Associates in MAKI subproject A3 and C5). Subsequently, we published IN-
ETCEP [4] in collaboration with Prof. Dr. Bernd Freisleben (PI in MAKI sub-
projects A3 and C5 and Professor at the Philipps-Universität Marburg), where
Jonas and Patrick helped in improving the software to be generally applied to
distinct topologies. Prof. Koldehofe and Prof. Freisleben supervised the work
and reviewed the written manuscript. In subsequent work, I increased the ef-
ficiency of INETCEP by providing a flow control algorithm, application of the
unified communication model on the data plane and improved its wide ap-
plicability for different scenarios in a heterogeneous cloud setup. This work
is under submission [3]. The manuscript received support from Johannes
Pfannemüller, who implemented the concept under my supervision during
his M.Sc. thesis [5], Jonas Höchst, who worked on the implementation of
the evaluation setup using the CORE emulator, and Artur Sterz, who re-
viewed the implementation at the kernel level. Prof. Koldehofe and Dr.-Ing
Rhaban Hark supervised the work and improved the written manuscript. All
co-authors contributed to the review of the written manuscript [3].

Chapter 6, Unified Serverless Middleware for Query Execution presents a
middleware called CEPLESS that decouples the specification language of a
CEP system from the runtime by building on the serverless computing prin-
ciples. With the help of the seminar work of Sebastian Hennig [3], I formu-
lated the challenges that hinder a CEP system from being integrated into a
serverless platform. I worked on the system model, the problem statement,
and the proposed initial solution in a poster publication [13]. The publication
received contributions from the B.Sc. work of Sebastian Hennig [1], where
the student implemented the CEP middleware based on the serverless princi-
ples and evaluated it for TCEP (cf. Chapter 5) and Flink, a widely used CEP
system, which was motivated and supervised by the author of this disser-
tation. I developed the concept and formalized the solution with a queuing
model, system- and user-defined operators, and improved the system design.
Moreover, I performed an extensive evaluation of the proposed middleware
concepts and mechanisms. The work resulted in a publication [5] in collab-
oration with Prof. Dr. Lin Wang (PI in subproject C7 of MAKI) and his Ph.D.
student Kamran Razavi. Prof. Koldehofe supervised this work, and all the
co-authors contributed to the review of the written manuscript.
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1

Introduction and Motivation

“The whole of science is nothing
more than a refinement of
everyday thinking.”

– Albert Einstein

As per Satya Nadella, CEO of Microsoft Corporation, “two years of digital
transformation occurred in just two months since the pandemic started”2. A The world

is relying on
digitaliza-
tion using
IoT during
COVID...

continuous acceleration towards digital transformation has become the need
of the hour due to the COVID-19 pandemic. The omnipresence of the Inter-
net of Things (IoT) plays a crucial role in this digital transformation, known
to enable the interconnection of heterogeneous devices [1]. Some examples
of such digital transformation using the IoT are in healthcare, such as re-
mote patient monitoring, vaccine cold chain monitoring, and delivery using
healthcare drones [2]. Furthermore, IoT in healthcare is being investigated
to monitor symptoms and avoid spreading COVID-19 [3]. Besides healthcare,
other industries like e-commerce, finance, and manufacturing also continue
to sustain because of the digital transformation using IoT. Even prior to the ... and

beforepandemic, digitalization using IoT continued to emerge in enabling a broad
spectrum of applications across multiple areas, including smart cities, smart
industry, smart healthcare, to name a few [4, 1]. Cisco predicted a revenue
estimation of a hundred billion dollars to be generated alone by the smart
city market until 2025 [5].

Complex Event Processing (CEP) systems [7, 8] are widely used to deliver
the information required by continuously evolving IoT applications (cf. Fig-
ure 1). It is currently used in many companies, including Apache Storm at
Twitter [9]3 used for real-time analytics of tweets, Millwheel at Google [10]
used to power the search engine, and Rabobank, one of the three largest
banks in the Netherlands use Kafka Streaming [11] for fraud alerts related
to financial events. Despite its promises, a complete digital transformation

22 years of digital transformation in 2 months. Article by Jared Spataro, Corporate Vice
President for Microsoft 365. https://www.microsoft.com/en-us/microsoft-365/blog/2020/04/30/
2-years-digital-transformation-2-months/ [Accessed in May 2021].

3More recently known as Heron [9].

1

https://www.microsoft.com/en-us/microsoft-365/blog/2020/04/30/2-years-digital-transformation-2-months/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/04/30/2-years-digital-transformation-2-months/


2 Introduction and Motivation

Event Brokers

Complex Event Processing

IoT sources

(Event Producers)

IoT applications

(Event Consumers)

events

query

result

Figure 1: High-level overview of Complex Event Processing (adapted from [6]). It con-
sumes low-level events from the IoT sources, named producers, to deliver
events of interest to the IoT applications, named consumers, using re-
sources for computation, named brokers.

using existing CEP systems is a far-off vision due to numerous challenges
as follows.

1. Adaptivity: IoT applications are inherently exposed to the dynamics ofThe
adaptivity

problem
the surrounding environment that impacts the performance of the ap-
plications, for instance, mobility of smart vehicles and varying workload
of incoming sensor data. CEP systems need to continuously adapt their
mechanisms to the dynamics of the environment and the Quality of Ser-
vice (QoS) requirements of the applications. For instance, a CEP system
used in the financial context has to timely deliver a fraud event to the
credit card institution and react to it by blocking the card. While it is
important to react to fraud in a timely manner, during high load, it be-
comes crucial to react in a reliable manner [12]. Such changes in the
environmental conditions and the QoS requirements are hard to be met
at runtime.

2. Efficiency: Often, IoT applications have to deliver information with veryThe
efficiency

problem
low latency, for instance, a fraud event has to be detected not in sec-
onds or milliseconds, but in order of a few microseconds. The difference
between milliseconds and microseconds in such applications could lead
to big profits or losses to the financial institutions [13]. The demands for
such latency-critical applications are low latency, high dynamics of the
environment, and substantial network load, which are hard to be met
using existing CEP mechanisms.

3. Interoperability: Although many CEP programming models exist, oftenThe interop-
erability
problem

looking into disparate problems, there is no means to benefit or reuse
solutions across the programming models. This is problematic as the
demands of current IoT applications is extremely diverse and, hence,
might need more than one CEP execution environment to work together.
Moreover, due to this inflexibility, it is currently not possible to exchange
query at runtime that is often a requirement of IoT applications. For
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instance, fraud detection application needs to continuously update ma-
chine learning methods to deal with newly observed patterns of fraud.
Therefore, the use of a single CEP execution environment is not suffi-
cient to meet the needs of a broad spectrum of IoT applications.

An essential aspect in an IoT application is detecting situational changes
in the environment and trigger actions to deal with those changes within the
deadline. CEP is well-suited to model this behavior as it encapsulates the CEP aims

towards a
potential
solution...

happening of such a situational change using the notion of an event as seen
in Figure 1. IoT applications interact with a CEP system to transform low-
level events that correspond to raw data from sources such as sensors into
high-level events or complex events that represent situational changes [14].
In a CEP system, complex events are expressed using a continuous query
which is processed in a distributed manner by so-called Operator Placement
(OP) mechanisms. Typically, queries specify certain QoS requirements that
have to be fulfilled by an OP mechanism in a CEP system. For instance, a
fraud event is a complex event that has to meet the latency requirements of
the credit card institution in order to block the card.

Despite many advancements, current work on CEP has significant limita-
tions in its support for the adaptivity, efficiency, and interoperability prob-
lems. First, concerning the adaptivity problem, existing CEP systems use a
single OP mechanism, which restricts their ability to fulfill conflicting and
changing QoS requirements at runtime. Some CEP systems employ self-
adaptation of OP mechanisms [15, 16, 17, 18] to deal with the dynamics in
the environment. Other authors use a single OP mechanism to encapsulate
distinct QoS requirements [19, 20]. Still, these approaches are either unable ...however,

it is
extremely
challenging

to fulfill conflicting QoS requirements of applications or unable to specify
and meet changes in the QoS requirements at runtime. Second, concerning
the efficiency problem, classical CEP systems are limited in terms of de-
ployment infrastructure to commodity hardware, which resolves a query by
forming an overlay network. This imposes high inefficiency in terms of meet-
ing challenging QoS requirements of IoT applications. Finally, concerning
the interoperability problem, though a plethora of highly diverse and complex
CEP programming models [21, 22, 23, 24, 9, 25, 26, 27, 28] have been pro-
posed, hardly any of them provide reusability. This makes it difficult for the
application developers to realize IoT applications since they have to combine
multiple CEP programming models, which is very complex. Recent work on
benchmarking CEP systems [29] and simulating OP mechanisms [30] unifies
a couple of CEP systems. However, these approaches lack the reusability of
mechanisms across CEP programming models and do not support changes
in the query at runtime.

In essence, the existing CEP systems exhibit crucial shortcomings with re-
spect to the three aforementioned problems. Therefore, this thesis proposes



4 Introduction and Motivation

concepts and algorithms to realize an adaptive, efficient, and flexible archi-
tecture to solve the challenges encountered by IoT applications in the face of
an extremely dynamic and heterogeneous environment. In particular, we pro-
pose (i) a programming model for transitions between CEP mechanisms, (ii) a
communication model and algorithms for efficient network-centric execution
of operator graphs, and (iii) a middleware to allow interoperability between
diverse CEP systems. In the following, first, Section 1.1 details the three
research problems. Second, Section 1.2 formulates the research questions
addressed by this thesis, followed by the contributions. Finally, Section 1.3
presents an outline of this thesis document.

1.1 Research Challenges

Based on the previous motivation, we elaborate on the three core problems
in the context of CEP systems that we solve in this thesis.

The adaptivity problem
Research

Challenge 1:
Dynamic

environmen-
tal

conditions

A CEP system is inherently exposed to a multitude of dynamics in the environ-
ment of the IoT application, namely (i) the characteristics of the data stream
such as event rate, (ii) the characteristics of the communication network such
as latency and bandwidth, and (iii) the underlying environmental conditions
of the IoT scenario such as mobility of vehicles, may drastically vary. As a
result, the QoS requirements of an application change significantly during
the lifespan of a continuous query. For instance, in the fraud detection appli-
cation, the QoS requirement depends on the transaction workload. To better
understand the requirements, let us consider an example as follows. During
Alibaba’s4 Double 11 Online Shopping Festival (similar to Black Friday Day
in the US), the peak workload reaches 6,000,000 transactions per second,
in contrast to a normal day workload of a few thousand transactions [31].
While it is important to react to a fraud event in a timely manner under
both environmental conditions, under large workloads, it becomes crucial
to detect a fraud additionally in a highly reliable manner. Similar changes
in the QoS requirements are also noted in the application of autonomous
cars, where dynamics in the environment are prominent. Thus, in the face
of dynamic changes in the environment and the changing QoS requirements
like above, a placement that was efficient to process a continuous query be-
fore the change may become very inefficient all of a sudden. It is therefore
crucial for a CEP system to provide adaptivity in the OP mechanism. Here,

4A leading Chinese multinational technology company specializing in e-commerce https:
//www.alibaba.com/ [Accessed in May 2021].

https://www.alibaba.com/
https://www.alibaba.com/
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adaptivity stands for how well a CEP system deals with the dynamics of the
environmental conditions.

Existing CEP systems have dealt with the dynamics in either the stream
or communication network characteristics by self-adaptation of an OP mech-
anism [15, 32, 33, 18], or by explicitly scaling the resources and migrating
the operators between in-network resources [16, 24, 27, 34]. Some adaptive
approaches even embed distinct QoS requirements in a multi-objective opti-
mization function to find a Pareto-optimal solution to the OP problem [19, 20].
However, the CEP system should be prepared to change the OP mechanism
for a continuous query, depending on the change of QoS requirements at run-
time when the QoS requirements are not known beforehand, which none of
the above approaches does. Without the adaptivity of OP mechanisms, query
performance in the CEP system may drop drastically in some situations when
the CEP system is not able to fulfill the changed QoS requirement.

The efficiency problem
Research
Challenge 2:
Efficiency
require-
ments of IoT

The second challenge is to meet the efficiency requirements of IoT applica-
tions in the face of dynamic environmental conditions. For instance, a fraud
detection application has to react by blocking a card very quickly [13]. Effi-
ciency in such applications is of extreme importance since a late reaction to
an can lead to huge monetary loss– to a bank in the fraud detection example.
Similarly, other applications may require efficiency in terms of different QoS
requirements, such as bandwidth, throughput, availability, etc.

Early research on CEP systems has focused on resolving queries in an over-
lay network on top of commodity hardware or cloud-based infrastructure us-
ing an OP mechanism [23, 15, 24, 35, 36, 28, 9]. The focus of these works has
been to optimize for a single or a combination of different metrics using an
OP mechanism such as latency [37, 15, 27, 38], bandwidth [39, 40], through-
put [41, 42], load [43, 44], availability [19], and trust [45] in the execution of
queries. However, these works rely on geo-distributed cloud infrastructures
that cannot meet the efficiency requirements of many latency-critical applica-
tions like fraud detection. Some of the approaches have been proposed using
fog-computing infrastructures that offer low latency by processing queries
near the end-user [46, 27, 47, 48]. A few approaches have leveraged hard-
ware acceleration using FPGAs [49], using parallel hardware in GPUs [50],
and in-network switches [51] for the execution of queries. However, none of
them has addressed the ability to process continuous streams as part of the
networking architecture while efficiently performing in-network query execu-
tion. Without efficiency in performing in-network execution of operators, the
CEP system is not able to meet the challenging QoS requirements leading to
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dire consequences. Here, efficiency is referring to the query performance in
the above example in terms of latency to retrieve a complex event.

The interoperability problem
Research

Challenge 3:
Lack of

reusability

A plethora of CEP programming models exist, each offering numerous stan-
dard functionalities such as operator abstractions, yet in different program-
ming languages and execution environments. These CEP models can benefit
from each other heavily in terms of operator abstractions and OP mecha-
nisms, yet there is no means to reuse functionalities across CEP systems.
This is because the CEP specification language of the query and the runtime
environment responsible for executing the event detection logic are highly
interdependent. This poses many limitations for building IoT applications us-
ing CEP, detailed as follows. (i) Application developers need to have extensive
knowledge of the runtime system, which is relatively complex. (ii) Dependence
on the specification language requires the IoT applications to be rewritten.
(iii) Due to the interdependence, it is difficult to update the queries dynami-
cally. (iv) Although current CEP models have plenty of similarities, operators
lack reusability across CEP models.

Despite the fact that a multitude of CEP programming models have been
proposed, many times focused on providing common functionalities both in
academia [21, 22, 23, 24, 9, 25, 26, 27, 28] and industry [35, 36, 52, 28, 9],
there has been only a small amount of effort in reusing their functionalities
or enabling cross-compatibility. Furthermore, attempts to benchmark CEP
systems [29] and CEP mechanisms in simulation [30] unifies a couple of CEP
systems. Nevertheless, they do not allow reusability of mechanisms across
those CEP systems. More recently, Apache Beam [53], proposed by Google,
aims to develop a unified programming model above multiple CEP runtime
engines similar to our work. However, in all the aforementioned approaches,
operators are bound to the respective runtime environments, and therefore
no reuse or exchange is possible. In summary, these CEP systems fail to fulfill
the flexibility requirements of IoT applications that require multiple systems
to interact with each other. Here, interoperability refers to the ability to reuse
functionalities of CEP systems across each other, and flexibility refers to the
ability to use these distinct models.

1.2 Research Questions and Contributions

The ultimate goal of this thesis is to provide models and methods for network-
centric complex event processing to enable adaptive, efficient, and flexible
operator placement and execution of continuous queries. In Figure 2, we
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illustrate the contributions of this thesis using a three-tier architecture com-
prising the underlay representing the deployment infrastructure; a middle-
ware that provides a common platform to execute on diverse CEP systems
available in the execution layer and to execute transitions in operator graphs
over the underlay; and the execution tier illustrating the proposed and ex-
isting CEP systems. Overall Con-

tributions
and RQs

ω

ωP2

ω⋈ ω ω⋈
ωP1 ωP1

ωP2

FlinkTCEP INetCEP Esper

Placement

Execution
Underlay

(Ch. 5)

Execution 

Environments

(Ch. 4, 5, 6)

RQ1 

In-network

resource

CEPless 

Middleware

(Ch. 4, 6)

RQ3

ω'
Transition

[
]

I

RQ2 

Figure 2: Contributions and research questions (RQ) of this thesis shown in a three-
tier architecture comprising the underlay, the middleware, and the execu-
tion tier. Here, the underlay represents the resources involved for process-
ing queries such as a fog-cloud infrastructure [48]. The middleware shows
the overlay network comprising operator graph for placement that aid in
transitions and interoperability of execution environment using the pro-
posed CEPLESS system (cf. Chapter 6). Last, the execution tier comprise
the proposed TCEP (cf. Chapter 4), INETCEP (cf. Chapter 5), and widely
used CEP systems such as Flink [54] as well as Esper [35].

In the foremost research question, we solve the adaptivity problem in two
steps. (i) We propose the first programming model to develop OP mechanisms
that deploy continuous queries in a heterogeneous deployment infrastructure.

(ii) We propose methods for transitions in CEP mechanisms with TCEP ,
the first Transition-capable CEP system that enables cost-efficient transitions
between the OP mechanisms to meet the changing QoS requirements of IoT
applications (as seen in the middleware). In the second research question, we
solve the efficiency problem by proposing efficient network-centric execution
of CEP queries in the underlay using a unified communication model of INET -

CEP .Finally, in the third research question, we propose CEPLESS ,
the first CEP middleware that is serverless, which (i) provides common pro-
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gramming interfaces for developing CEP operators, which can be executed on
any CEP execution environment of choice and (ii) allows reuse of CEP mecha-
nisms across a wide range of CEP systems (as seen in the execution tier and
the middleware in the figure) to address the interoperability problem. In the
following, we list the research questions and the contributions towards them.

Research Question 1: How to specify and adapt between OP mechanisms in
the face of dynamic environmental conditions and QoS requirements?

To provide adaptivity in a CEP system, we propose transitions in the OP
mechanism using TCEP, a Transition-capable CEP system that facilitates the
dynamic change of OP mechanisms. The TCEP system can meet the QoS
requirements of a continuous query in the face of dynamic changes in the en-
vironment using transitions. Introducing transitions in a seamless and non-
disruptive manner, i.e., without any interruption in delivering the output of
the continuous query, is a highly challenging task and requires a careful
choice of system mechanism. Another critical issue is that a transition canSolution to

RQ1:
mechanism
transitions

be costly in terms of resources it consumes – to change an OP mechanism
– the operator state may have to be migrated for stateful operators. Naively
approaching the problem will lead to low performance in terms of (i) time
and overhead taken for state transfer of operators, (ii) incorrect query out-
put, and (iii) interruption in the delivery of the query output. These problems
eventually lead to a failure in terms of fulfillment of QoS requirements of the
query, which accounts for a major research challenge. In our contributions,
we target these problems as follows.

1. We formalize the problem of transitions for an Operator Placement in
the context of a CEP system, considering distinct QoS requirements of
applications, and present the definition of the cost that needs to be
considered in performing transitions between the OP mechanisms.

2. We present a programming model that supports the development of OP
mechanisms with specific QoS requirements, which is used to support
seamless transitions.

3. We propose and analyze a genetic learning method for adaptively plan-
ning transitions between OP mechanisms to meet dynamically changing
QoS requirements and changes in environmental conditions.

4. We propose and analyze two transition strategies to facilitate a dynamic
change of OP mechanisms in a non-disruptive and seamless manner
while maintaining the correctness of the results.
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5. Finally, we present an open-source implementation of TCEP5. Moreover,
we provide an extensive evaluation to analyze the performance of six OP
mechanisms using distinct queries and analyze the performance of tran-
sitions and the learning algorithm on the distributed set of fog-cloud
infrastructure, including GENI [55], CloudLab [56], and MAKI [57] re-
sources. We show using a realistic workload comprising multiple traffic
congestion detection queries shows that seamless transitions can be re-
alized in a CEP system in the range of 850ms - 2 seconds and as low as
0.5 ms for a single operator. Simultaneously, minimum costs are main-
tained for transitions in terms of time and overhead – 5× better than a
widely used migration strategy – while maintaining 100% throughput in
the delivery of complex events.

Research Question 2: How to increase the efficiency in executing queries us-
ing in-network architectures at the edge?

Edge infrastructure provides a means to process operator graphs by reducing
the time taken to send and receive the data, thereby reducing the overall la-
tency in the delivery of events. Edge devices are typically in near proximity to
the producers and the consumers of the data. In this work, the hierarchical
infrastructure of edge and fog-clouds plays a dominant role in fulfilling QoS
requirements for the consumers of IoT applications. Novel edge network ar-
chitectures such as ICN provide promising concepts for network-centric event
processing in the data plane, which can possibly address the efficiency prob-
lems for demanding IoT applications [58, 59]. Yet, current ICN architectures
pose strong limitations in their support to process continuous data streams
as desired by current IoT applications.

These limitations are due to (i) missing communication strategies to contin-
uously process periodic data streams; (ii) missing abstractions to represent
operators on the data plane and process them in an efficient, robust, and
accurate manner; and (iii) missing abstractions to deal with high input event
rates as part of the networking architecture. Therefore, in our second contri- Solution to

RQ2:
network-
centric
operator
execution

bution, we present a unified communication model, INETCEP, that enables
network-centric execution of continuous queries in the data plane of ICN. To
this end, we make the following contributions:

1. We propose a unified communication model that allows the processing of
continuous data streams in the substrate of ICN. As part of the unified
communication, we provide a rate-based flow control mechanism that
mitigates the issue of flooded links and ensures flow balance.

5Webpage of TCEP, including the programming model and cost-efficient transitions https:
//luthramanisha.github.io/TCEP/ [Accessed in May 2021].

https://luthramanisha.github.io/TCEP/
https://luthramanisha.github.io/TCEP/
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2. We introduce a meta query language that is able to express complex
event queries on the data plane over the ICN substrate.

3. We propose network-centric query execution algorithms that efficiently
performs event processing while maintaining zero event loss.

4. Finally, we provide an open-source implementation [60] of INETCEP6

and its an evaluation using a widely used ICN architecture, namely
Named Function Networking (NFN) [61] and CCN-lite [62]. Our evalu-
ation study based on two IoT case studies and open datasets from the
DEBS Grand Challenge 2014 [63] and a disaster communication sce-
nario [64] shows that INETCEP maintains a very low latency in the for-
warding of events of up to 73µs under a very high workload of up to
50, 000 events per second, 15× better than the CEP system Flink [54]. At
the same time, it maintains 100% throughput, and it is 32× faster than
Flink and over 100× faster than the naive pull-based reference commu-
nication strategy in the delivery of complex events.

Research Question 3: How to achieve interoperability across different and
diverse CEP programming models?

So far, there is no substantial work on reusing mechanisms of multiple CEP
programming models for different use cases of IoT applications. Furthermore,
due to the tight dependency of the specification of an IoT use case with the
runtime of existing CEP models, application developers face significant re-
strictions in developing novel applications. A possible solution to provide de-
coupling in the execution models of CEP is by using Serverless Computing.
Serverless computing or Function-As-A-Service (FaaS) paradigm is being in-
creasingly adopted by the cloud providers to limit developer access to the
cloud resources to shift their focus towards developing applications rather
than worrying about deployment decisions. CEP systems can benefit from
the principles of serverless computing to address the interoperability prob-
lem. However, integrating CEP systems on the FaaS model is not possible out
of the box because it lacks many abstractions for building an event-based
system like CEP. While current CEP programming models have significant
limitations in terms of interoperability because of the tight dependencies in
terms of execution. This dependency further complicates the integration ofSolution to

RQ3:
serverless

middleware

diverse CEP systems. Hence, in our third contribution, we propose a middle-
ware called CEPLESS, which allows, on the one hand, to specify operators
without any knowledge of the underlying runtime system. On the other hand,

6Webpage of INETCEP including all the contributions stated here. https://luthramanisha.
github.io/inetcep/ [Accessed in May 2021].

https://luthramanisha.github.io/inetcep/
https://luthramanisha.github.io/inetcep/
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multiple CEP runtimes can be reused for deploying and processing operator
graphs. In the following, we enumerate the specific contributions of CEPLESS:

1. We propose in-memory queue management and batching mechanisms
to enable stateful processing and ensure correctness and fast delivery
of events, extremely important requirements for CEP systems.

2. We define a unified programming interface that enables the specification
of novel user-defined operators that work independently of the runtime
system and the specification language. Most importantly, using this in-
terface, the operators can be specified in any existing programming lan-
guage and be deployed on any execution environment.

3. We introduce a simple user-defined operator interface that integrates
highly diverse CEP runtime systems into the CEPLESS system.

4. We present an open-source implementation and evaluation of CEPLESS7

on widely used CEP system Apache Flink [28] and TCEP [25] (cf. Chap-
ter 4) using a real-world credit card transaction dataset [65]. Our eval-
uation for Apache Flink and TCEP shows that CEPLESS can easily inte-
grate multiple existing CEP systems while attaining similar throughput
under a high workload of up to 100,000 events per second. Simultane-
ously, operator graphs can be dynamically updated in a mean time of
238 ms for the example fraud detection query.

In summary, Figure 2 provides an overview of the aforementioned contri-
butions of this thesis altogether in developing an adaptive, efficient, and flex-
ible placement and execution of queries for CEP systems. The contributions
that are not reflected in this thesis are a network-centric publish-subscribe
framework [66], introducing adaptivity using Context-Feature Models in mid-
dleware and its demonstration [67, 68], an adaptable middleware solution for
a smart city, which is developed within the industry [69], object classifica-
tion in autonomous vehicles using point clouds [70], adapting video quality
assessment algorithms using multiple sensors in smartphones [71], and anal-
ysis of IoT frameworks in terms of security and privacy [72].

1.3 Structure of the Thesis

The thesis is structured into six further chapter and appendices. Chapter 2
presents the preliminaries and related work analysis for the contributions of
this thesis. Chapter 3 provides a common scenario, system model, and an
overview of the contributions. Chapter 4 presents the methods for transition

7Webpage of CEPLESS Github including all the contributions stated here https://
luthramanisha.github.io/CEPless [Accessed in May 2021].

https://luthramanisha.github.io/CEPless
https://luthramanisha.github.io/CEPless


12 Introduction and Motivation

and its related concepts towards the adaptivity problem. Chapter 5 presents
a unified communication model and algorithms to facilitate network-centric
query execution targeted towards the efficiency problem. Chapter 6 presents
a middleware that provides unified programming interfaces to represent a
wide range of IoT applications and abstract the complexity of CEP systems
from application developers. Finally, Chapter 7 provides a summary of the
contributions of this work and highlights future directions.



2

Fundamentals and State-of-the-Art

In this chapter, we provide background information and related work on the
concepts and paradigms referred in this thesis. As shown in Figure 3, this
chapter comprises two parts focused on push- and pull-based communica-
tion mechanisms. Firstly, we focus on Event-based System which relies on
push-based communication mechanisms. Specifically, we detail Stream Pro-
cessing and Complex Event Processing systems as the two main aspects rel-
evant for this thesis. Based on this foundation, we present an overview of
related approaches on Operator Placement focused on the adaptivity problem
and In-Network Processing focused on the efficiency problem as earlier dis-
cussed in Chapter 1. Secondly, we discuss related concepts on deployment
infrastructures such as Cloud Computing, Fog Computing, and Serverless
Computing, and we provide an overview of related work on Complex Event
Processing on Serverless platforms focused on the interoperability problem.
Afterwards, we provide a brief background into IoT and its applications using
the event processing paradigm.

Stream 

Processing

Complex 

Event 

Processing

Operator Placement

In-Network Processing

Event-Based System

Cloud, Fog, Serverless 

Computing

Applications

Deployment Infrastructure

Push-based Both push- and pull-based

Internet of Things

1 1

1

2

3

3

1

2
3

Adaptivity problem

Efficiency problem

Interoperability problem

Figure 3: Chapter structure: background and related work based on the core prob-
lems addressed in this thesis.
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2.1 Event-Based Systems

An event is defined as an occurrence of a situation that happened in the
real world or in a particular system. An event can be a low-level event or a
complex event also often referred as a higher-level event. A low level event is
the one which directly arrives from the sources such as sensors. A complex
event can be a result of a combination or a derivation based on two or more
(i) low-level events, (ii) low-level events with complex events, or (iii) complex
events [73]. For instance, a combination can be an aggregation of events
such as min, max, etc.

To better understand the definitions, let us consider an example of a finan-
cial institution that wants to detect frauds in credit cards. In this example,
an event occurrence could be a credit card transaction event in the finan-
cial institution. Thus, the low level transaction events contribute into the
generation of a higher level or complex event such as a fraud event. The
fraud event is derived by performing an aggregate over multiple low level at-
tributes in the transaction event, such as credit card terminal location, and
card transaction amount. An event processing engine is responsible for filter-
ing, aggregating, and combining events from event producers, such as credit
card terminals. Those complex events are then notified to the fraud detec-
tor applications, which act as event consumers, such as financial institution.
Given these fundamentals, Definition 1 summarizes an event-based system
as used in this thesis.

Definition 1. Event-Based System.
A software system that observes events from event producers and
causes reactions in the system to derive complex event notifications for
the event consumers. It enables the consumers to act upon the derived
complex events [73].

Event ConsumersEvent Processing Engine

Event Brokers

P1

P2

P3

P4

Event Producers

C1

C2

C3

Figure 4: A high-level view of an event-based system (adapted from [6]).
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An Event-Based System typically consists of three essentials components:
a monitoring component, a communication mechanism, and a reactive mech-
anism. The monitoring component is responsible to observe, represent, and
compose events. The communication mechanism, also commonly referred as
event-based communication, handles the event notifications to the consumers.
An event-based system’s communication mechanism is typically push-based,
which means consumers of the application continuously receive the notifi-
cations. A detailed analysis of such mechanisms is done in Section 2.2.1.
Such communication mechanisms require a strict decoupling of producers
and consumers. Thus, a notification service involving a single or a network
of event brokers (as seen in the middle of the figure) is needed. The event bro-
kers provide an execution environment for processing the events. The event
consumers specify a complex event by means of a query. In a Distributed
Event-Based System, the query is distributed among a set of event brokers
that collaboratively processes it. Finally, the reactive mechanism of an event-
based system expresses the query in the form of rules triggered by the cor-
responding events. Generally, the event-condition-action (ECA) rules are trig-
gered when a corresponding event is raised (low level or complex). The condi-
tion represents the complex event detection logic, and if the condition is met,
the action is executed. The event detection logic is defined by a specification
language used to express the conditions for event detection [74].

Having discussed the background information on Event-Based Systems,
we will now detail two primary classes of Event-Based Systems, Stream Pro-
cessing and Complex Event Processing8 in the next two subsections.

2.1.1 Stream Processing

Active database systems bring reactive behavior into the databases, allow-
ing them to continuously respond independently to database-related events.
Active databases are Event-Based Systems developed to overcome the chal-
lenges faced in the classical database systems that are passive in nature. The
reactive behavior is described by ECA rules as described in Section 2.1. Yet,
data in an active database is (i) persistent in nature, (ii) assumed to be per-
sisted in order, and (iii) fixed in size and there are no time constraints. Due
to these limitations, the active database community developed a new class
of Event-Based Systems oriented towards processing large data streams in a
timely manner, commonly referred to as Stream Processing Systems [6].

Stream Processing Systems processes events from unbounded data streams
(that may arrive out of order) to derive query results within low latency. In

8Data Stream Processing and Complex Event Processing paradigms are used as synonyms
in this thesis, with a focus on their similarities in consistent to related work [6].
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Stream Processing, users or applications install continuous query in such
systems that produce results until the query explicitly removed. However,
detecting and notifying the complex event patterns that involves operators
like sequence are usually out of the scope of these systems [6]9. For this
reason, CEP systems were introduced, as discussed in the next subsection.

2.1.2 Complex Event Processing

CEP is a
methodol-

ogy to... Complex Event Processing (CEP) was first coined by David Lukham as “a de-
fined set of tools and techniques for analyzing and controlling complex events
for modern distributed systems” [7]. In the late 2000s, it emerged as a power-
ful paradigm that can detect complex patterns in the incoming data streams
to derive higher level events for different applications. Since then, it is still...detect

and react to
higher-level

events

used in multiple applications, starting from financial trading in stock mar-
ket, fraud detection, supply chain management, location-based services, e-
commerce, and more recently, in social networks like Twitter and smart
cities.

To better understand the functionality of a CEP system, consider a fraud
detection scenario for a financial institution, as seen in Figure 5. The fi-
nancial institution collects events from a credit card terminal and analyzes
them. An event tuple of this form is shown in Figure 5 with the attributes
< ts, card_id, terminal_id, card_amount, terminal_loc > . Each event tuple car-
ries a timestamp, and values of attributes such as a card identifier repre-
sent the credit card’s identifier. Similar to an event-based system, the CEP
system comprises of event producers, such as IoT devices that generate con-
tinuous events of the form above (as seen on the left-hand side in the figure).
The event consumers specify interest in these incoming data streams using a
query as seen in the figure, specified in EPL10. The query dictates a fraud
event if two credit card transactions are performed at different locations;
however, at almost the same time. Intuitively, the same person cannot be
at different terminals simultaneously, hence, the transaction is detected as a
fraud. A complex event with the transaction amount of $450 is delivered to
the event consumer or the fraud detection department of the bank encapsu-
lated in an event notification as soon as this fraud is detected. The query is
transformed into an intermediate representation of an operator graph by the
CEP engine, where vertices represent the operators and the edges represent
the flow of information.

9Modern stream processors like Apache Flink [28] and Storm [75] provide plugins for CEP,
but these systems are still known as stream processing systems [6]. This thesis does not focus
on the differences between these two classes, but rather similarities, such as both uses an
operator placement mechanism for operator graph mapping.

10A specification language based on SQL used by Esper [35] for event processing.
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Complex Event Processing EngineEvent Producers Event Consumers

ωσ

ωtA ωtB

ω⋈
<9:15, 1, A, $45, Rundeturmstr.>

<9:16, 1, B, $450, Hollywood Blvd.>

$450

Fraud event and its amount 

on terminal within 1 sec.

INSERT INTO FraudEvent

SELECT card.amount

FROM term1.win:time(30 sec) as tA

JOIN term2.win:time(30 sec) as tB

ON tA.cardId == tB.cardId 

WHERE tA.loc != tB.loc AND

tA.ts – tB.ts < 10s

Figure 5: A fraud detection scenario using Complex Event Processing Engine.

Although Stream Processing and CEP Systems differ in multiple aspects
including the ability to specify and detect patterns in data and implementa-
tion of operators, the underlying deployment model for both is the same [14].
Hence, the concepts defined in this thesis can be applied to both the classes
of Event-Based Systems — each of them can process operator graphs in two
ways: centralized or distributed. In a centralized system, an operator graph
is processed on a single event broker. However, when the scale of incoming
events is too high, or the number of queries supersedes the computational
power of the central event broker, the processing of the operator graph is
distributed among multiple event brokers as seen in Figure 4 (in the center).
A so-called operator placement mechanism does the operator graph distribu-
tion on event brokers explained in the next subsection.

Operator Placement

For better scalability, a CEP engine maps the operator graph on a set of
event brokers – each running on different physical devices – which collabo-
rate to process the events from multiple producers. Consequently, two prob-
lems arise as a result of this distribution: (i) Where to place the operators?
(ii) How to perform this assignment, mainly how the processing devices inter-
act and in what order in the operator graph, the assignment takes place? To
date, many Operator Placement (OP) mechanisms have been proposed [15,
40, 76, 19], focusing on the assignment of operators on processing devices;
however, the latter problem got only a little attention. In this work, we define
OP mechanism in a broader way, as the following.

Definition 2. Operator Placement mechanism.
An Operator Placement mechanism defines the mapping of an operator
graph on to a set of distributed event brokers. It dictates (i) where to
map each operator, and (ii) how to perform the mapping.
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An OP problem defines an optimization problem towards one or more QoS
requirements such as latency, bandwidth, availability, etc. [14]. Typically, in
a dynamic environment the CEP system has to replace operators to the event-
brokers that can be highly resource consuming. In such scenarios, finding
an optimal placement is desirable as it offers the best assignment, but it is
highly inefficient in large scale and dynamic scenarios due to a very large
search space and computational complexity [77, 42, 19, 78]. For instance, in
wide-area networks like fog-cloud infrastructure as introduced in Chapter 1,
it is expected to take a higher amount of time to find an optimal assignment,
which is not desirable as it increases the time until the complex event is pro-
cessed and retrieved. For this, multiple sub-optimal solutions or heuristics
have been proposed [79, 76, 15]. Table 2 summarizes the OP mechanisms
and adaptive Stream Processing and CEP Systems concerning the following
characteristics.

1. Runtime reconfiguration is defined as the ability to self-adapt operator
placement at runtime given the dynamic environment.

2. Type defines the kind of system for which the mechanism is proposed,
where SPS stands for the Stream Processing System, and CEP stands
for the Complex Event Processing system.

3. Mechanism structure of an OP mechanism is majorly divided into central
and decentral mechanisms based on whether the placement information
is shared with the coordinator globally (central) or locally (decentral),
respectively.

Infrastructure defines the resources on which the event-based system
is deployed. The selection of the infrastructure highly influences the
system’s performance depending on the type of processing devices and
the memory architecture of the infrastructure. It majorly comprises a
single node, cluster, cloud, or fog infrastructures.

4. QoS metrics are the performance characteristics of a system in terms of
delivery of complex events [80]. These are widely studied in the context
of OP mechanisms [81] for different parameters of a CEP system. In the
following, we present majorly studied metrics from the related work.

Latency is defined as the overall delay in receiving the complex event at
the event consumer since its generation at the event producer.

Bandwidth refers to the amount of data transferred at a given time
through the links between the nodes (in the infrastructure). In other
words, bandwidth refers to the rate at which bits can be inserted into a
medium [15].
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Name, Ref. Type
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Structure Infrastructure Latency Bandwidth
Input

Queue

Size

Throughput CPU Availability Certainty
Trust

and

Privacy

Operator Placement

2004 Ahmad [37] SPS Decentral Cluster - -

2005 Srivastava [39] SPS Decentral Cluster - -

2006 Pietzuch [15] SPS Decentral Cluster and Cloud - - -

2006 - Zhou [43] SPS Decentral Cluster - -

2007 Stanoi [77] SPS Central Cluster - - - -

2010 Benoit [42] SPS Central Cluster - - -

2010 Rizou [40] CEP Decentral Cluster - -

2014 Xu [82] SPS Decentral Cluster - - -

2014 - Ottenwälder [27] CEP Decentral Cloud and Fog - - - -

2015 - Starks [79] CEP Decentral Fog -

2015 - Peng [41] SPS Central Cluster - - -

2015 - Keeffe [38] SPS Decentral Fog - -

2016 Cardellini [19] SPS Central Cloud and Fog - - - -

2016 Eidenbenz [44] SPS Decentral Cluster -

2017 Dwarakanath [45] CEP Decentral Cluster -

2019 Nardelli [20] SPS Central Cloud and Fog - - - -

2020 Souza [83] SPS Central
Cluster, Cloud,

and Fog
- - -

2021 Eskandari [78] SPS Central Cloud and Fog - - -

Adaptive SPS and CEP systems

2005 - Sutherland [33] SPS Central Cluster - - -

2013 - Annielo [32] SPS Central Cluster - -

2014 - Heinze [84] SPS Decentral Cloud - - - -

continue on next page...
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Structure Infrastructure Latency Bandwidth
Input

Queue
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Throughput CPU Availability Certainty
Trust

and

Privacy

2017 - Matteis [85] SPS Decentral Cluster - - -

2018 - Weisenburger [86] CEP Central Cluster - -

2019 - Russo [87] SPS Decentral
Cluster, Cloud,

and Fog
- -

2019 - Liu [18] SPS Decentral Cluster - - -

2020 - Jonathan [88] SPS Central
Cluster, Cloud,

and Fog
- - -

2021 - Vogel [89] SPS Central
Cluster, Cloud,

and Fog
-

Open Source and Commercial SPS and CEP systems

2006 EsperTech Inc. [35] Both Decentral Cluster - -

2010 Apache Spark [90] SPS Decentral
Cluster, Cloud,

and Fog
- -

2014
Apache Storm [75]

with changes in [41]
SPS Decentral

Cluster, Cloud,

and Fog
- - - -

2015 Heron [9] Both Decentral
Cluster, Cloud,

and Fog
- - -

2015 WSO2 [36] Both Decentral
Cluster, Cloud,

and Fog
- - -

2015 Apache Flink [91, 54] Both Decentral
Cluster, Cloud,

and Fog
- -

Table 2: Overview of related work on OP mechanisms and Adaptive Stream Processing and Complex Event Processing Systems.
- means the system or mechanism fulfills the requirement whereas blank means either it doesn’t or is unknown.
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Input Queue Size is the total number of tuples stored in the input queue
for a query.

Throughput is the number of event tuples processed and transmitted in
a given time frame for a query.

The CPU utilization is considered as system load in many SPS and CEP
systems. In particular, the load is defined as the ratio of CPU time re-
quired by an operator over a fixed amount of time [23].

Availability is the accessibility of the nodes and the links involved in the
processing and transfer of the data streams [19].

Certainty is the measurement on how accurate are the input data
streams. This could happen due to faulty sensor sources that result in
data uncertainty. Approaches such as [27] consider this inaccuracy in
the data for effective placement decisions based on the location sensor
data.

Trust and Privacy in sensor data often is required especially for appli-
cations like fraud detection, which includes sensitive information that
must not be revealed to unknown processing devices during operator
placement. The authors in [45] used trust categories and sensitivity pa-
rameters to measure information’s trust and sensitivity.

In the following, we explain the approaches compared in Table 2 that have
considered adaptivity in the mechanisms and in the event processing system.
ADAPTIVECEP [86] is a programming model and a CEP system that provides
a means to specify QoS requirements at runtime and fulfill them using so-
called operator migrations (movement of operators between nodes as a conse-
quence of change in placement). Elasticity in data Stream Processing System Adaptive

Stream
Processing
and CEP
systems

provides adaptivity towards workload. The authors [84] provide an adaptive
Stream Processing System where the nodes can be added and removed at run-
time using operator migrations. Later, the authors [92] utilize an online learn-
ing approach for auto-scaling. Based on this work, the authors [93] extend
their work and proposed an adaptive replication scheme for fault tolerance in
stream processing systems, which trades off recovery time for overhead.

Furthermore, the authors [94] look into the trade-off between monetary
costs against the offered QoS. Several surveys on elasticity [95, 96, 97, 98]
highlight the importance of a streaming system’s adaptivity towards the
changing workload in terms of adding and removing resources during run-
time. For instance, Lorido et al. argue that the auto-scaling process in elastic
streaming systems resembles the MAPE loop for autonomous systems simi-
lar to our work. Marcos et al. discuss the advantages of the online approach
over static approaches in adaptivity.
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Röger et al. [97] highlight the importance of distributed elasticity solu-
tions by handling multiple operator at the same time. Proactivity in elasticity
was proposed by Matteis et al. [85] using so-called Model Predictive Control
method, which accounts for system behavior over a future time horizon to
predict the best reconfiguration to be executed.

Several approaches look into the problem of adaptivity in scheduling tasks
(operator graph) using methods such as operator migration. Sutherland et
al. [33] proposed an adaptive selection algorithm for continuous queries in
data stream processing systems. Aniello et al. [32] proposed adaptivity be-
tween two placement mechanisms in Apache Storm. Liu et al. [18] advance
the work on state migration to look into the problem of colocating stateful
and stateless operators. Jonathan et al. propose an adaptive system for wide-
area stream processing [88]. Vogel et al. proposes self-adaptive strategies to
regulate the degree of parallelism in a stream processing system. In Table 2,
we summarize the characteristics and the QoS objectives for the adaptive
systems discussed in the above paragraph.

Many specification languages for defining queries have been proposed in
the past years for CEP and Stream Processing Systems such as SASE [99],
Cayuga [100], CQL [101], TESLA [102] for specifying complex events and de-CEP Pro-

gramming
models

tecting them by triggering notifications. Modern CEP programming models
and systems like Apache Storm [75], Apache Flink [28], Heron [9] and Google
Dataflow [10] used in Apache Beam [53] provide extensive APIs to specify com-
plex events for both batch and stream processing. Recently proposed bench-
marking frameworks such as [29] and DCEP-Sim [30] unify CEP systems and
simulate a CEP environment and operator placement, respectively.

The abstract concept of mechanism transitions within the context of a com-
munication system is formalized by the researchers of the Collaborative Re-Adaptivity

using
Mechanism
Transitions

search Centre “MAKI” [103, 57, 104, 105]. A communication system com-
prises mechanisms operating on different layers of the network stack, en-
abling different functionalities. Similar mechanisms, however, focusing on
providing specific functionality, may function differently depending on the
current environmental conditions. For instance, both WiFi and LTE focus
on providing Internet connectivity in stationary and mobile scenarios, re-
spectively. A simple yet useful transition from WiFi to LTE mechanism is
advantageous to deal with such changes in the environmental conditions.
The adaptation cycle of a transition is inspired by the well-known MAPE-K
cycle [106]. It mainly comprises four processes pf monitoring the system’sMAPE-K

loop and mechanism’s conditions, analysing the monitored information, planning,
and executing the transitions strategically.

The Collaborative Research Centre “MAKI” investigates the concept of mech-
anism transitions for a broad range of communication mechanisms [107, 108,
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109, 110, 111, 112, 113]. Mechanism transitions are first studied in the con- Previously
studied
mechanism
transitions

text of video streaming systems [107, 108, 114, 115]. Afterwards, in publish-
subscribe systems, mechanism transitions between filtering schemes [109]
and event dissemination mechanisms [110] are studied [116]. Frömmgen et
al. [112, 104] propose transition strategies to execute the best suitable search
overlay in publish-subscribe systems. Mechanism transitions are also intro-
duced in the context of different schedulers in MPTCP [117]. Richerzhagen
et. al. [113, 118] propose a transition-enabled monitoring service that issues
transition between monitoring mechanisms. Softwarized networks also bene-
fit from mechanism transitions in monitoring [119].

2.1.3 Discussion

Both the Stream Processing and CEP research areas focus on the OP problem,
as discussed in Section 2.1.2. OP mechanisms are extensively researched
considering different QoS requirements such as to minimize latency [37], to
reduce load [43, 79, 44, 83], to minimize bandwidth-delay product [15, 40,
76], and to preserve trust and privacy [45].

The fulfillment of QoS requirements, however, is only feasible under lim-
ited changes in the environmental conditions. For instance, most existing
works [20, 120, 37, 19, 40] build on stationary networks. The approaches
that considering dynamics in the environment in some form, for instance, mo-
bility, introduce (i) redundancy using duplication [79] or checkpointing [121],
(ii) periodic operator placement updates [15], or (iii) explicit operator migra-
tions to deal with the dynamics [38, 122, 27, 45, 78].

It is important to note that current approaches for CEP, so far build on a
single placement mechanism. In contrast, we target to adaptively use multiple Key

Research
Challenge

existing OP mechanisms by supporting transitions to increase the range at
which a CEP system can meet changing QoS requirements. Although existing
adaptive CEP systems [86, 84, 75, 85, 32, 88] benefit from integrating multi-
ple mechanisms in another context than OP. In the above CEP systems, how-
ever, mechanisms are not actually changed depending on the environmental
conditions. In contrast, in this thesis we offer a methodology of mechanism
transitions to provide a means for CEP systems to easily integrate new OP
mechanisms to be highly extensible.

Furthermore, none of the approaches above provide adaptivity between dis-
tinct OP mechanisms based on the QoS requirements in a seamless manner
and at a minimum cost. Adaptations between different mechanisms is inves-
tigated using mechanism transitions within Collaborative Research Centre
“MAKI” for other application domains, such as live video streaming [107, 114],
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user-generated videos [108, 115], publish-subscribe systems [109, 110, 116],
network monitoring [113, 118] in softwarized networks [119], and topology
adaptation in wireless sensor networks [123]. In contrast, in this thesis we
switch between mechanisms in the context of CEP systems, while aiming to
minimize the state transfer cost incurred in terms of transitions. Further-
more, we aim for optimal selection of CEP mechanism by understanding the
performance of respective mechanisms, which is not targetted in any of the
above works.

In the last few years, several open-source and commercial SPS as well
as CEP systems emerged, such as Esper [35], Apache Spark [90], Apache
Storm [75], Heron [9], WSO2 [36], and Apache Flink [54]. Each has its wayOpen

source SPS
and CEP
systems

of implementing CEP mechanisms and placement decisions. Hence, their ar-
chitectures vary a lot in terms of their design, making it a lot challenging to
compare them. In Table 2, we summarize the findings related to the features
defined in Section 2.1.2. Many of the above systems either don’t provide dedi-
cated OP mechanisms or don’t incorporate adaptivity. Apache Storm [75] pro-
vides placement mechanisms that assign tasks comprising operator graphs
to the worker nodes before the topology starts. Flink [54] makes use of the
query optimizer proposed in Stratosphere [91] that performs OP while consid-
ering an objective function of network traffic and CPU load for the cost. For
Event-Based Systems besides Storm and Flink, OP mechanism is missing so
the QoS entry is based on the monitoring information available in the sys-
tem. This means the runtime characteristics such as QoS requirements are
not considered in the OP mechanisms. Several extensions to Storm including,
R-Storm [41] and T-Storm [82] provide custom OP mechanisms based on re-
sources and traffic at runtime. But only R-Storm [41] seems to be integrated
as per the latest release to-date. Altogether, the above modern Event-Based
Systems either do not provide dedicated OP mechanisms or lacks adaptivity
in OP mechanisms.

Besides integrating OP mechanisms and adapting between them, we pro-
vide a novel programming model to develop OP mechanisms in this thesis. WeProgram-

ming
Models

analyze existing CEP programming models [86, 102, 9, 28]; however, none of
them enable development and execution of distinct OP mechanisms in a het-
erogeneous environment of physical nodes like we do in this thesis. Close to
our work, DCEP-Sim [30] enables development of OP but failed to deploy it
in a real-world fog-cloud deployment infrastructure as they focus on only a
simulation environment. In contrast, we study the effect of distinct operator
placement mechanisms, perform adaptations between them, and analyze the
cost of adaptations in a real-world network infrastructure.

In summary, Table 2 and the above discussion shows that there is no one
size fits all OP mechanism or an adaptive CEP system that can fulfill con-
flicting and changing QoS requirements of the consumers. Although mod-
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ern and open-source Event-Based Systems such as Apache Storm [75] pro-
vides interface to extend OP mechanisms allowing selection of servers for
the Storm tasks, still those strategies do not allow fulfilling conflicting QoS
requirements using adaptivity. By proposing mechanism transitions for OP

1st Research
Gap: No one
size fits all
OP
mechanism

mechanisms, this thesis focuses on the (i) modelling of QoS requirements,
(ii) design and understanding of the behavior of OP mechanisms, (iii) learning-
based adaptive selection of OP mechanisms, and (iv) cost-efficient transition
strategies, which facilitate stateful mechanism transitions at runtime com-
prising a multitude of interdependent distributed components.

2.2 In-Network Processing

The term In-Network Processing (INP) was first used in the context of dis-
tributed query processing in wireless sensor networks [124]. The act of of-
floading query processing to the sensor nodes was referred to as INP in early
2000s. The authors highlighted multiple significant research problems, in-
cluding aggregation of data [125], query languages [101], query optimization,
multi-query optimization [8], and adaptive query processing [126]. Most of
the concerns mentioned above are still active research areas in stream pro-
cessing and CEP systems.

Nowadays, modern Event-Based Systems refer to INP in a different con-
text than it was done in the primal work [124]. It is commonly referred to as
a method that accelerates operator processing on programmable hardware
such as switches, SmartNICs, FPGAs, to name a few. Novel networking ar-
chitectures such as Software-Defined Networking [127] and Content-Centric
Networking [128] provide an opportunity to perform INP on programmable
hardware, for instance, using OpenFlow protocol [129, 130], P4 switches [51,
66] or ICN enabled switches [131]. The idea of INP for Event-Based Systems
is to enable event processing inside modern hardware to deliver very low la-
tency requirements (order of microseconds - milliseconds). This ability can
be used fulfill the latency requirements of many IoT applications such as
autonomous vehicle control.

In the following sections, we first present the key differences between
the communication mechanisms of Event-Based Systems and conventional
Request-Reply Systems. Second, we present related concepts to the novel
edge computing paradigm Content-Centric Networking followed by a classifi-
cation of these architectures concerning formerly presented communication
mechanisms. Lastly, in the discussion sub section, we highlight the research
gaps that we focus on in the second contribution of this thesis.
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2.2.1 The Push and Pull Dilemma

Many modern IoT applications like traffic monitoring and fraud detection are
inherently push-based applications, i.e., data continuously flows to the CEP
system. Still, various IoT applications rely on traditional pull-based commu-
nication mechanism for scenarios which do not encounter continuous flow
of events, such as database applications. Intuitively, traditional pull-based
data processing systems fall short in dealing with the continuous flow of
events for push-based scenarios, and vice versa. In comparison to pull-based
data processing, for instance, where queries are issued against a database
system at discrete times, push-based data processing requires continuous
queries to be processed, as seen in the IoT scenarios described above. Many
a times applications require coexisting push- and pull-based communication.
For instance, live video streaming applications need push-based delivery of
video frames, however, also need to support pull-based requests in case of
packet loss.

Consumer-initiated (pull)

Producer-initiated (push)

Known 

counterpart

Unknown 

counterpart

Request-Reply

Anonymous 

Request-

Reply

Message-based 

Point-to-point 

communication

Event-based 

communication

Figure 6: Communication mechanisms based on producer and consumer interaction
adapted from [132].

To understand the difference between the scenarios that require pull-based
or push-based data processing, let us analyze the communication mecha-
nisms based on the interaction patterns illustrated in Figure 6. We consider
two dimensions to categorize the interaction patterns: (i) who initiates inter-
action, and (ii) the knowledge about the counterpart. On the first dimension
(y-axis), we distinguish on the initiator of the communication – consumer
and producer of the information. On the second dimension (x-axis), we dis-
tinguish between knowing the counterpart of the communication – having
knowledge of the counterpart’s identity or having no knowledge at all [132].

In the request-reply interaction pattern, the interaction is initiated by the
consumer or the client of the information– for instance, classical web-based
applications or the interaction in a database system. In anonymous request-
reply interaction, the identity of the producer is unknown. In contrast, if the
producer initiates the interaction and the consumer identity is known, we
have a classical messaging application interaction. If the consumer is un-
known, we have the event-based communication (highlighted in gray in Fig-
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ure 6) that depends on a mediator, typically known as a broker who connects
the interested parties [133]. This thesis focuses on enabling both event-based
communication (push) and request-reply communication (pull) to enable a
wide range of IoT applications in the presence of novel networking architec-
tures such as Content-Centric Networking, discussed in the next subsection.

2.2.2 Content-Centric Networking

Content-Centric Networking (CCN) networking architecture was proposed
by Jacobson et al. [128] in 200911, built on the concept of named data. CCN
has no notion of the host, and thus a packet “address” names the content
and not the location. CCN communication mechanism is consumer-initiated,
consisting of two packet types: Interest and Data. A consumer interested
in a content broadcasts its interest over all the available channels. Any node
receiving the interest and having the content responds to it with a Data packet.
Both Interest and Data packets identify the content using a name that is
typically a hierarchical object. It identifies the packet content such that the
data object name is in the name subtree specified by the Interest packet.
The match is successful, if the name in the Interest packet is a prefix of
the name in the Data packet. Once a packet arrives on a face12 of a node, the
longest prefix match as explained above is performed and the data is returned
based on a lookup. In the following, we first introduce the packet structure in
CCN, the packet handling in the data plane, and the two emerging network
architectures under the umbrella of CCN.

Packet Structure

Each CCN packet includes “a fixed-size header depending on the packet type,
a variable-length data object name, the optional name TLV (type length value
format), some more optional TLVs, and finally, the payload” (cf. Figure 7) [134].
The maximum packet size of a CCN packet is 65 KBytes, which is fragmented
to fit the MTU of the communication protocol. The header comprises of (i) the
versioning field to combine protocol version, (ii) the packet type (cf. Table 3)
and its length, (iii) the hop limit used to limit the scope of the packet, (iv) the
flags to extend the fixed size header, and (v) the header length indicating
the length of the hop by hop header. After the fixed-sized header, Msg type
and Msg length fields are the same as Pkt type and length for the recon-
structed CCN packet to be self-describing after fragmentation. The variable-

11In the remainder of the thesis, we will use the terms ICN and CCN interchangeably.
12Face stands for interface in CCN terminology.
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length name represents the name prefix followed by the type length value
format to encode variable-length fields like the name in CCN packets[135].

0 1 2 3

Version Pkt Type Pkt Length
Hop Limit FLAGS Hdr Length

Msg Type Msg Length
Variable Length Name
Optional Name TLVs

Optional Interest TLVs
Payload

Figure 7: CCN packet structure adapted
from [135].

Packet Type code Packet Type

0x00 Interest

0x01 Data

Table 3: Default Packet Types as
shown in [135].

CCN Data Plane

Every CCN node comprises three major data structures: Forwarding Infor-
mation Base (FIB), Content Store (CS) (also called in-network cache), and
Pending Interest Table (PIT). When an Interest packet arrives on a face, the
node first checks its CS for a matching data object by its name. If a match
is found, the data object encapsulated in a Data packet is sent via the same
arriving face. If not, the node searches for the matching name entry in PIT. If
an entry already exists in the PIT, the face list is updated, and the interest
packet is discarded. This is because an interest packet has already been sent
upstream. If an entry in PIT is not found, the node continues looking for a
matching FIB entry, creates a PIT entry and forwards the interest packet to
the potential source of the data.

Named Data Networking (NDN) and Named Function Networking (NFN)

Named Data Networking (NDN) [136] emerged as an architecture based on the
principles of CCN named data. NFN enhances the packet addressing using
the concept of named functions by extending the foundations of NDN that uti-
lizes just named data. NFN provides data computations with network forward-
ing by executing computational tasks over the CCN network substrate [61].
It represents named functions on the data as so-called λ−calculus expres-
sions [137]. However, the main focus of NFN is only on resolving pull-based
(discrete) computations on top of the CCN substrate. In contrast, this the-
sis focuses on continuous and discrete computations (push and pull), an
expressive representation to specify the computations, and its efficient and
robust distribution. Having understood the basic principles of ICN architec-
tures we now classify them based on the push-pull dilemma discussed in
Section 2.2.1.
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Classification of ICN architectures based on the Push-Pull Dilemma

In the following, we present a classification of ICN architectures based on
the communication mechanisms utilized as: pull-based, push-based, or both
push- and pull-based [138].

Pull-Based

Classical architectures in ICN such as NDN [136] and NFN [61] use a
consumer-initiated communication mechanism. Specifically, the consumer
initiates sending an interest packet towards the ICN network for each data
object. The ICN network forwards this request to producers that produce
data items in interest of the consumer. In the next step, producer for-
wards the data items to the consumer. Classical ICN architectures are in-
herently consumer-initiated and, hence, do not support processing periodic
data streams. A possible approach to tackle the problem is by combining
NDN [139, 140] and NFN [141, 142, 131] while continuously polling the pro-
ducer to fetch the data packets. This approach can be meaningful when the
sending rate of the producer is low, but higher sending rates need higher
number of polling interest requests and, hence, a lot of unnecessary traffic.

Push-Based

The second class of ICN architectures [143, 144] are push-based, which
support producer-initiated communication mechanism similar to publish-
subscribe systems. In contrast to the pull-based architectures, these archi-
tectures lack support for request-reply interaction applications such as web
applications. To solve this issue, Ahmed et al. [134] use so-called beacon mes-
sages indicating the content that could be interesting for the consumer. Those
messages act as a callback to initiate interest in the content, and if the con-
sumer is interested in the content, then it sends an interest packet. Another
solution solves this problem by using long-lived interest packets [145]. This
means that the entry related to the interest packet stays for a longer time in
the PIT so that the consumer keeps receiving the corresponding data objects.
However, the beacon approach incurs a high amount of message overhead
(three-way exchange of what accounts for a one way). The other approach
with long-lived interests poses a bottleneck for large-scale IoT applications,
due to the centralized architecture.
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Both Push- and Pull-Based

Some approaches like CONVERGENCE [146], GreenICN [147], Carzaniga et
al. [148], and HoPP [145] provide support for both push- and pull- based
communication mechanisms. The CONVERGENCE system combines the
publish-subscribe communication pattern with an Information-centric Net-
work layer. Another ICN architecture named GreenICN combines NDN (pull-
based) with publish/subscribe based architecture COPSS [144] (push-based).
Carzaniga et al. [148] present a unified network approach similar to the sec-
ond contribution of this thesis. However, the authors propose a theoritical
preliminary approach without any real-world implementation. In a subse-
quent work [149], the same authors presented routing protocols for the
unified approach with no focus on how they deal with distribution aspect
of the approach. HoPP [145] is closest to our approach that also enables co-
existing push and pull functionality. Yet, the authors propose to implement
push semantics in a centralized control plane, which could be a problem
for a large-scale IoT application. A recent NDN implementation on the P4
switch [150] modifies NDN architecture to support both push and pull in-
teraction patterns. However, this work inherits the limitations of the P4
language, such as it does not allow loops. Furthermore, all the aforemen-
tioned approaches that combines both push- and pull-based communication
mechanisms are restricted in the ability to process continuous queries over
the ICN substrate as we do.

2.2.3 Discussion

We organize the above introduced ICN architectures in taxonomy concern-
ing the communication mechanisms, push-based, pull-based and both push-
and pull-based. As discussed above, existing ICN architectures entirely rely
on pull-based communication mechanism [136, 131, 61, 139, 141, 140] or
push-based communication mechanism [143, 144, 134]. On the one hand,Key
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relying only on the pull-based communication mechanism to handle periodic
data streams poses several issues as follows. (i) It results into significant
overhead in terms of interest request packets required to fetch each data ob-
ject. (ii) Because of the regular polling mechanism there could be packet loss
which eventually could result into high delay until fresh data becomes avail-
able. (iii) Due to the regular polling traffic, the resulting data could be stale,
for example, when served from in-network cache. (iv) Lastly, consumers might
end up in busy-waiting for data, for example, when a producer does not have
any data to deliver, thus, resulting into wastage of resources. On the other
hand, changing to a push-based communication mechanism is problematic
for IoT applications based on request-reply interactions. For example, tradi-
tional web applications and database systems still need personalized request-



2.3 Deployment Infrastructures 31

reply interaction. Existing work [134, 145] trying to accomplish request-reply
interaction while using push-based semantics not only add additional com-
plexity but also incur very high message overhead.

In this thesis we argue that ICN architectures should provide efficient sup-
port for both communication mechanisms push and pull enabling any type
of IoT application. However, the aforementioned approaches pose one or the
other limitations (i) while implementing push-based communication, the au-
thors [151, 147] do not deal with flow imbalance that eventually results in
event loss; (ii) their approach [145] poses large in-network state causing sig-
nificant overhead; or (iii) inherits limitations of the underlying technology,
e.g., P4 language constructs [150]. We mitigate the above limitations in the

2nd Research
Gap:
missing
both pull-
and
push-based
mecha-
nisms

second contribution of this thesis by providing an efficient CEP-based uni-
fied communication model that enables flow control as well as reliable and
in-order processing of data over the ICN architecture. By enabling the de-
velopment of IoT applications that may use any communication mechanism
push or pull, we increase the range of applications developed atop ICN ar-
chitectures. Moreover, our unified communication model deals with the im-
plications of push-based communication in an ICN architecture such as flow
imbalance, event-loss, and out-of-order event arrival while providing an effi-
cient in-network complex event processing.

2.3 Deployment Infrastructures

This section defines the deployment infrastructure considered in this thesis,
followed by a related work analysis of current serverless platforms pertaining
to the third contribution of this thesis.

2.3.1 Cloud Computing

Cloud computing is a paradigm coined in late 2007, which lately emerged
as an important utility, nowadays offering flexible and dynamic IT infrastruc-
tures worldwide [152]. Cloud computing offers a promising infrastructure for
building, deploying, and operating pull- and push-based IoT applications. It
offers resources for compute, network, and more recently data management
services over the Internet on a pay-per-use basis [133]. In cloud computing
terminology, resources are lent to tenants by cloud providers. Each tenant
uses the cloud resources and provides functionality to the end-users, such
as end-users of IoT applications. Cloud computing essentially offers a three-
rd fold deployment model. (i) In a public cloud, multiple tenants share the
physical resources provided by the cloud provider. (ii) In a private cloud, all
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the resources are exclusively dedicated to a single tenant. (iii) In a hybrid
cloud, a composition of two or more cloud setups (public and private) are
used. For instance, a sudden burst in demand is compensated by adding a
public cloud to private cloud resources. Clouds majorly offers different ser-
vice models depending on the level of abstraction of the resources that are
accessible to the tenants13 [153].

1. Infrastructure as a Service (IaaS) offers the capability to provision ma-
chines (virtual or hardware) involving privileges for computing and pro-
cessing power, storage, network as well as other required resources.
IaaS gives the tenants the highest level of privileges over the cloud re-Service

models of
cloud

sources. The pricing is based on the number, specification, and runtime
of the managed resources [133].

2. Platform as a Service (PaaS) enables the tenants to focus on the de-
ployment and management of their application by providing only the
platform– for instance, a database management system through a de-
fined API. The cloud provider is responsible for managing the infrastruc-
ture (hardware and operating system) [154].

3. Software as a Service (SaaS) enables the tenants with a complete work-
ing product that is administered by the cloud provider [133]. For in-
stance, Amazon Translate provides a translation service for different
languages powered by the deep-learning technology of Amazon14. The
cloud provider is responsible for all the underlying resources, and the
pricing is based on usage and subscription.

4. Function as a Service (FaaS) provides the tenants with a programming
model to create applications on the cloud infrastructure that abstracts
away all the operational concerns. It is a relatively new service model be-
ing adopted by many cloud providers. It lies in between the two extremes,
PaaS and SaaS models, where the tenant is unaware of the infrastruc-
ture (cf. Figure 8). Instead, they focus on a packaged component or full
applications. The tenants are allowed to host code using the provider’s
programming model that may be tightly coupled to the platform. This
service model emerged nowadays to a paradigm known as Serverless
Computing, elaborated in Section 2.3.2.

13AWS offers over 160 cloud services with the pay-as-you-go approach as of December 2020.
https://aws.amazon.com/pricing/ [Accessed in May 2021].

14Amazon Translate Service. https://docs.aws.amazon.com/translate/ [Accessed in May
2021].

https://aws.amazon.com/pricing/
https://docs.aws.amazon.com/translate/
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Figure 8: Control over application and infrastructure for the different service models
adapted from [155].

Fog Computing

Fog Computing is another trend close to cloud computing known for its ben-
efits, such as low latency. It extends the cloud computing paradigm to bring
computation and storage towards the edge near to the consumers. Cloud
providers such as Amazon and Google launched several fog locations known
as AWS CloudFront [156] and Google Cloud CDN [157], respectively. Addi-
tionally, companies like AT&T, Microsoft, Intel, and Verizon are investing in
edge hardware and software infrastructure to fulfill low latency demands and
maximize overall throughput [158].

Fog Computing have been defined in the literature in different ways. For Fog
Computing
is ...

instance, Cisco described it as a synonym to edge computing. Specifically, it
is defined as “analyzing data at the network edge (near to the end-users)" [159].
Another definition of Fog Computing is proposed by the OpenFog consortium
standards as “as an architecture that distributes resources and services like
computing, storage, control, and networking anywhere along the continuum of
Cloud to IoT devices (edge)" [160]. ...

processing
data at the
network
edge.

In this thesis, we proceed with the former view, defining Fog Computing as
a paradigm that enables processing at the network edge as this definition is
more prominent and widely accepted [161, 159, 162]. More precisely, we pro-
ceed with the fog-cloud hierarchy illustrated in Figure 9. The fog-cloud infras-
tructure provides a platform to meet distinct requirements of IoT applications.
For instance, latency requirements can be met using the infrastructure at the
fog or the edge layer that is near to the user, while computation requirements
can be met using the infrastructure at the cloud layer that is computation-
ally powerful. To meet the distinct requirements of the applications, we aim
to utilize the deployment infrastructure to deliver the quality requirements.
Another essential paradigm that is studied widely in the context of Cloud
Computing is Serverless Computing explained in the next subsection.
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Figure 9: Deployment infrastructure comprising of IoT devices at the edge, fog and
cloud resources (adapted from [48]).

2.3.2 Serverless Computing

Serverless Computing is a term adopted by industry cloud providers for the
FaaS service model introduced in the above section. It is recently popularized
by Amazon in the re:Invent session of AWS Lambda [163], and other providers
with the Google Cloud Functions [164], Microsoft Azure Functions [165], and
IBM OpenWhisk [166]. A common misconception with the name is that the
server is no more needed, which is not valid, but the decisions on the number
of servers and its capacity are taken by the serverless platform. It provides
an abstraction so that a computation such as a stateless function is discon-
nected from where it could be executed [155]. It allows running applications
on pre-configured resources abstracted away from the developer so that con-
figuration time is minimal and billing is only applied to the runtime of the
functions itself. The underlying hardware and operating system of the server
are unknown to the user, as it is assumed to be independent of the func-
tion that is placed on it. Furthermore, serverless functions are isolated from
other functions and are ephemeral. Therefore, every execution of a function
is independent of the state of previous or parallel running executions [167].

In this work, we benefit from Serverless Computing for deploying a CEP
system. Therefore, in the following description, we investigate if the existing
serverless platforms provide concepts required by a CEP system. First, we
define crucial CEP concepts for a serverless platform that could deploy a CEP
system. Second, we define a generic model for Serverless Computing at the
cloud. Third, we define serverless relation to microservices paradigm and the
numerous serverless platforms. Finally, we present a discussion of the most
prominent serverless platforms concerning the CEP concepts.

1. Continuous data streams. The support for continuous data streams inDefining
features for

later
comparison

serverless functions is crucial when implementing stream processing
and complex event processing systems. While the basic support is suffi-
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cient for the need of CEP systems, there are numerous challenges when
implementing continuous streams. For instance, correctness (accuracy)
of the results has to be ensured by processing the data streams in-order.

2. Statefulness. As a CEP system can utilize the sliding window operator,
for example, to join data received from multiple producers, there is a
need to keep these values received in the window saved for further
processing. Serverless functions are by definition cold-started, which
means that every time we want to execute the function, the service starts
a new instance of the application, effectively clearing all data in current
memory. After the function is finished executing, the data is deallocated.
Therefore, it is needed to keep the state of currently received data to
perform a sliding window protocol. Furthermore, cold-started serverless
functions can highly influence the overall latency of the system. Also, in
dynamic environments like mobile applications it is also possible for a
CEP system to migrate operators between nodes. In this case the opera-
tor state has to be kept in order to fulfill consistency of data.

3. Reusing existing operator graphs.

Another challenge that is related to the operator state is the reuse of
existing operators. Operator reuse, also referred to as operator graph
reuse, is a mechanism that allows the CEP system to utilize operators
from already mapped queries that are deployed on nodes in the current
network to be reused by another CEP query currently in deployment.
The operator reuse reduces latencies and CPU load for CEP systems
that have to fulfill changing QoS requirements for queries or transit the
operator placement between different QoS demands as shown in the
first contribution of this thesis (cf. Chapter 4)

4. Operator graph processing and Operator Placement. In traditional dis-
tributed CEP systems, the operator graph is formed by connecting op-
erators in an overlay network, which can have physically different un-
derlying network topologies [168]. The operator graph is processed in a
centralized and a distributed manner as dictated by the CEP and the OP
mechanism. An equivalent functionality has to established in a server-
less architecture that can be challenging.

5. Flow control. A flow control mechanism makes sure that everything in
transit will have the capacity at the receiver’s end to handle. Since CEP
systems deal with continuous data streams that, for some use cases,
amount to several thousand and even million of events per second, it is
indispensable for a CEP system to implement flow control to handle the
influx of enormous data.
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6. Auto scalability is the capability of the provider to automatically detect
workload changes and scale the requested resources effectively so that
the systems support elasticity.

Given the fundamentals of serverless platform, let us review the generic de-
ployment model of serverless computing and related concepts before going
into the discussion.

Generic Serverless Deployment Model of Cloud Providers

The steps of deployment of functions are often not equal for every serverless
framework provider, but it can be assumed that the same assumptions hold
for most. We will look into the basic system model of AWS Lambda [163] as it
was one of the first and most prominent commercial serverless platform. After
defining a function, it can be placed solely on the serverless platform either
through a web interface or by a command line (Serverless Platform Inter-
face), which is shown in Figure 10. Besides the function itself, the developer
should specify how many resources the function needs while being executed
such as RAM or CPU credits. If no resource bounds are set, the platform
often executes the function with only minimal resources available. After the
deployment request is received, 1 the provider chooses a machine internally
that provides enough resources for the requested computation. 2 The user
do not have visibility of this process. The only received feedback from the plat-
form is presented when the function is in execution or when the execution is
finished. When the machine is ready for placing a function, a virtual machine
(VM) is started, which is needed to securely execute the function in an encap-
sulated environment. 3 Amazon uses its own open-source implementation
called Firecracker that manages the creation, maintenance, and termination
of VMs. Firecracker defines VMs as so-called microVMs, as their execution
has only a lightweight footprint in the hosted environment. To execute func-
tions in the created VM, most serverless platform providers, encapsulate the
defined function by wrapper code containing the entry point of the applica-
tion that is defined by the provider. The entry point of the application creates
the seen function context and sends status updates back to the web interface.
After the setup of the application is finished, it invokes the function body with
the context and the given input parameters of the function. As the function
is running, the wrapper collects and stores logs emitted by the function for
later debugging and monitors the health of the currently running function.
4 When execution is finished, it retrieves the result from the function and
sends it back to the issuer. Afterwards, the VM is released, making space
for other functions to be executed on the same host machine. An essential
characteristic of a serverless function is that all the computed intermediate
state, such as variables in the heap memory, are considered lost after exe-
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cution. This is a severe limitation for applications that need to save state for
later computations. The state has to be saved on other resources such as
cloud storage which in turn have higher access latencies and lower through-
put. Besides reducing configuration overhead for cloud resources, Serverless
Computing also allows developers to extract encapsulated parts of the code
into single applications, effectively reducing code complexity.

Serverless Platform Interface (Web, CLI, ...)

VM Manager

microVM 1

microVM 2

microVM n

VM Manager

microVM 1

microVM 2

VM Manager

microVM 1

microVM 2

microVM n

1 Deployment

2 Selection

3 Create microVM

4 Return result 

Instance 1 Instance 2 Instance m

...
... ...

Figure 10: Generic deployment model of current serverless platforms [169].

Relation to Microservices

In contrast to Serverless Computing, an often used paradigm to achieve sim-
ilar functionalities is the Microservices Architecture that could be seen as a
similar architecture to the serverless paradigm but needs to be differentiated.
A microservice is considered to be a part of a bigger application handling only
logic related to this specific service. An example service could be a mail ser- Microser-

vices
Architecture

vice with its only purpose being the sending and receiving of emails, while
content and formatting is left to other services. Multiple services can interact
together to build a whole application, which is considered to be better scal-
able and maintainable as developers can focus on single services at a time.
It would surely be possible to implement the same logic with a serverless
architecture but with a main difference in the deployment overhead. While
the application logic is defined in the serverless paradigm in functions, the
deployment and configuration of these functions are left to the provider of the
FaaS framework. In contrast, a microservice can be seen as a monolithic ap-
plication and therefore has to be deployed by the user that also configures the
underlying OS. This, of course, enables users of microservices greater flexi-
bility at the deployment of applications but is also more time consuming and
error-prone. Many distributed applications, such as the content streaming
platform by Netflix [170], are considering a hybrid solution of microservices
and serverless. Only specific services are written as serverless functions as
not all services can be written in a serverless manner. This is often the case
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when a service is considered to be stateful, which is a feature that serverless
applications do not provide by design.

Other Serverless Platforms

Additionally, besides commercial providers like AWS Lambda [163], we also
look into OpenFaaS [171], an open-source implementation of a serverless
platform. Instead of using microVMs, OpenFaaS uses docker containers com-OpenFaaS

bined with the container orchestration framework Kubernetes [172] to man-
age servers and functions. A container orchestrator enables a distributed net-
work of docker container managers on different nodes and configures com-
munication between those containers by providing an overlay network. Fur-
thermore, the network of nodes is manageable from one or multiple manager
nodes that have the privilege to deploy and manage containers on other nodes.
Because of this system architecture, OpenFaaS provides the advantage of de-
ploying every valid docker container as a serverless function by extending it
with the so-called Function Watchdog. The extension is a light HTTP server
that transforms incoming function requests, redirects them to the application
in the container, and sends the application back to the caller [171].

Moreover, because every docker image can be deployed as a serverless func-
tion, the application language is independent of the serverless provider plat-
form. This is a key difference to the commercial solution from AWS, as it pro-
vides only some languages for writing custom functions. Besides language
independence, OpenFaaS provides auto-scaling for functions to increase or
decrease the number of functions as soon as a load change is detected. Nas-
tic et al. [173] proposes a serverless real-time data analytics platform mainly
focused on edge computing that also shows how serverless functions canServerless

@Edge be used for processing streams of data. The business logic of functions that
manipulate data is encapsulated in containers to dynamically control the de-
ployment of functions. The framework provides a wrapper API that controls
access from and to the streaming data pipeline in execution to provide a
consistent ability to access functions. Therefore, the user-defined function
is abstracted away from the stream pipeline. An open-source alternative to
AWS Lambda is Kubeless [174], which is based on the container orchestra-
tion framework Kubernetes [172]. When submitting a function through theKubeless

command-line interface to Kubeless, it packages the function in a docker con-
tainer that serves as a runtime environment. Kubeless provides a number of
runtime environments each supporting individual programming languages
using a custom docker image. As AWS Lambda [163], Kubeless supports
processing streams by receiving executing a function every time the stream
provider publishes a record.
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2.3.3 Discussion

While there are numerous serverless FaaS providers in the industry and
open-source we want to concentrate on the mature and developed solutions.
In recent years, many commercial serverless platforms evolved, e.g., AWS
Lambda [163], Google Cloud Functions [164], Azure Functions [165], and
IBM OpenWhisk [166]. An open-source alternative to AWS Lambda is Kube-
less [174], which provides a number of runtime environments.

3rd Research
Gap:
Missing ab-
stractions
for reuse of
CEP mecha-
nisms

In Table 4, we compare the following platforms comparing the functional-
ities presented in the above section: AWS Lambda [163], IBM Cloud Func-
tions [175] based on OpenWhisk [166], Google Cloud Functions [164], and
Microsoft Azure Functions [165]. It is important to note that although the
reviewed serverless platforms provide one or other functionality of CEP, it
cannot be used out of the box for realizing a CEP system. There are multi-
ple research challenges listed below in terms of their support in processing
continuous data streams, state management, and operator placement in a
distributed infrastructure that needs to be considered.

For a system to enable stateful operators, is the first and foremost issue State
supportthat provides the storage of data. While serverless functions do not have a

persistent storage model before and after execution by design and as the
execution space is provisioned as soon as the function is requested, it is
necessary to find a suitable location with a high I/O throughput.

The advantage of state is also underlined by the work of Jonas et. al. [176],
as they identified the most effective storage method for serverless functions
are currently cloud-enabled storage spaces such as Amazon S3 [177] or par-
allelized SSDs in larger compute instances.

Another comparison is curated by López et al. [178] based on Amazon
Lambda and IBM OpenWhisk. Their work shows that Amazon Step Functions
[179] can run multiple function invocations that keep the state in the follow-
ing executions. Although this is practical for environment variables, etc., it
is limited to a maximum of 32 KB, at least for Amazon. Moreover, they eval-
uate the cost of state migrations in terms of state migration time. They show
that IBM has equal state migration time to Amazon but that IBM transition
times significantly increase when using larger amounts of data. State migra- State

migrationtion, as considered in FaaS, is the ability of the function to synchronize the
state to the other functions that are currently in execution. Besides their
findings they also show a comparable solution to Microsoft’s parallel func-
tions [165] and show that IBM is currently not offering this as part of their
IBM BlueMix portfolio [166]. When looking at the state migration of FaaS in
dynamic environments, we found that the FaaS approaches do not provide
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Provider AWS Lambda [163] IBM Cloud Func-
tions [175]

Google Cloud Func-
tions [164]

Azure Functions [165]

Serverless Features

Execution time Limit 15 min 5 min 9 min 10 min/ 60 min/ unlim-
ited

Memory Limit Up to 3 GB Up to 2 GB Up to 2 GB 1.5 GB

Deployment Package size 250 MB 500 MB 500 MB unlimited

Temporary Disk Space 500 MB 2GB 2GB 1.5 GB

Extended Cloud Storage S3, DynamoDB IBM Cloud Object Storage Google Storage Azure Storage

Billing Duration and declared
memory

Duration and declared
memory

Duration, declared CPU
and memory

Duration and average
memory use

Auto scalability - - - -

CEP Features

Continuous event streams Amazon Kinesis Apache Kafka Cloud Pub/Sub Azure Stream Analytics

Flow control - - - ,

Operator graph processing - , - -

Operator Placement , , , ,

Deployment on Edge AWS IoT Greengrass [181] IBM BlueMix [166] , Azure Functions
Edge [182]

State support and migration - - - -

Operator reuse - , - -

Parallel execution support - , , -

Query notification AWS SNS service Push notifications Firebase Azure Notification hub

Table 4: Comparison of support for CEP and serverless functionalities in the FaaS platforms considered. - refers to the presence, while , refers
to the absence of a functionality in the serverless platform. Text in bold refers to the best feature configuration possible in the serverless
system.
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a major disadvantage in startup time and migration time than using docker
containers. Aske et al. [180] identified that cold starts of serverless functions
by common providers like AWS or Google, which take two seconds to complete
while warm starts take about one second. This is comparable to the startup
time by docker containers, although there are no specific measurements as
it depends on the application.

As we can utilize the aforementioned storage method also for operator
reusability, a decentralized management of the diverse operator placement Operator

reusehas to be done to support elasticity and the basic functionality of placement
algorithms. Using OP mechanisms [81], the node placement coordinator de-
cides which node gets an operator deployed in a CEP system. Most CEP sys-
tems use decentralized mechanisms to propagate messages to control the op-
erator graph and identify operators to be reused. In a serverless implemented
CEP system, we would need to implement an equal functionality.

In terms of continuous data stream support, we found that with AWS
Lambda, it is possible to transport data streams in functions using Kinesis
[183] that is the stream processing and analysis service developed by Amazon.
Also, IBM OpenWhisk supports continuous streams using streaming systems Continuous

data stream
support

like Apache Kafka [11]. The support of streaming functions is not surpris-
ing as serverless functions are executed in a containerized environment with
the same possibilities as a virtual machine. Most of these providers support
streaming in some form of input data towards serverless functions. However,
those services are often limited to provider-specific streaming solutions In
contrast to basic stream support, an issue persists regarding maximum exe-
cution time and serverless functions’ maximum deployment size. We looked
into all providers having an upper limit for serverless function execution ex-
cept Azure Functions that recently launched a premium plan with unlimited
time. Furthermore, the size of the deployment package that contains the code
is also unlimited (cf. Serverless Features in Table 4).

IoT frameworks aid in keeping operator state for reuse when rebuilding
the operator tree and compositing it. Besides AWS also Google and Microsoft
have established almost equal IoT frameworks with Google IoT [184] and Mi-
crosoft IoT Edge [182]. As IBM is utilizing the open-source serverless frame- Operator

graph
processing

work OpenWhisk [166], it would also be possible to enable IoT execution
serverless functions by simply installing OpenWhisk on the nodes and manu-
ally developing the cloud connection. This is an approach taken by the LEON
prototype system for distributed image processing [185]. Currently, IBM does
not offer a solution like AWS Greengrass [181] that makes the process sim-
pler. The architecture of locally deployed serverless functions, which we saw
could also be developed using AWS Greengrass, was discovered to be more
efficient in terms of latency and throughput. When the graph is composited,
the operator dependencies are built by chaining operators in the query and
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linking the following operation as successor operator in the graph. To en-
able operator graph in a serverless based CEP system, we need persistent
addressing, as presented in the features above. Therefore, when deploying
the graph, the system developed in, e.g., AWS Greengrass [181], could deploy
the lambda functions on nodes, effectively placing static addresses of the suc-
cessor operators in the code because the centralized cloud has knowledge of
the overall network topology and operator placement.

Recent research on involving multiple serverless providers to complete the
computation of data on edge [180] is also reflected by recent research where
the execution round-trip time of code executed was dramatically reducedDeployment

at Edge when executed utilizing multiple serverless providers, and local compute
power of an edge node. In summary, this also shows that modern applica-
tions do not have to focus on only offloading computational work to the cloud,
which is also involved with higher latencies, but can also utilize the mix of
local/edge computed and cloud FaaS.

Despite the above serverless features, what remains an open problem
would be the deployment of an operator graph. As OP mechanisms can con-Operator

Placement stantly optimize the operator graph in order to fulfill QoS requirements. With
the current solution using AWS Greengrass or comparable providers, the
lambda function executing the operators would need to be replaced with up-
dated functions that encapsulate an operator. Current CEP systems provides
a placement coordinator that monitors the operator graph and the nodes
used for deployment for the placement decisions. This functionality has to
be established in a serverless CEP middleware.

Parallel execution of operators allows the CEP system to utilize other nodes
in the network with lower machine usage to minimize latency and maximize
throughput. Therefore, parallelization support is also a feature supported byParallel

execution serverless platforms that the CEP system can benefit from greatly.

In the above discussion and in Table 4, we analyzed the existing server-
less platforms in terms of their ability to support CEP concepts. Although
current serverless platforms provide several promising features, which can
provide high performance in CEP, they lack core concepts in support of event
processing such as operator placement, state management, and other opti-
mizations. Furthermore, the CEP programming models presented in Table 2
lack of interoperability because of the tight coupling between the program-
ming model and the execution environment. This research gap leads us to
the final contribution of this thesis, a unified serverless middleware that pro-
vides (i) flexibility in CEP to reuse mechanisms such as operator specification
across distinct execution environments, (ii) flexibility in exchanging operator
specification at runtime facilitates IoT applications to change execution se-
mantics, which often becomes necessary.
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2.4 IoT and its Applications in Event Processing

Although there is a wide range of definitions of IoT proposed in the litera-
ture [186, 187], we adopt a user-centric definition focusing on its application
deployment across fog-cloud infrastructures.

Definition 3. Internet of Things (IoT).
“IoT interconnects sensing and actuating devices to share data across
the platforms through a unified framework, such as fog-cloud infras-
tructures, and forming a common operating picture for enabling inno-
vative applications [1].”

Event processing is used in a wide range of IoT applications in different
sectors. It has become even easier using open-source event processing plat- CEP used in

real world
IoT
applications

forms such as Apache Storm [9], Apache Flink [28], and Apache Kafka [11].
These platforms are used in thousands of companies globally, including more
than 60% of the Fortune 100 list15. To name a few prominent IoT applica-
tions, Alibaba Group16, a leading Chinese multinational technology company
specializing in e-commerce and retail, recently acquired Apache Flink to an-
alyze trillions of online transactions per day. Storm17 powers a wide variety
of Twitter applications related to real-time analytics of tweets, personaliza-
tion, search queries, and many more. Finally, Apache Kafka18 is used at
LinkedIn to power activity stream data and various other operations. Further-
more, cloud providers like Amazon, IBM, Google, and Microsoft are gradually
starting their own streaming solutions for IoT, as shown earlier in Table 4.

In summary, event processing paradigm is powering many IoT applications
presently, and is expected to do so in the future. In this thesis, we present
methods and concepts that enables deployment of IoT applications atop fog-
cloud infrastructures in an adaptive, efficient and flexible manner to over-
come the challenges in (i) meeting changing QoS requirements, (ii) missing
abstractions in realizing CEP on the in-network processing infrastructure,
and (iii) missing abstractions in dynamically updating queries and reusing
functionalities across CEP programming models.

15100 fastest growing companies https://fortune.com/100-fastest-growing-companies/2020/
[Accessed in May 2021].

16Tech crunch Alibaba acquires German big data startup Data Artisans. https://
techcrunch.com/2019/01/08/alibaba-data-artisans/ [Accessed in May 2021].

17Companies using Apache Storm. https://storm.apache.org/Powered-By.html [Accessed in
May 2021].

18Apache Kafka powered by 60% of Fortune 100 companies. https://kafka.apache.org/
powered-by [Accessed in May 2021].

https://fortune.com/100-fastest-growing-companies/2020/
https://techcrunch.com/2019/01/08/alibaba-data-artisans/
https://techcrunch.com/2019/01/08/alibaba-data-artisans/
https://storm.apache.org/Powered-By.html
https://kafka.apache.org/powered-by
https://kafka.apache.org/powered-by
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2.5 Summary

This chapter introduces the preliminaries to better understand the contribu-
tions as well as introduces existing approaches that solves similar problems
of adaptivity, efficiency and interoperability. By reviewing the existing work
in the fields of Event-Based Systems, Adaptive Systems, Information-centric
Networking, as well as Cloud Computing and Serverless Computing, we found
out three key research gaps that are solved in this thesis. First, there is no
single Operator Placement mechanism that can fulfill changing QoS require-
ments of a highly dynamic network environment that indicates the issues
concerning the adaptivity problem. We solve this in our first contribution
in Chapter 4. Second, existing in-network processing abstractions fall short
in efficiently meeting the challenging QoS requirements of IoT applications.
Especially, Information-centric Networking architectures have crucial short-
comings in processing continuous data streams from heterogeneous sources.
We target the efficiency problem in Chapter 5. Finally, current CEP program-
ming models are tightly coupled in their design to the execution environment,
which makes it difficult to benefit from multiple CEP programming models
and to reuse their mechanisms. The dependency worsens the ability to spec-
ify operators at runtime which are highly essential for the functioning of
dynamic IoT applications. We base our proposed concept on the Serverless
Computing principles, however, current serverless platforms are restricted
in providing CEP related functionalities, that we solve in our final contribu-
tion in Chapter 6.
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Scenario and System Architecture

This chapter describes a common scenario and the overall system architec-
ture proposed in this thesis. Section 3.1 defines the overall scenario used in
this thesis to highlight the research problems addressed in this thesis. Sec-
tion 3.2 defines the overall system architecture, including formal definitions
of the concepts later used in the contributions of this thesis.

3.1 Scenario Description

This thesis considers a smart city scenario comprising of multiple applica-
tions necessary for users. Figure 11 illustrates such a smart city majorly
comprising four applications: 1 traffic control, 2 post-accident management,
3 smart grid, and 4 fraud detection for a financial institute. We consider dif-
ferent applications to show the wide applicability of our concepts and system
model for different scenarios, as well as address specific research challenges
arising in those. For each application scenario we define the assumptions,
used infrastructure, and specific research challenges targetted in this the-
sis. Many cities worldwide are becoming smart, such as Masdar in UAE,
Barcelona in Spain, Bristol in the UK, and Darmstadt city in Germany, to
name a few19 [188, 189]. Similar to these smart cities, the fictional smart
city introduced in this work is equipped with modern sensors to allow deriva-
tion of higher-level complex events of interest to the respective applications.
In particular, we define the applications within this smart city in detail as
follows.

1 Traffic Control Application

The first application is a traffic control application from the domain of Intel-
ligent Transportation Systems. To improve route planning for smart vehicles
and reaction time for emergency services related to traffic accidents, the traf-
fic on a crossroad is monitored by a CEP system that allows the detection
of complex events such as traffic congestion and accidents. Such complex

19Titled "Digitalstadt Darmstadt" that means digital city Darmstadt.
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Figure 11: A smart city scenario with the four applications: 1 traffic control where a
traffic congestion and accident is detected, 2 post accident management
where a live heatmap is tracked, 3 smart grid and home where the load
is predicted from smart plugs, and 4 fraud detection where credit card
fraud is detected. These applications communicate over a communication
substrate of TCP/IP and ICN protocols.

events can be derived by combining the low-level events from sensor sources
(such as radar, lidar sensors, video cameras, induction loops, noise level sen-
sors and smoke sensors) along with smart vehicle sensor events (such as
speed information) (cf. Figure 11 1 ). Reliable and timely detection of a com-
plex event is important depending on the environment so that emergency
services and vehicles before the accident road section can benefit from this
information. As a basis for fast and reliable communication between the ve-
hicles, the roadside network devices such as the 802.11p standard, Wireless
Access in Vehicular Environments (WAVE) [190], can be used. This technol-Assump-

tions and
Infrastruc-

ture

ogy defines the necessary communication medium for wireless vehicular com-
munication and supports a bandwidth of up to 27 MBps in a range of up
to 1000m. WAVE defines the communication between the On-Board Units
in vehicles and stationary Road Side Units enabling both vehicle-to-vehicle
and vehicle-to-infrastructure communication. Besides, cellular communica-
tion using 4G LTE can be used as a fall-back when wireless communication
cannot be established. A significant difference between 802.11p and cellular
communication is that the former establishes a device to device communi-
cation while the latter operates using a network operator. Thus, a cellular
message needs to pass the uplink and downlink channels of the cellular net-
work to reach the destination, whereas 802.11p messages are directly sent
to the destination user. A swift switch between such mechanisms and timely
response under dynamic environmental conditions is crucial in this scenario.



3.1 Scenario Description 47

In the scenario, we consider an edge-fog-cloud infrastructure as motivated
earlier, for event processing. The edge infrastructure includes vehicles, Road
Side Units and stationary sensor sources such as a radar. The fog infras-
tructure is more powerful than the edge, comprised of processing nodes from
nearby fog locations, such as micro data centers. The cloud infrastructure
available at the end of emergency services for traffic management and data
centers with more computational power are considered for more complex op-
erations such as predictions required in the later applications. In this appli- Research

Challenge:
Dynamic
Environ-
ment

cation, the CEP system is exposed to many dynamics of the environment. For
instance, depending on the vehicle density, event rates, and mobility of ve-
hicles may vary a lot. Furthermore, depending on the location of the vehicle,
whether it is near the traffic congestion area or to a highly mobile highway,
the QoS requirements may also vary. For instance, in a highly dense location,
it is critical to quickly retrieve the traffic congestion event to make timely
decisions on re-routing the vehicle or changing the lane. While in a highly
mobile highway location, due to very mobile vehicles with a high speed, it is
needed to detect the event in a highly stable manner. In this scenario, the
key issues are how and when to adapt mechanisms to deal with the dynamic
environment and QoS requirements. For this, we propose a methodology on
transitions for CEP mechanisms, provide adaptable OP mechanisms and tran-
sition execution algorithms in a transition-capable CEP system, named TCEP

(cf. Chapter 4).

2 Post-Accident Management Application

An accident at a highway can be very devastating and it is imperative to carry
out rescue activities in time to bring the situation back to normal. A widely Assump-

tions and
Infrastruc-
ture

used method to know the location of victims is using a live heatmap of the
area with the rescue team for timely rescue operations. We have similar as-
sumptions on the communication and available infrastructure for processing
as in the traffic control application (cf. Figure 11 2 ) for this application. The
extremely dynamic environment of this application and the stringent QoS
requirements of such an emergency scenario makes it difficult to deliver in-
formation promptly to the rescue team. The requirements for such safety- Research

Challenge:
Stringent
QoS require-
ments

critical applications are low latency (in the range of milliseconds), high rela-
tive speeds between transceivers (up to 200 km/h and above), high dynamics
of the environment (density and mobility of the vehicles), and substantial
network load (period data streams from vehicles) requirements, which are
hard to be met with existing Communication and Event-based Systems [191].
Therefore, in this scenario the ICN paradigm can be beneficial. ICN principles
such as named data, in-network processing, and in-network caching simplify
mobility support and allow vehicles to retrieve information in very low latency
and network traffic [192]. However, existing ICN architectures fall short in
support of processing of continuous data streams as intended in push-based
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Event-based Systems. Furthermore, current architectures only limitedly sup-
port in-network processing as provided by CEP. Here, the key issues are to
unify communication mechanisms in a single ICN architecture and to enable
event processing in such programmable in-network architectures. To deal
with these challenges, we propose unified communication model that comple-
ments a state-of-the-art ICN architecture and algorithms for event processing
over ICN substrate in a INETCEP system (cf. Chapter 5).

3 Smart Plug Load Prediction Application

Load prediction for households is a topic of concern for the smart grid to as-
sess if the power grid needs upgrading or a temporary boost in power. TheAssump-

tions and
Infrastruc-

ture

technicians have to feed more power into the grid at specific times to prevent
it from collapsing. Usually, in the morning time when people watch television,
prepare tea and use a water heater at the same time, it results in additional
three gigawatts of power for roughly 3-5 minutes. The phenomenon is widely
known as television pickup, and in former times power grid had to increase
the power by monitoring television channels manually. In this scenario, load
prediction can be a huge benefit to handle the problem without monitoring
television channels manually. A CEP system can model this scenario by moni-
toring load from smart plugs and deriving predictions for the future regarding
the load so that power grids can proactively plan to feed more power automat-
ically. Like the traffic control application, an edge-fog-cloud infrastructure
comprising smart plugs at the edge, in-network devices like switches and
routers at the fog and high-end servers available at the power grid location
are assumed to be used for event processing (cf. Figure 11 3 ). Predictions inResearch

Challenge:
Low latency
& reliability

a timely and reliable manner are fundamentally important in this application
to avoid power failure and unnecessary costs on the smart grid. In addition
to 2 application, INETCEP system can be used to deal with the reliability
and efficiency requirements of this 3 application.

4 Fraud Detection Application

Credit card fraud is an open issue in the financial industry. According to
Federal Trade Communication, Americans reported losing over $1.9 billion
to credit card fraud in 2019 alone. With an increase of credit card fraud yearAssump-

tions and
Infrastruc-

ture

up to 50% since 2017, financial providers heavily invest in new technolo-
gies to prevent further damages. According to International Data Corpora-
tion, banks spent $5.3 billion on AI in 2019, growing to $12.4 billion in 2023,
on fraud detection analysis alone [193]. While the development of new detec-
tion algorithms for identifying fraud cases is getting more and more attention
with the use of machine learning, the announcement by Visa shows that not
only the development of an algorithm itself is challenging, but also the de-
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ployment of such unstable systems is getting increasingly complex. As fraud
patterns can change quickly, systems bound to detect these patterns need to
be constantly updated while still maintaining a no-downtime policy. Existing
financial providers use event processing systems such as Apama CEP [194]
to handle the billions of credit card events in a fraction of milliseconds (cf.
Figure 11 4 ). However, requirements of such large scale applications are
much larger than what existing CEP systems offer. Custom operators such Research

Challenge:
Lack in
interoper-
ability

as machine learning functions are hard to be integrated in existing CEP sys-
tems and require extensive knowledge of the underlying CEP system. Fur-
thermore, because of the tight dependency on the underlying CEP runtime,
custom operators cannot be updated dynamically without re-compiling and
deploying the entire CEP system again. This poses a severe problem for high
availability applications, such as fraud detection in the context of financial
systems. Redeployment of a CEP system would require multiple seconds or
event minutes before being able to be used again, which is unacceptable for
such applications, where multiple fraud transactions can be repeated within
this period. As a solution to these problems, we propose a CEPLESS mid-
dleware in Chapter 6 based on Serverless Computing principles that allows
flexible custom implementation of operators and dynamic update of opera-
tors ensuring zero downtime.

Besides, according to its original definition, a middleware should not be
application dependent or system dependent. Ideally, it should allow seam- Beyond the

specific
applications
and
systems

less integration of many diverse IoT applications within a smart city, which
needs cross-compatibility of multiple CEP systems. We enable such integra-
tion using CEPLESS by providing custom operator abstractions that allows
execution of operator graphs on multiple CEP systems in the execution layer.
In the next section, we define the overall system architecture proposed in
this thesis that enables this flexibility.

3.2 System Architecture

This section explains the overall system architecture proposed in this the-
sis. Section 3.2.1 discusses a system model, including the standard defini-
tions used for the contributions of this thesis in the rest of the chapters. Sec-
tion 3.2.2 discusses the overall architecture, including the different software
components of the overall architecture and their interactions.
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3.2.1 System Model

This section provides a formal description of the entities involves in the ar-
chitecture proposed by this thesis. Table 5 provides a summary of all the
common notations used in this thesis for completeness.

Notation Meaning Notation Meaning

P Set of event producers (p ∈ P ) t(e) Event timestamp

D Continuous data stream
(comprising set of events e)

BI Input buffer of an operator

C Set of event consumers (c ∈
C)

BO Output buffer of an operator

B Set of brokers (b ∈ B) φω State of an operator

Ω Set of CEP operators (ω ∈ Ω) Cω Operator container

G Operator graph fω Processing function of an op-
erator

N Set of nodes (n ∈ N ) en(t) Environment conditions de-
pendent on time t

L Set of links connecting the
nodes (l ∈ L)

Q Continuous query including
the QoS requirements (Q =

{q,QoS, TQoS})
E Set of events (e ∈ E)

Table 5: Notations and their meaning.

Event and Operator Graph Model

The proposed system architecture consists of (i) a set of event producers (P ),Event
processing

components
which produce continuous data streams (D), (ii) a set of event consumers (C),
which express a complex event by means of a query Q on the incoming data
streams, and (iii) a set of event brokers (B), which acts as host to a set of
operators (Ω) effectively processing and forwarding the events. A data stream
comprises multiple events (E) – low-level or complex events – where each
event has an attached timestamp (t(e)). Formally, an event represents a tuple
of key-value pairs, of the form e = {(k1, v1), . . . , (knume , vnume)}.

Before processing, the query is transformed into an intermediate represen-
tation called of a directed acyclic operator graph. The operator graph dictates
an execution plan specific to the query given by the event consumer. Formally,
an operator graph is G = (Ω∪P∪C,D), comprising of a set of operators (Ω), pro-
ducers (P ), consumers (P ) and data streams (D), formally, D ⊆ (P∪Ω)×(C∪Ω).
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Figure 12: Simple CEP operator graph example for a traffic congestion query (shown
in the left figure). An operator graph is used to detect meaningful events
for the IoT applications [195].

Figure 12 illustrates an operator graph comprising four operators from the
traffic control application introduced in Section 3.1 1 . In the operator graph,
the data flow of the events is from bottom to top of the graph, where the bot-
tom operators are the predecessors while the top are the successors. Here,
the bottom-most level are producers, while the top-most are the consumers.
Operators ωV 1 and ωV 2 refer to the window operators on the two input data
streams based the road sections V 1 and V 2, comprising low-level events on
speed and density of vehicles arriving from the incoming data streams. Oper-
ators ω→ and ωσ denote sequence and selection operators, respectively, that
reacts on the outgoing data streams from operators ωV 1 and ωV 2. The execu-
tion of an operator graph is composed of step-wise transformation based on
the processing function fω.

Each operator ω applies its specific processing function fω to produce a set
of complex events either forwarded to the successor operators in the operator
graph or the consumer. Each transformation step takes an input a selection s

of events from its incoming data streams and applies an operator-specific pro-
cessing function fω to produce a set of complex events. The selection happens
by means of a selection policy that determines the events for processing. For
instance, the operator ωV 1 specifies a selection policy for a sliding window of
three subsequent speed events {es1, es2, es3} on the incoming speed data stream.
In a subsequent transformation step, operator ωV 1 apply the processing func-
tion on the updated selection of events {es2, es3, es4} after sliding one event. Thus,
each transformation step produces zero or more events as output. Events are
evicted from the incoming data streams after each transformation step by
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means of a consumption policy. For instance, the slide size of a sliding win-
dow determines the events that can be evicted, e.g., es1 is evicted when the
subsequent transformation step with {es2, es3, es4} is performed.

Timestamps

In this thesis, we assume that the low-level events arrive in the order indi-
cated by the event timestamp (t(e)) [24], and the system nodes are equipped
with clocks that can be synchronized using a clock synchronization proto-
col such as Network Time Protocol [196]. Although, there can be late events
and common ways to deal with them by specifying a wait threshold for those
events [54] or using predictions [197], dealing with late events is out of scope
for this thesis. A complex event depends on a number of low-level or other
complex events in selection occurring in different order and timestamps. Lit-
erature adopts different ways to timestamp the complex event by assigning
maximum, minimum or even an interval-based timestamp [198]. In this the-
sis, we adopt a timestamping scheme that assigns the maximum timestamp
of the selection to each complex event, but the results of this thesis can be
easily adapted for other timestamping schemes.

Definition 4. Operator Buffers (BI(ω) and BO(ω)). For each operator
(ω), the incoming events arrive in the input buffer BI(ω) of an operator,
which are processed by the function fω and the output complex event
is sent to the output buffer BO(ω) of an operator.

Kind of Operators

There are two kinds of operators in CEP: stateful and stateless. A stateless
operator works based on the fixed computational parameters that are im-
mutable (e.g., filter and stream operators). In contrast, a stateful operator
works on a dynamically changing computational state φω that is mutable
(e.g., window and sequence operators), depending on the internal logic of
the operator [199]. For instance, a mutable operator can change the selec-
tion of events at runtime based on an operator-specific selection policy and
consumption policy [125].
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Query Model

Event consumers specify complex events that represent multiple event pat-
terns using a continuous query20, Q = {q,QoS, TQoS}. Here, q denotes the
semantic query specified by the CEP system21, QoS denotes a set of QoS re-
quirements that the query must satisfy and TQoS denotes a set of thresholds
(τqos ∈ TQoS) for the respective QoS requirements (qos ∈ QoS).

Deployment Infrastructure Model

This thesis focuses on an edge-fog-cloud infrastructure commonly consid-
ered to deploy IoT applications, though this work is not only for this specific
network topology. The hierarchical network infrastructure comprises three Edge-fog-

cloudlayers as illustrated in Figure 13. (i) Static or mobile “Things” represent IoT
devices connected over cellular or wireless communication. (ii) Infrastructure
at the fog layer, such as switches and routers that are TCP/IP and ICN en-
abled in micro data centers offering a low-latency link to the Things in phys-
ical proximity. (iii) The cloud layer comprises distributed infrastructure such
as in data centers interconnected over a fixed network. The infrastructure
can communicate over the standard TCP/IP architecture or using the novel
ICN architecture [128]. Furthermore, the IoT and edge resources can commu-
nicate wirelessly using device-to-device communication [34] or WAVE com-
munication [190], cellular communication or ICN protocols.

In the infrastructure model, producers and consumers (specific applica-
tions shown in the top of the figure) are placed on Things. In contrast, the
operators can be placed on any of the three layers. The end-to-end latency for
this resource model is influenced by the physical proximity of resources and
the computational power of resources. In general, we assume higher resource
availability and computational power in the cloud layer. In contrast, Things
are resource-constrained because they are battery-powered. Fog nodes are
computationally more powerful than nodes in the Things layer. Moreover, the
availability of a fog location near an IoT device is not ascertained. For place-
ment on such heterogeneous infrastructure, each operator ω is encapsulated
in a container to place it on the computational resources of the distributed
deployment infrastructure as defined later in Definition 5.

20Note that the query need not neccessarily be specified by a consumer. An autonomous
CEP system or a system administrator can also specify a query and respective QoS require-
ments depending on the current context.

21We use ADAPTIVECEP domain specific language [86] to specify continuous queries which
uses the mainstream programming language Scala. Nevertheless, the model proposed is not
dependent on a specific programming language.
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Figure 13: An example operator graph employing adaptation on the edge-fog-cloud
infrastructure. The applications specify QoS requirements which must be
met while processing operator graphs.

Node Model

A node (n ∈ N ) is referred to a physical resource where a producer, consumer,
or broker can be executed. It acts as a host to the system entities such as
brokers. Since the mapping of operators on the broker nodes (b ∈ B) can
change at runtime due to the dynamics in the environment, we need to move
operators on broker nodes flexibly. The nodes are connected through a set of
communication links (l ∈ L), which are defined by the underlying communi-
cation technology, e.g., wireless or cellular communication.

Definition 5. Containers (Cω). A container acts as an execution envi-
ronment for an operator. Using a container, an operator can execute on
the heterogeneous infrastructure and flexibly migrate between nodes in
the heterogeneous infrastructure.

Each container can hold more than one producer, consumer or operator.
To distinguish between pinned and unpinned system entities, we introduce
two kinds of containers static and dynamic. A static container is pinned to
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one node, while a dynamic container is unpinned, which means operators
assigned to a dynamic container can freely move between different nodes at
runtime. Producers and consumers are usually pinned to the static container,
while brokers can be pinned on any static or dynamic container. Each dy-
namic container executes an Empty App that defines the necessary interface
for an operator to interact with the system. Although Empty App can hold
more than one operator, operators are free to move between other Empty App
without harming the other operators being executed on the same node. In this
way, the model provides a way to flexible operator deployment and operator
migrations on a heterogeneous deployment infrastructure.

Quality Requirements Model

In this section, we define the quality requirements that is needed to be deliv-
ered by a CEP system while processing the continuous query. We divide the
requirements into two main classes: Quality of Service (QoS) and Quality of
Results (QoR) as seen below.

Quality of Service (QoS)
Meeting
QoS is an
essential
goal of CEP

An essential goal of an OP mechanism is to find a mapping of an operator
graph to brokers such that it satisfies an objective function of QoS require-
ments, such as end-to-end latency, bandwidth, and control message over-
head. The consumer can specify one or more QoS requirements (QoS) and
change them at run time. The dynamics in the environmental conditions
(en1, en2, . . . ,), such as varying workload and mobility, influence the fulfill-
ment of such QoS requirements.

In this work, we consider the following crucial performance metrics in the
context of IoT applications that influence the decision of operator placement
in a highly dynamic environment: end-to-end latency, control message over-
head, network usage, number of hops, throughput, and loss rate.

Latency

Although there is no unique definition of latency, most of the related work
distinguishes between two notions of latency: event-time and processing-time
latency [29], [10], [200]. Here, the former refers to the interval between the
timestamp of an event when it was first generated at the producer and its
emission time at the last output operator. While the latter refers to the inter-
val between the event ingestion at the first input operator and its emission
time at the last output operator. However, none of the above definitions cover
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the time taken by an event in the entire end to end path. We consider this
end-to-end path to compute the latency of a complex event as defined in
the following.

Definition 6. End-to-end latency. The time taken to (i) retrieve low-level
events from producers, (ii) process the events, (iii) generate a complex
event, and (iv) transmit the complex event through the network path
between the given event producers to the given consumers.

Example: In accordance to the maximum timestamping in the complex
event, we consider the maximum path latency as an end-to-end latency. To
better understand the definition of end-to-end latency, let us revisit the ex-
ample scenario introduced in Figure 12. We assume that two producers ωV 1

and ωV 2, and a single consumer is interested in detecting congestion. Let us
consider the path from V1 and V2 via broker nodes b1, b2, . . . , bk to the con-
sumer c. We assume the position of the consumer is near to producer V 1,
when it triggers the query and the operator graph is mapped to the broker
network path. Thus, the end-to-end latency is the sum of the network delay
observed on the path V2, V1, b1, b2, . . . , bk, c, and the execution time of the query
on these nodes in the path. The expected network latency between the broker
nodes is well known, e.g., by using Vivaldi coordinates [201]. Furthermore,
the network latency can vary because of the dynamic nature of the network.

Control Message Overhead

This metric is important as in a highly dynamic and resource constrained en-
vironment involving IoT devices, a high overhead is not desirable. We adapt
the definition using existing work in this direction in the context of OP mech-
anisms for a scenario involving MANETs (Mobile Ad-hoc Networks) [79].

Definition 7. Control message overhead. The number of control mes-
sages sent to assign all the operators of a query to the brokers. In other
words, the overhead in terms of exchanging messages to place a query
on the deployment infrastructure nodes.

Example: Using the above definition of control message overhead and the
assumptions on the traffic congestion scenario in Definition 6, let us demon-
strate the meaning of control message overhead. To fulfill an objective, such
as end-to-end latency, usually OP mechanisms, maintain a latency cost space
to find out network paths with minimum end-to-end latency. However, to
build such a cost space, many messages have to be exchanged between
the considered nodes for placement and the OP coordinator. Furthermore,
to place an operator graph, acknowledgements on the assignment of opera-
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tors on nodes are sent. We refer to the number of such control messages for
OP as control message overhead.

Network Usage and Hops

We adapt the definitions of network usage and hops as defined in previously
proposed OP mechanisms literature [15, 40, 79].

Definition 8. Network usage (NU(Q)). The amount of data that is on
the wire including the low-level events, complex events, and coordina-
tion messages for placement for a given query Q at a given time [81].

Formally, it is measured as:

NU(Q) =
∑
l∈L
B(l)lat(l). (1)

In Equation (1), L is the set of all the links utilized to place query q, B(l) is
the bandwidth over link l, and lat(l) is the latency over link l. This metric
captures the bandwidth-delay product of the query.

Definition 9. Hops. The total number of nodes required to place a
query.

CPU Load

The performance of a query may get affected by the CPU load of the node
used for operator placement. In some CEP systems, this metric is considered
to achieve both good performance and for load fairness [23].

Definition 10. CPU load. The amount of CPU utilization of the node
hosting the operator or the operator graph.

Throughput

In particular, a CEP system has to consider the arrival event rate of the incom-
ing data stream while processing the events. When the event rate increases
and the processing rate cannot cope with the arrival rate, most of the CEP sys-
tems adapt to the increased rate by exhibiting backpressure [91]. Specifically,
backpressure queues the events in the input buffer to match the processing
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rate of the CEP engine. To deal with this effect, we use the metric sustainable
throughput to measure throughput as widely done in the literature [29, 202].

Definition 11. Sustainable throughput. The maximum amount of event
load that a CEP system can handle at a given time without exhibiting
prolonged backpressure.

Quality of Results (QoR)

While the QoS metrics measure the overall performance of query in terms
of different service metrics [80], Quality of Results (QoR) metrics measures
quality in terms of accuracy or loss of the output complex events. For QoR,
we refer to the accuracy metric from the information retrieval domain as the
“proximity of the complex events to the true complex events due to false posi-
tives and false negatives” [138]. A complex event can be false positive or false
negative because of the event loss, e.g., due to congestion in the network,
defined as follows.

Definition 12. False positives and negatives. A false positive (FP) is
defined as a “complex event that is falsely derived when it should not
have been derived”, while a false negative (FN) is a “complex event that
is falsely not derived when it should have been derived” [138].

In contrast, the true positives (TP) and true negatives (TN) are correctly de-
rived complex events and correctly not detected complex events, respectively.

Loss Rate

Packet loss rate is a well-known metric used to measure the performance of
the computer networks [203]. We refer to the packet loss rate to define the
loss rate for events as follows.

Definition 13. Loss rate. It is measured as the drop of events while
forwarding the data stream as the ratio of output events to the total
number of events forwarded by the producer.

Formally, it is measured as:

Loss rate =
(total events− processed events)

total events
. (2)

In Equation (2), total events are the number of events in a data stream (D) that
were generated by the producers and should be received by the consumers
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Figure 14: Overall system architecture illustrating the major components involved.
(i) Applications, which act as consumers (right side), (ii) the edge-fog-cloud
infrastructure introduced as underlay resources (bottom tier), (iii) and
the operator graph mapping for placement and execution on distinct CEP
systems (middle tier). Nodes and links in yellow and orange are the ones
selected before and after transition in placement.

if there is no event loss, and processed events are the number of events for-
warded by the broker in a data stream, which are eventually received at the
consumer. When no transformation (in the case of forwarding) on the input
events is performed, the processed events and total events should be equal
(in case of no event loss). Of course, transformation steps in a query will
reduce the output complex events depending on the processing logic of an
operator (fω); for this, we refer to the accuracy metric as defined above.

3.2.2 Architecture and Contributions Overview

High level
overview of
contribu-
tions

This section discusses the logical overview of the architecture proposed in
this thesis, as shown in Figure 14. It was first introduced in Chapter 1, this
section refines the architecture based on the proposed system model and
briefly state the contributions.

1. The dynamicity in the environment of the IoT applications and the
changes in the QoS requirements leads the current OP mechanism Methods for

transitionsinefficient. This can be seen in the underlay tier that comprises the hier-
archical edge-fog-cloud infrastructure, where the Things layer of mobile
devices are very dynamic, consequently leading the current OP mecha-
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nism inefficient in the middle tier. To deal with this issue, we propose
a programming model and methods for transitions between OP mech-
anisms as shown in the figure at the middle tier. The operator graph
is migrated to another set of broker nodes in the edge-fog-cloud infras-
tructure after a transition. The TCEP system seen in the execution tier
details the contributions related to the methodology of OP mechanism
transitions (cf. Chapter 4).

2. A CEP system also has to efficiently meet the QoS requirements that areNetwork-
centric CEP challenging to meet due to the dynamics in the environment. In challeng-

ing scenarios like fraud detection seen on the right of the figure, where
latency-critical decisions are taken to prevent fraud, operator graph pro-
cessing in an overlay network is inefficient due to high latencies. To
deliver performance in such scenarios, a CEP system must be able to
execute operator graphs directly on the in-network infrastructure avail-
able in the underlay. Such a deployment of operator ω→ is illustrated in
the fog layer in the figure. The INETCEP system seen in the execution
tier describes the respective contributions related to network-centric op-
erator execution (cf. Chapter 5).

3. Finally, to deal with the limitations of current CEP programming mod-
els and fill the gap of enabling reuse of CEP execution environments, aServerless

Middleware common middleware is required that enables this integration as shown
in the execution tier in the figure. For this purpose, we propose a novel
CEPLESS middleware as seen in the middle tier, which provides pro-
gramming interfaces to develop operators independently of the execu-
tion environments and to update them at runtime (cf. Chapter 6).
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Mechanism Transitions in Operator Placement

This chapter provides a solution to the adaptivity problem in the context of
Complex Event Processing. By introducing adaptivity in the Operator Place-
ment mechanisms of CEP, we aim to meet the changing Quality of Service
requirements in the face of dynamic environmental conditions. Mechanism Key

Research
gap:
Changing
QoS require-
ments

transitions is a promising and widely applied concept used in the research
project Collaborative Research Centre “MAKI” to meet the quality require-
ments for communication systems [105, 57]. So far, it has been extensively
applied for different problems [107, 108, 109, 110, 111, 112, 113]. However,
it is still not known if transitions can fulfill changing QoS requirements in
a highly challenging and dynamic environment of Internet-of-Things com-
prising of multiple distributed and stateful entities. This chapter aims to fill
this gap by proposing a programming model and methodology for mechanism
transitions in CEP systems to adapt to the dynamic environmental conditions
and QoS requirements.
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Figure 15: Overall system architecture with the focus on TCEP showing mechanism
transitions from OP mechanism M1 to M2 to meet the changes in the QoS
requirements.
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Therefore, to solve the adaptivity problem, we propose a first Transition-
capable CEP system, named TCEP, that integrates the proposed programming
model and algorithms into a distributed CEP system. To understand the re-Solving the

adaptivity
problem

search challenges addressed in this chapter, recall the overall architecture
introduced in Chapter 3 with TCEP-centric components as seen in Figure 15.
On the right side of the figure, we illustrate the exemplary IoT applications
with the respective QoS requirements, such as latency that has to be ful-
filled by the TCEP system. In particular, we focus on an Operator Placement
(OP) mechanism that aims to map operator graph, shown in the Operator
Network tier, to the in-network resources, shown in the Underlay, aiming to
meet the specified QoS requirements. However, conflicting QoS requirements
that changes at runtime cannot be met using a single OP mechanism.

Moreover, OP mechanisms are specialized for given environmental condi-
tions, such as a mechanism developed for a fixed network might not work well
under highly mobile conditions. As pointed out in Chapter 2: Section 2.1.3,Quick recap

on state-of-
the-art

the existing OP mechanisms [43, 79, 44, 83] and adaptive CEP systems [86,
84, 75, 85, 32, 88] fall short in adaptively meeting the conflicting and chang-
ing QoS requirements of IoT applications. In addition, current CEP program-
ming models [102, 9, 28] are either focused on providing better operator
abstractions [102, 9] or combining push- and pull-based communication
mechanisms [28]. Nevertheless, hardly any existing CEP programming model
focused on providing programming abstractions for specifying OP mechanism
to deal with heterogeneous needs of applications. These observations lead us
to our first research question and sub questions, answered in this chapter.

RQ1: How to specify and adapt between OP mechanisms in the face of dy-
namic environmental conditions and QoS requirements?First

Research
Question

and its sub
RQs

RQ1.1 How to adaptively select an OP mechanism based on the QoS require-
ments?

RQ1.2 How to realize mechanism transitions in a live and seamless manner?

RQ1.3 When to perform a transition such that its costs are minimal?

RQ1.4 How to specify distinct OP mechanisms and its performance character-
istics?

(RQ1.1) A careful choice of OP mechanism is required so that the transi-
tion is able to meet the specified QoS requirement after a change. Naively

Challenge 1:
Careful

choice of OP
mechanism

approaching this problem would alleviate the costs of transition due to a fre-
quent change to a new mechanism, as well as result into a violation of the
QoS requirements. Therefore, as a first contribution a lightweight learning-
based adaptive selection of OP algorithm is proposed. The selection algorithm
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aims to capture the performance of OP mechanisms for the observed QoS
requirements to indicate the best OP mechanism that fulfills the specified
requirement. (RQ1.2) Changing an OP mechanism at runtime requires us to
move operators, commonly referred as operator migrations, to new broker
nodes that might lead into disruption in the output events. Such disrup-

Challenge 2:
Operator
migrations
might cause
output
disruption

tions during the operator migrations result into: (i) QoS requirement viola-
tions, (ii) missing important events that eventually reduces the correctness
of the output events, and (iii) monetary costs for applications such as fraud
detection due to missing fraud events. Thus, as a second contribution, we
provide novel transition strategies that ensures the delivery of output events
is done in a live, seamless, and correct manner such that no disruption is
observed and consistency in delivery output events is maintained. We ana-
lytically prove that the strategies possess the aforementioned properties of
liveness, seamlessness, and correctness. (RQ1.3) A transition to a new OP
mechanism is costly due to operator state migrations that consume ample
amount of resources. These costs have to be minimized, otherwise the tran-

Challenge 3:
Transitions
are costly

sition to a new OP mechanism might not be worth due to the consequences
of the resources consumed. For this, we propose transition strategies that
minimizes the costs in terms of operator migrations by determining optimal
and discrete time steps to perform operator migrations. The time steps are
selected such that the operator state that has to be migrated at that time
is minimal. (RQ1.4) Finally, an integration of novel and existing OP mecha-
nisms is required to allow swift transitions between them. So far, OP mech-

Challenge 4:
Specifica-
tion of
adaptable
OP mecha-
nisms

anisms for specific applications with a specific QoS requirement have been
proposed, which are not transition-capable. In our final contribution, we pro-
vide a novel programming model to specify OP mechanisms, regardless, how
different they are in terms of their functionality, QoS requirements and appli-
cation domains. Moreover, their deployment on the heterogeneous fog-cloud
infrastructure is provided such that operator graphs can be executed inde-
pendently on any underlying infrastructure.

The findings presented in this chapter are based on previous publications
in [195, 204, 25, 205, 12, 206]. The structure of this chapter is explained Key

publications
on TCEP

and
structure

as follows. Section 4.1 explains the need for transitions using a traffic con-
gestion query referred consistently in the chapter to explain the relevant
concepts. Section 4.2 formalizes the mechanism transition problem and the
cost associated in performing a transition. Section 4.3 presents the over-
all system design of TCEP. Section 4.4 presents the evaluation of transi-
tions. TCEP and its placement programming model are publicly available at Publicly

available,
try it out!

https://luthramanisha.github.io/TCEP/ together with the state-of-the-art OP
mechanisms and novel transition strategies for reuse by researchers and in-
dustry application developers.

https://luthramanisha.github.io/TCEP/
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4.1 Analysis of Adaptivity in OP Mechanisms

This section analyzes the ability of OP mechanisms to adapt for QoS require-
ments using the traffic control scenario previously introduced in Chapter 3:
Section 3.1 1 . In the following, first, we use a query of traffic congestion to
explain the dynamicity in the environment conditions and hence the QoS re-
quirements. Second, using a preliminary analysis on the query, we show for
the scenario important shortcomings of current OP mechanisms that prove
our hypothesis.

Figure 16 illustrates the running example of traffic congestion highlighting
the different environmental conditions. We use a continuous query22 to spec-Illustrative

example of
traffic

congestion
query

ify that a road section on a crossing is congested, as seen in Listing 1. Any
event consumer can register a query to a specific road section on the crossing,
say SectionV1. Consumers could be, for instance, nearby vehicles, emergency
services, or intelligent traffic lights. The query specifies conditions, Condi-
tion 1: high traffic density and low vehicle speed on SectionV1 (shaded in red
with lines) and Condition 2: low traffic density and high speed in its crossed
road section, say SectionV2 (shaded in green). In the query, the complex data
streams vehiclesAtSectionV1 and vehiclesAtSectionV2 are presumed to con-
tain information on the average speed and density, for instance, by using
aggregated data from radar sensors and road side units (cf. Section 3.1). The
query uses a sequence (Line 9) of conditions for SectionV1 (Lines 5–7) and
SectionV2 (Lines 10–12) in order to generate a complex event “congestion of
road SectionV1”. The complex event: “congestion of road SectionV1” is detected
whenever the sequence of conditions on SectionV1 and SectionV2 in a tempo-
ral timespan of one minute (Line 14) indicating (i) dense traffic and slow vehi-
cles for SectionV1 (indicating a congestion) and (ii) sparse traffic and fast vehi-
cles for SectionV2 (indicating a smooth flow of vehicles), respectively, are met.

The query execution can be distributed to the available deployment re-
sources such as on to IoT infrastructure like vehicles. The communication
can be established using techniques like V2X [208] and cellular communi-
cation [190] or using nearby fog-cloud resources to deliver the required per-
formance. The mapping of the query to such in-network resources is done
using an OP mechanism that must account for the QoS_REQT specified within
the query (Line 16). The latency requirements with a threshold (τqos) such
as latency < 30ms can be provided in the query specification22 (e.g., given
in Figure 15).

22Using the ADAPTIVECEP query language [207] detailed later in the TCEP programming
model (cf. Section 4.3.3).



4.1 Analysis of Adaptivity in OP Mechanisms 65

SectionV1 :

Input Stream: 

vehiclesAtSectionV1

Condition 1: slow 

speed, high density 

SectionV2:

Input Stream: 

vehiclesAtSectionV2

Condition 2: fast speed, low 

density 

Query: Is the road section congested?  

Output: True or False

Conditions: Either condition 1 or 2 hold 

Figure 16: Traffic control scenario representing dynamic environmental conditions
with Condition 1: slow moving cars and high density (congested road) and
Condition 2: fast moving cars and low density in road sections (smooth
running vehicles) SectionV1 and SectionV2, respectively. The traffic con-
gestion is represented using a query specified in Listing 1.

1 case class VehiclesAtSection(sectionId: Int, avgVehiclesDensity: Long,

avgVehiclesSpeed Long, time: Long)

2 val vehiclesAtSectionV1: Stream[VehiclesAtSection] = ...

3 val vehiclesAtSectionV2: Stream[VehiclesAtSection] = ...

4 val congestedAdjacentRoadSections = Query[RoadSections]

5 ((vehiclesAtSectionV1 where { v1 =>
6 v1.avgVehiclesSpeed < NormalSpeedThreshold &&

7 v1.avgVehiclesDensity > HighTrafficThreshold

8 })

9 ->

10 (vehiclesAtSectionV2 where { v2 =>
11 v2.avgVehiclesSpeed > NormalSpeedThreshold &&

12 v2.avgVehiclesDensity < HighTrafficThreshold

13 })

14 within 1.min

15 where { case (v1, v2) => v2.time > v1.time }

16 demand QOS_REQT)

Listing 1: Traffic congestion detection query used to express change in
environmental conditions and the user requirements.

According to our hypothesis the same OP mechanism cannot accommodate
conflicting QoS requirements. Thus, we analyze the ability to fulfill two con-
flicting QoS requirements for the query provided in Listing 1 using two pop-
ular state-of-the-art OP placement mechanisms: Relaxation [15] and MD-
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CEP [79]. The basic idea of the Relaxation OP mechanism is to use a so-called
latency space to map operators using Vivaldi coordinates [201]. The latency
space allows estimation of communication delays between resources used for
operator placement, which is used to find a near-optimal mapping of the op-
erator graph. In contrast, MDCEP avoids maintaining such cost space and
concentrates on minimizing overhead, focusing on applications with high dy-
namics. Hence, the OP decision is based on resources that are within the
proximity of the data sources to achieve mapping of the operator graph with
low control message overhead.Hypothesis:

single OP
mechanism

cannot meet
conflicting

QoS

We perform a preliminary analysis of the OP mechanisms for the traffic
congestion query in a dynamic environment with mobile Things (such as vehi-
cles) and varying workload (number of queries). The performance is measured
in terms of two QoS metrics concerning the OP mechanisms: (i) end-to-end
latency defined as the overall time to perform the congestion detection (cf.
Definition 6), and (ii) control message overhead defines the number of con-
trol messages sent to assign all the operators of a query to the brokers (cf.
Definition 7).
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Figure 17: Performance comparison of Relaxation [15] and MDCEP [79] OP mecha-
nisms for 50 incrementally deployed queries [25, 195].

Figure 17 shows the measurements for the two metrics under a dynamic
environment for 50 incrementally placed traffic congestion queries given in
Listing 1. Further details on the specification and evaluation with multiple OPPreliminary

analysis
verifies no

one size fits
all

mechanisms can be found in Section 4.4.2. Figure 17a illustrates the end-to-
end latency results using a cumulative distribution function (CDF) under in-
crementally placed traffic congestion queries. It shows that the Relaxation OP
mechanism consistently performs better than MDCEP with latency lower than
100 ms for the maximum number of query workload (up to 80 % workload).

These findings are consistent with the article where the original OP mech-
anism is proposed [15]. However, Figure 17b shows that Relaxation incurs
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higher control message overhead compared to MDCEP due to the main-
tainence of the latency space. In contrast, MDCEP incurs only a little over-
head for all the queries in the order of a few bytes, making it suitable for
highly dynamic environments, yet suffer from a higher latency, ∼7.5 s on
average.

Therefore, using the above preliminary evaluation, it can be derived that
conflicting QoS demands are hard to be fulfilled using the same OP mecha-
nism. In principle, dynamic environmental conditions, as seen in this exam-
ple, need different OP mechanisms to fulfill the changes in QoS requirements
at runtime. For a fixed network environment or relatively static scenario, we
measured a significantly lower latency for the Relaxation mechanism and
hence it can be used to achieve low latency in condition 1 (cf. Figure 16).
In contrast, when the condition changes to be highly mobile, we measured
significantly lower message overhead for the MDCEP mechanism, and thus it
can be used to deliver complex events with less overhead in condition 2. This
proves our hypothesis that as the environment condition changes, a transi-
tion from Relaxation to MDCEP becomes imperative.

4.2 Transition Problem Formulation

This section presents an extension to the common system model defined in
Chapter 3: Section 3.2.1. We model the entities required to define the design
of TCEP system in Section 4.2.1 and provide the transition problem state-
ment in Section 4.2.2.

4.2.1 Extended System Model

In the following, we provide the overall system model for TCEP and the model
for OP mechanisms and transitions.
In the TCEP system, the operator graphs can be deployed on to a set of dis-
tributed nodes comprising the fog-cloud infrastructure referred to as bro-
ker nodes. The availability of this infrastructure allows serving many queries Place

operators
on heteroge-
neous
fog-cloud
resources

at once and change between resources to fulfill the dynamic QoS require-
ments of applications. The infrastructure possesses realistic resources such
as CPU, memory, etc., and are known in advance as in a real-world fog-cloud
setup. It comprises of the nodes that continuously execute the Empty Apps (cf.
Chapter 3: Section 3.2.1). An Empty App serves as an execution environment
for the operators executing in TCEP to readily execute and migrate operator
graphs. Furthermore, we formally define the transition model and the cost
metrics to measure the influence of transition (CT ime(T ) and COverhead(T )) on



68 Mechanism Transitions in Operator Placement

the performance of the CEP system and the overall optimization problem are
formulated in the following section.

OP Mechanism and Transition Model

The TCEP system follows a modular design and allows transitions between
multiple distinct CEP mechanisms to be integrated. Hence, we modelled TCEP

such that it can execute transitions between any CEP mechanism. However,
we focus in this chapter only on OP mechanisms. Therefore, TCEP provides a
composition of multiple OP mechanisms M1,M2, . . . ,MmaxM . In the following
we present the model for OP mechanism and a transition.

Operator Placement Model

Definition 14. Operator Placement mechanism. An OP mechanism de-
termines where and how to map an operator graph G onto a number of
broker nodes B = {b1, b2, . . . , bnumb} in the deployment infrastructure.

After the mapping of operators (ω ∈ Ω) on the brokers (b ∈ B), it forms
a so-called operator network. We define the mapping on the operator net-
work as follows:

α : Ω×B → {0, 1}, s.t.

αi,j =

1, if ωi is placed on bj

0, if ωi is not placed on bj .

(3)

Transition Model

As pointed out earlier in Chapter 2: Section 2.1.2, the abstract concept of a
transition between the mechanisms within a communication system is for-
malized by the members of Collaborative Research Centre “MAKI” in [103, 57,
104, 105]. In this work, we enhance the transition methodology to deliver im-
portant properties required for an adaptive and distributed CEP system, such
as liveness, seamlessness, and correctness in the delivery of complex events.
Furthermore, we address key challenges related to performing operator mi-
grations as discussed later in Chapter 4. In the following, first we define the
concept of transition using the standard definition in Collaborative Research
Centre “MAKI” [57, 104, 105]. Afterwards, we introduce specific properties for
an adaptive CEP system that this thesis contributes.
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Definition 15. Transition. A transition T performs a switch from a
mechanism MA to MB, e.g., OP mechanisms at run time. Formally, it is
denoted as T : MA →MB.

As a consequence of a transition, the given set of operators migrate from
the previously deployed set of brokers, so-called source brokers (bsrc) to the
new so-called target brokers (btrg), that are selected by the changed OP mech-
anism. While executing a transition and performing operator migrations, the
delivery of complex events must not be interrupted. Thus, a transition must
ensure some properties like liveness and seamlessness. We define these prop-
erties in consistent with the definitions used in the context of distributed sys-
tems [209] as follows.
Liveness. A transition ensures the liveness property iff once triggered; the
system continues to deliver complex events, and that the transition eventu-
ally terminates.
Seamlessness. A transition is seamless iff events are delivered to the con-
sumers with the required QoS specified by the consumer, such that there is
no downtime or a violation in the QoS requirement.

Since the transitions are assumed to be resource consuming, there might
occur latency or throughput spikes during the delivery of events. Such oc-
curences are not desired and, while the transition still fulfills the liveness
property it is not seamless in every case. Yet, if there are interruptions, for
example, downtime during the execution, the transition is neither live nor
seamless. Therefore, if a transition ensures seamlessness then it should en-
sure liveness but not everytime vice versa is true.

4.2.2 Transition Problem Statement

Consider a query Q = {q,QoS, TQoS} with QoS requirements that can be placed
using maxM -different OP mechanisms on the fog-cloud infrastructure. Here, Determine

optimal
time steps
so that...

q represents the continuous query, QoS is the set of QoS requirements qos ∈
QoS, TQoS is the set of threshold τqos ∈ TQoS for each QoS requirement and
maxM is the number of OP mechanisms available for transition. Based on
the environmental conditions en1(t) at time t and en2(t + 1) at time t + 1, the
QoS requirements change, say qos1|en(t) to qos2|en(t+1). Consequently, the cost
of a placement in terms of resource demands such as network costs and the
ability to fulfill the QoS requirements also changes over the time.

The TCEP system aims to ensure that the given QoS requirements are ful-
filled despite the changes in the environmental conditions by utilizing dif-
ferent OP mechanisms and the fog-cloud infrastructure. Thus, the system
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determines for changing environmental conditions with time, say en1(t) to
en2(t + 1) and corresponding QoS requirements qos1|en(t) and qos2|en(t+1), a se-
quence of points in time, say t1, . . . , tnumt and a sequence of OP mechanisms
M(t1), . . . ,M(tnumt), on which a transition Ti : M(ti) → M(ti+1) is initiated
at time ti.

Typically, a pair of OP mechanisms will use different nodes for placement.
Therefore, the transition between OP mechanisms requires several operator
migrations, which move the operators from one physical node to another. Con-
sequently, transitions impose a significant cost when the state of an operator
graph that has to be migrated is very large. Furthermore, to ensure live and
seamless transition, state migrations have to occur in a cost-efficient manner.

We formalize the transition problem using an objective function comprising
two key cost factors, namely, the costs incurred in terms of CT ime(Ti): tran-
sition time and COverhead(Ti): transition overhead. Here, the transition time...the costs

are
minimum

Time(Ti) is defined as the total time taken to perform a transition. This com-
prises of (i) Timeselect: time to select a new target OP mechanism M(ti+1),
(ii) Timeα: time to find a node for placement α (cf. Equation (3)) dependent on
M(ti+1), and (iii) Timemig.(ωj): time to migrate j operators ωj ∈ Ω, ∀j ∈ [1,maxωj ]

to the target brokers dependent on the mapping function α. Therefore, the to-
tal cost in terms of transition time is given as follows:

CTime(Ti) = Timeselect + Timeα +

max
ωj∑

j=1

Timemig.(ωj). (4)

Similarly, the transition overhead is derived as the total number of mes-
sages exchanged while performing a transition. This comprises of overhead
in (i) Overheadselect: selection of a placement mechanism, (ii) Overheadα: per-
forming the operator placement, and (iii) Overheadmig.(ωj)): migration of the
operators including their state.

COverhead(Ti) = Overheadselect +Overheadα +

max
ωj∑

j=1

Overheadmig.(ωj). (5)

In this work, the optimization transition problem minimizes a weighted sum
of normalized transition time (ĈT ime(Ti)) and transition overhead (ĈOverhead(Ti)),
such that the QoS requirements under the changing environmental condi-
tions can be met. Given the (normalized) costs of operator migrations for j
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operators, j ∈ [1,maxωj ] in terms of time ĈT ime(Ti) and overhead ĈOverhead(Ti),
the optimization problem aims to minimize the costs as follows:

min
[
βt · ĈT ime(Ti) + βo · ĈOverhead(Ti)

]
s.t. α(t) satisfies QoS|en(t) under the execution of T1, . . . , Tn

CT ime(Ti), COverhead(Ti), QoS|en(t) ∈ R+.

(6)

Here, βt, βo ≥ 0, βt + βo = 1, represent weights for transition time and
overhead, respectively.

4.3 The TCEP System Design

Four goals:
Low costs,
seamless-
ness,
correctness,
and easy
specifica-
tion

TCEP proposes the following models and algorithms to accomplish the four
main research goals addressing each research question discussed previously.
(i) (RQ1.1) A lightweight genetic learning-based algorithm that keeps the learn-
ing costs as minimum and predicts the best possible OP mechanism that
meets the given QoS requirement. (ii) (RQ1.2) Transition execution algorithms
that perform operator migrations such that the output events are delivered
without any interruption (live and seamless manner while maintaining the
correctness). (iii) (RQ1.3) A strategy to find out optimal time steps to per-
form operator migrations when migration costs are minimal. (iv) (RQ1.4) A
programming model to specify queries and adaptable OP mechanisms and
enables integration of different OP mechanisms into the given placement li-
brary provided by the system.

In the following, before introducing the specific models and algorithms as
listed above, we first provide a conceptual overview on the TCEP system com-
ponents. Then, we introduce the decentralized MAPE-K adaptation loop used
for transitions in TCEP.

Conceptual Overview

Figure 18 illustrates the four key components of the TCEP system to solve the
transition problem. The Deployment Infrastructure layer includes the event
consumers, the event producers and the event brokers. Recall, it comprises
of the edge-fog-cloud infrastructure that is used for the deployment of opera-
tor graphs. The TCEP Engine layer provides a programming model to specify Introduction

to the main
components
of TCEP

and initiate queries and OP mechanisms that can be used to place operator
graphs on the deployment infrastructure. The OP mechanisms are stored in
the so-called placement library explained in the Control layer. Furthermore,
the Engine layer includes mechanisms to monitor (i) the environmental con-
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ditions of the IoT applications that trigger adaptations, (ii) QoS requirements
and the threshold defined by the query (τqos), and (iii) the performance of the
OP mechanisms in terms of the QoS metrics.
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Figure 18: The TCEP system design [195].

The TCEP Control layer uses and manages a library of OP mechanisms
curated by the programming model. Moreover, the state-of-the-art OP mech-
anisms can be integrated in the placement library for adaptations. It also
provides a transition engine that includes a transition coordinator, which ini-
tiates and manages a transition, and execution strategies specify how to per-
form a transition. The placement performance evaluator decides on the target
OP mechanism for the transition that fulfills the QoS requirement using the
input from the monitoring component of the Engine layer. The deploy opera-
tor graph component performs the actual deployment of the operator graph
on the IoT infrastructures.

Finally, the Managed Resources component specifies the resources moni-
tored and controlled by the TCEP components, particularly the environmen-
tal conditions, the QoS requirements of the query, and the OP mechanisms.
Once a continuous query Q containing the QoS requirements with thresh-
olds (e.g., qos < τqos) are specified by an event consumer, the TCEP system
initiates the placement of the query to deliver the results while meeting the
QoS requirements efficiently. The query is first transformed into a logical
operator graph by the TCEP engine, which monitors the performance of the
query along with other criteria such as environmental conditions. Once the
placement performance evaluator has chosen an appropriate OP mechanism,
the operator graph is deployed on the infrastructure. As the TCEP system de-
tects a change in the environmental condition and the specified QoS require-
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ment of the continuous query Q, the transition engine triggers a transition
that is managed by a decentralized MAPE-K adaptation loop (cf. Chapter 2:
Section 2.1.2) explained as follows.

Decentralized MAPE-K Adaptation Loop

For the adaptation decisions in a transition, TCEP follows the well-known
MAPE-K [106] loop. The four processes of the loop, Monitor (M), Analyze (A),
Plan (P), Execute (E), and Knowledge (K) are realized in a decentralized man-
ner (cf. Figure 18) in the control layer and within the TCEP engine to manage
the resources depicted in the lowest layer. In the following, we provide the
definitions of these components in TCEP. Decentral-

ized
MAPE-K
loop for
transitions

Monitor (M) function provides the required mechanisms to collect, aggre-
gate, filter, and report details on the managed resources [106] (given by the
Managed Resources component). Examples of monitoring information are en-
vironmental conditions such as mobility of cars and workload; performance
metrics related to the query such as latency and bandwidth observed on
the links; and performance characteristics of the transition such as time and
overhead. Hence, decentralized monitoring components lie within the environ-
ment monitor and placement performance evaluator components, which are
responsible for collecting and aggregating the above monitoring information.

Analyze (A) provides mechanisms that correlate and provides basis for
adaptations in a system. These mechanisms allow the transition engine to
learn about the managed resources and predict future situations. For in-
stance, the placement performance evaluator implements a fitness score
mechanism that measures the performance of the OP mechanism, which
is used to predict the next suitable OP mechanism for the respective envi-
ronmental conditions.

Plan (P) provides mechanisms that construct the actions needed to fulfill
the QoS requirements of the query. For instance, the placement performance
evaluator determines if a change to a new OP mechanism would help fulfill
the QoS requirements.

Execute (E) provides mechanisms to manage the necessary changes re-
quired for the transition. This component is responsible for carrying out the
transition itself. For instance, the transition coordinator generates a plan
on the operator graph transition, and the execution strategies perform the
transition.

Knowledge (K) component stores the data shared across the above four
functions. This includes OP mechanisms in the placement library and moni-
toring information on the performance, among others.
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In relation to Figure 18, in the following Section 4.3.1 explains the place-
ment performance evaluator, Section 4.3.2 explains the transition engine and
Section 4.3.3 explains the programming interfaces component.

4.3.1 Placement Performance Evaluator

This component measures and maintains the performance statistics on the
OP mechanism execution. A heuristic fitness score is proposed that aims in
the selection of the best OP mechanism that suits the current environmen-
tal conditions and meets the QoS requirements. After all OP mechanisms
received a score, a learning-based selection method is proposed that selects
an OP mechanism based on the statistics collected during the current exe-
cution. In the following, we discuss the design decisions and highlight alter-
natives. Afterwards, we present the heuristic fitness score and the adaptive
selection method.

A plausible way to determine an OP mechanism for execution is to apply
offline learning. Given a query Q, QoS requirements and the environmen-
tal conditions, a performance-influence model of the OP mechanism can be
developed that predicts the best OP mechanism with respect to the given
QoS requirements and environmental conditions [210]. However this methodWhy not

alternative
ap-

proaches?

has significant limitations as follows. (i) The performance influence model
developed offline would be very specific to the characteristics of the deploy-
ment infrastructure used for placement such as network characteristics that
changes frequently over the time in a dynamic environment. Such changes
in the infrastructure at runtime would influence the behaviour of the OP
mechanism and hence render the model useless. (ii) Offline learning of such
a performance influence model is unrealistic for IoT environment which is
resource constrained. Often such learning models need long training time
and large amount of training data, which consumes many resources. A way
to mitigate the first limitation would be to update the performance influence
model using incremental learning [211, 212]. However, this method still has
to maintain the learning model that has to be updated with time, which takes
quite many resources, and it relies on the offline learned model, which again
consumes resources to be obtained. Other online learning methods like re-
inforcement learning that do not need a prior performance model cannot
be used as they become computationally expensive as the state and action
space becomes larger.

In contrast, we need a learning algorithm that is able to determine the
best OP mechanism in an online way based on the recent performance of
the mechanisms while being less computationally expensive. Therefore, we
employ a lightweight online learning algorithm to statistically determine the
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target OP mechanism that best meets the QoS requirements based on the ge-
netic learning algorithm [213]. It is an efficient and robust search algorithm
that combines the survival of the fittest23 with a structured yet randomized
information exchange between the entities involved in the population, in our
problem this entity is an OP mechanism [213]. Here, lightweight refers to the
fact that our learning method does not rely on offline learning or any prior
training dataset. In contrast, it uses statistics that are collected online dur- Lightweight

learning to
select best
OP
mechanism

ing the query execution. The online learning method is complemented by a
ranking method based on the selection strategy of genetic algorithms, which
determines the OP mechanism with the best performance compared to other
mechanisms in the placement library. The transition (and the selection of OP
mechanism) is triggered by the environment monitor component of the TCEP

Engine layer (cf. Figure 18), which reports a violation of the QoS requirement
to this component. During the initial placement, when no empirical statistics
on the performance are available, the target OP mechanism is determined
based on the specified QoS requirement of the query and the objective func-
tion of the OP mechanism. In case the objective function of more than one
OP mechanism matches, the selection is performed in a round-robin fashion
until sufficient statistics on the available OP mechanisms are available.

The following section defines the heuristic fitness score that makes the
available OP mechanisms comparable. After defining the score, a ranking
method utilizing the fitness score to derive the best available OP mechanism
for the QoS requirement is defined.

Heuristic Fitness Score for OP Mechanism

We describe the derivation of the fitness score by measuring the performance
of the OP mechanism for the currently executing continuous query. The mea-
surement is taken at periodic intervals and is used as a basis for comparison
to the other OP mechanisms. The performance of the OP mechanism is mea- Fitness

score to
make OP
mecha-
nisms
comparable

sured in terms of the current QoS requirement of the query. Precisely, the
heuristic fitness function captures an objective to maximize the function of
the number of times the QoS requirement is fulfilled. Formally, for each OP
mechanism, the fitness function measures the number of times the QoS re-
quirement is fulfilled. Example: say numqosj is the measurement of number
of times a given QoS requirement qosj is fulfilled by OP mechanism Mi and
maxqosj is the maximum count of QoS requirement fulfillment from all the
available statistics maxM of OP mechanisms. If numqosj > maxqosj holds, the
respective OP mechanism will be given the highest possible rank. The mea-
surement is performed between the time interval when the query was first
submitted (ts) until when the transition is triggered (tt). The fitness score is

23Fittest is the measure of how fit a given OP mechanism is based on the fitness score.



76 Mechanism Transitions in Operator Placement

updated at regular intervals until the next transition to consider all the QoS
requirements of the query, for instance, due to the change in environmental
condition. In essence, the score measures how well the OP mechanism per-
forms throughout query execution time, compared to the OP mechanisms in
execution before (starting when the query was first submitted ts).

The ultimate goal for the score is to find the best OP mechanism for the re-
spective QoS requirements by utilizing the collected performance information.
In particular, the goal is accomplished by maintaining the scores for the re-
spective OP mechanism Mi,qosj (tt) for each QoS requirement qosj, such that it
is updated at the occurrence of each transition at time tt. Since, an OP mech-
anism can aim for multiple QoS requirements (e.g., in a multi-objective func-
tion), the score is updated separately for each QoS requirement. A score func-
tion for each OP mechanism Mi, ScoreMi,qosj

(tt) is obtained based on the per-
formance statistics for the respective query and each QoS requirement qosj.
The mean normalization method is applied to normalize the score Mi,qosj (tt) for
each OP mechanism to make them comparable. The fitness score is computed
based on the statistics collected during the execution of OP mechanism Mi

(with subscript i), which is then compared to the statistics of other OP mech-
anisms since the query was first submitted (during the time interval ts – tt)
given as ts,t in the following Equation 7:

Mi,qosj (tt) =
µi,qosj (ts,t)− µqosj (ts,t)

maxqosj (ts,t)−minqosj (ts,t)
· (1− decay)+

Mi,qosj (tt − 1) · decay.
(7)

In the above equation, µqosj (ts,t), maxqosj (ts,t), and minqosj (ts,t) denote the
mean, maximum and minimum score for all the OP mechanisms, respec-
tively, during the time interval ts – tt for the QoS requirement qosj. The no-
tation µi,qosj (ts,t) indicates the mean score of OP mechanism Mi for the time
interval ts – tt during the QoS requirement qosj. Mi,qosj (tt − 1) is the previous
score of OP mechanism Mi with a decay factor that is used to exponentially
reduce the influence of older statistics so that recently collected statistics is
given more priority. Therefore, the decay factor ranges [0, 0.5], such that more
preference is given to current statistics. The initial value of decay is set to 0,
which is updated once a transition is performed by a factor dependent on the
number of OP mechanisms to be explored. For instance, if there are 10 OP
mechanisms, then the decay is incremented by 0.05.

The overall score is computed by combining the statistics collected for each
QoS requirement qosj by the OP mechanism. Again, it is the normalized score
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for each QoS requirement qosj ∈ [qos1, qos2, . . . , qosmaxq ], where maxq is the to-
tal number of QoS requirements considered by OP mechanism Mi, as follows:

Score(Mi)(tt) =
maxq∑
j=1

Mi,qosj (ts,t). (8)

Adaptive Selection of an OP Mechanism

This section describes a selection method that enables the placement perfor-
mance evaluator to change an OP mechanism, once all of the mechanisms
have received a fitness value (as discussed in the previous section). This en-
ables to keep the overall transition cost low in terms of time taken by appro-
priately balancing between the exploration vs exploitation of OP mechanisms.
In the following, we first describe the issues tackled during the selection pro-
cess. Second, we explain the input to the selection method, followed by the
description of the selection method.

After each OP mechanism got assigned a score as described in the previ-
ous section, the placement performance evaluator can decide if the current
OP mechanism Mi can be used again or changing to another OP mechanism
yields better performance. This is done by comparing the score of Mi with
the scores of the other mechanisms that were in execution so far. To do this, Main issues

addressed
while
selecting an
OP
mechanism

we use a simple Radix sort algorithm that sorts the OP mechanisms in linear
time so that the comparison is cheap. The following issues are considered
while selecting the next OP mechanism. (i) In the beginning, we allow some
degree of exploration so that all the OP mechanisms get a chance to prove
themselves. Therefore, a round-robin selection is used for the adaptive selec-
tion of an OP mechanism initially. Moreover, we allow exploration of alternate
OP mechanisms at random intervals during the execution to give a chance
to perhaps better-performing OP mechanism. (ii) Adapting too often might
cause oscillations (back and forth) while also skewing the results of the used
OP mechanism. Therefore, we empirically set the delay threshold between
consecutive transitions to give the new OP mechanism enough time so that
the performance evaluator can correctly assess its behaviour.

There are several learning-based selection methods in Genetic Algorithms
that can be applied to decide if it would be beneficial to change the OP mech-
anism. These methods take as an input only the fitness score values. In the
following analysis, a larger fitness value is considered better and hence a
fitness maximization is assumed. Since the OP mechanisms in the place-
ment library are constant, the number of fitness values is a finite value
f1, f2, . . . , fF , (F ≤ maxf ). The state of the placement library can be described
by the function s(fk) that represents the number of occurences of the fitness
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value fk in the OP mechanisms of the placement library. The fitness distri-
bution is defined as a function s(f) that assigns each OP mechanism Mi in
the placement library, a fitness value fk. Moreover, maxf is the size of the
fitness distribution s(f).

We use a Linear Ranking Selection method for this purpose [213] because:
(i) it enables a relative analysis of the OP mechanisms suitable for the pro-
posed heuristic fitness score, and (ii) it avoids selecting worse OP mecha-
nism by preferring exploitation over exploration. In particular, the ranking
method compares the fitness values, which are used to decide the best OP
mechanism. Furthermore, it prefers exploitation by applying an appropriate
selection pressure defined as the intensity of search focused on finding the
best OP mechanism [214]. Reducing the selection pressure focuses on in-
creasing the diversity of OP mechanism selection, for instance, by the selec-
tion of worse OP mechanism. Contrarily, increasing the selection pressure
focuses on the reduced search space of selected best OP mechanisms. ThisWe

maintain
balance

between
exploration

and
exploitation

explains the idea of exploration vs exploitation using the ranking method.
Theoretically, using the linear ranking method, we can compute the appro-
priate selection pressure S using the average fitness distribution M before
selection, and expected average fitness distribution M∗, for the given fitness
values f1, . . . , fF , (F ≤ maxf ) as follows:

M =
1

maxf

fF∑
k=f1

s(f)

M∗ =
1

maxf

fF∑
k=f1

s∗(f)

S =
M∗ −M

σ
. (9)

Here, s(f) and s∗(f) are the fitness distribution and expected fitness distri-
bution of the OP mechanisms, respectively. The notation maxf denotes the
size of the fitness distribution, and σ denotes the standard deviation of the
fitness distribution s(f). All the functions assumed to be continuous are de-
noted with an overline, and the fitness values for the OP mechanisms are
assumed to be sorted (f1 < f ≤ fF ). Afterwards, the OP mechanisms are as-
signed ranks based on the sorted fitness values. The best OP mechanism is
assigned a rank of N , while the worst is assigned rank 1. For selection, the
OP mechanisms are linearly assigned the selection probability Pi according
to the rank as follows:
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Pi =
1

N

(
η− + (η+ − η−)

i− 1

N − 1

)
; i ∈ [1,N ]. (10)

Here, η−

N denotes the selection probability of the worst OP mechanism,
while η+

N denotes the selection probability of the best OP mechanism. At
a given time the OP mechanisms are fixed in the placement library, there-
fore the conditions η+ = 2 − η− and η− ≥ 0 apply. The selection probabil-
ity also provides a means to provide distinct probabilities if the OP mecha-
nisms are ranked the same, for instance, when they have the same fitness
score [214]. Hence, the selection probabilities are directly proportional to the
fitness scores of the OP mechanism as given by the probability distribution
function η in the following:

ηi =
Score(Mi)∑
i Score(Mi)

. (11)

The selection probabilities of the worst and the best OP mechanism is calcu-
lated as the minimum and maximum of the probability distribution function
η, respectively. The reduced search space is updated each time an OP mech-
anism is selected. As a result, the OP mechanism, which is well-performing,
gets a higher probability of selection that ensures exploitation is preferred
over exploration. However, at times, we also select the worst OP mechanisms
to update their scores (exploration). This is achieved by applying an appro-
priate selection pressure depending on the collected statistics so far. The
selection pressure for the ranking method can be computed [214] using the
assumption that the fitness distribution follows a Gaussian distribution, the
Equation (13) and the Proof as shown in Appendix A.1.3.

After selecting an appropriate OP mechanism, the realization of the transi-
tion concept is performed by the transition engine detailed in the next sub-
section.

4.3.2 Transition Engine

The main goals of the transition engine are (i) the coordination of the tran- Main goals
for a
transition...

sition, i.e., preparing to start, end and plan the transition, such that the
time taken to transit is minimum, (ii) execute a transition by performing cost-
efficient, live, and seamless operator migrations24, and (iii) ensure that deliv-
ered output events to the consumers are correct. We present the lifecycle
of a transition based on previous work [104] with a distinction of handling

24Recall, that it is a process to move operators from one physical node to another.
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state migrations in a cost-efficient manner, ensuring that the transition pro-
cess is seamless, and ensuring the correctness in delivery of complex events.
In the following, first, we look into the high-level requirements for the tran-... cost-

efficient,
seamless

and correct
delivery

sition process and then present the two transition execution strategies that
fulfills the above goals. A transition in a CEP system between OP mecha-
nisms involves multiple distributed entities because of the distributed nature
of the OP problem. Hence, a transition has to be coordinated consistently
between these entities. Therefore, a coordinator maintains and orchestrates
the transition lifecycle. The coordinator interacts with the transition execu-
tion strategies that carry out the process of transition. The main novelty of
the proposed transition execution strategies lies in the properties liveness,
seamlessness and the low cost (cf. Section 4.2.2) incurred in terms of time
and overhead of the transitions.

As soon as the target OP mechanism is selected by the placement perfor-
mance evaluator component (cf. Section 4.3.1), a set of target broker nodes
are identified for the new placement. All the operators in the graph have to
migrate to the target broker nodes to comply with the new placement logic.
It is primary to keep satisfying the QoS requirements of the query while per-
forming the operator migrations. Operator migrations in this realm have been
widely studied in the literature, such as stop and restart strategies [16, 52]
and partial pause and resume strategies [24, 215]. Here, the former com-
pletely stops the execution to migrate the operator to start executing at a
target broker, while the latter partially pauses the execution of the concerned
operator only. However, none of the approaches addresses seamless and cost-
efficient operator migrations while using multiple OP mechanisms. We specifi-
cally optimize the costs in terms of performing the transitions for two metrics:
time (cf. Equation (4)) and overhead (cf. Equation (5)) to achieve cost-efficient
operator migrations, which is achieved by the transition execution strategies.
We propose two strategies for this purpose which comprise of two steps: (i) co-
ordinate transition and (ii) determine and perform operator migrations.

Moving Fine-Grained State (MFGS) Sequential Transition

This strategy initiates operator migrations in a specific order, bottom-up, to
handle the dependencies between the operators in the operator graph (cf. Al-
gorithm 1: Lines 1-14). An operator is migrated iff all its predecessors in the
operator have been migrated. The dependency order in the operator graph
follows a bottom-up order, where leaf operators (e.g., stream operator) are
predecessors of their connected operators that are successors, as we go up
in the operator graph (cf. Operator graph model in Chapter 3: Section 3.2.1).
Since multiple operators have to be migrated, the migrations occur in a se-
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quential and breadth-first manner such that only one operator is migrated
at a time to the target broker (Lines 2-3).

In the next step, the strategy determines the target broker where the opera-
tor is to be migrated. This happens with the help of the target OP mechanism,
which is previously determined (cf. Section 4.3.1) (Line 5). Therefore, depend-
ing on the decision of the OP mechanism, an operator ω may or may not be
transferred to a new target broker (Line 6-7). A minimal state of the operator
is retained referred to as intermediate-state, to keep the operator migration
time and overhead as very low as discussed in detail in the next paragraph
(Line 8). Finally, the state is migrated to the target broker, and the input data
stream is received at the target broker, which executes the operator using the
minimal state. To receive the incoming data stream from the producers and
the predecessors that were previously migrated, a subscription from the tar-
get broker is sent to them (Line 9). Once the operator is successfully migrated, Maintain an

intermedi-
ate state for
efficient
migration

an acknowledgment of the migration is sent by the target broker alongwith
the sequence number of the first complex event to the source broker and
the coordinator (Line 10). Afterwards, the source broker stops executing the
operator as it continues its execution on the target broker (Line 11).

Algorithm 1 : Moving Fine-Grained State Sequential Transition [195].

Variables :

ΩList ← bottom-up list of set of operators

ωcur ← current operator to be migrated

PList ← list of producers connected to ω

targetOPMechanism ← target OP mechanism

Trg ← target broker host of ω

φInt ← intermediate state of ω

1 function INIT -MFGS-SEQUENTIALTRANSITION()

2 ΩList ← BOTTOMUPASLIST(Ω);
3 MFGS-SEQUENTIALALGORITHM(ΩList .HEAD, targetOPMechanism)

4 function MFGS-SEQUENTIALTRANSITION(ωcur, targetOPMechanism)

5 Trg ← targetOPMechanism.FINDTRG(ωcur);
6 if Trg 6= ωcur.SOURCEBROKER then
7 ωcur.COPYEXECUTIONENVIRONMENT(Trg);
8 φInt. ← ωcur.COMPUTEINTERMEDIATESTATE();
9 Trg .STARTEXECUTIONWITHDATA(PList , φInt.);

10 if ωcur.NEXT().RECEIVEDACK(timeout , retries) then
11 STOPEXECUTION(ωcur.SOURCEBROKER);
12 MFGS-SEQUENTIALTRANSITION(ωcur.NEXT(), targetOPMechanism);

13 else
14 MFGS-SEQUENTIALTRANSITION(ωcur, targetOPMechanism);

This strategy performs sequential migrations until all the operators are
migrated, which marks the end of the transition. This happens using a re-
cursive method that traverses the operator graph in a bottom-up order while
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migrating the operators (Line 12). In case the operator migration is not suc-
cessful for some reason, for instance, the target broker becomes unavailable,
and the acknowledgement is not received, the operator migration is repeated
(Line 14). In paragraph below we detail how the intermediate buffer is used
to keep the cost of operator migrations minimum. In Line 14, we assume a
consumer specified parameter m that determines the maximum number of
repetitions25 of this loop and guarantees termination after m tries.

Cost-efficient Operator Graph Transition

This strategy computes a minimal intermediate state to reduce the costs for
the transition of an operator that must be migrated. The strategy builds on
the operator state model proposed by Wermund et al. [34, 216], which al-
lows retrieving an intermediate state required for the transfer. We improve on
the operator state model by concurrent coordination of operator graphs that
enable minimal cost for operator migrations as discussed in the following.

fω
selector sequencer

BI BOInt.
B

ω

e1

e2

e3

e4

e1

e2

e3

e5

e1 e2 e3 e4

e5 (SN1)

W1

e5 (SN1)

Figure 19: Intermediate buffer represented in the operator state model adapted
from [216]. Here, {e1, e2, e3, e4} are incoming events in the data stream
selected based on the window size w = 3 by the selector. W1 is the first
window processed by the fω resulting in outgoing event e5 with sequence
number SN1 [195].

Figure 19 explains the operator state model, comprising an input buffer
BI , output buffer BO, selector, sequencer, and processing function fω of the
operator. The input events {e1, e2, e3, e4} are retrieved from the incoming data
stream by the producer in the input buffer BI . The selector indicates events
to be processed based on the selection policy of the operator, as explained in
Chapter 3: Section 3.2.1, e.g., using a sliding window, say {e1, e2, e3}. The
function fω processes the selected events of window W1, and the output

25This is very unlikely to happen that the target node is not found again and again.
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events are evicted based on the consumption policy, e.g., using the slide size
of the sliding window. The sequencer appends each output or complex event
with a sequence number inserted into the output buffer. The complex event is
then delivered to ω’s successor. Once the successor acknowledges the event,
it is removed from the output buffer BO.

Traditionally, in a CEP system, the state of an operator φω comprises: (i) the
input buffer BI , (ii) the selector, (iii) the correlation function fω, (iv) the se-
quencer, and (v) the output buffer BO. Instead, we reduce the amount of
state to only the content of the intermediate buffer BInt. The intermediate
buffer BInt stores the events based on the selection policy that are required
at the target broker to resume the operator and start its execution. We explain
the role of the above state components using a sliding window operator ex-
ample, which is one of the most important stateful operator (cf. Chapter 3:
Section 3.2.1).

Example: Figure 19 gives an example of a sliding window operator of size
w, say three events {e1, e2, e3} which are selected by the selector and stored
in the BInt. In the first transformation step these events are processed by the
processing function fω releasing the output event e5. In the next transforma-
tion step, the slide size s is applied, say one event, and the next window is
stored in the intermediate buffer BInt, i.e., {e2, e3, e4}. Therefore, the events
required to be processed in the next transformation step are only sent to the
target broker to resume processing.

Furthermore, it is essential that the target broker timely subscribes to the
incoming data streams at the producer or the node of the predecessor oper-
ator in the operator graph. This is to ensure the correctness of the events
as well as to keep the transition time low. Note that the intermediate state
φω(topt) migrated at time topt includes the intermediate buffer BInt, the pro-
cessing function fω, and the sequence number of the last evicted complex
event (Line 9). The BInt stores the state of the operator to be processed at the
next transformation step. After the last complex event is evicted (identified
by matching the sequence number), the target broker starts processing the
operator in parallel. In particular, at time topt − δM , the target broker starts
executing the operator based on the input events received from the producer
or the predecessor operator. Here, δM is a small value to make sure that the
target broker starts the execution beforehand. However, the duplicate events,
due to the concurrent processing by both the source and target brokers, are
discarded (Line 10). It is important to note that a careful selection of δM value
is essential so that the target broker does not miss any input event. In case
the value is very big, there will be an overlap in the execution of the source
and the target broker. The duplicates are discarded; however, it results in an
unnecessary overhead that should be avoided.



84 Mechanism Transitions in Operator Placement

On the other hand, if the δM value is very small, there is a slight chance
that the target broker might miss some of the input events. However, this is
very unlikely to happen. Nevertheless, we address this problem by proposing
a seamless transition algorithm where the state overhead is further mini-
mized and the correctness of the events is guaranteed, as discussed in the
following subsection.

Cost Analysis

We analyze the transition time and present an asymptotic upper bound on the
cost (CT ime(T )). The transition time is bounded by the time required by theLinear time

complexity algorithm to iterate over all operators sequentially and to transfer the inter-
mediate state of each operator (Lines 9 to 12). Therefore, the overall transfer
time can be bounded by the transfer time of the entire intermediate operator
φΩ plus the time to iterate over all operators which yields O (|Ω|+ |φΩ|) Here,
φΩ is the intermediate state, and Ω is the set of operators26. The strategy re-
duces this time by transferring a minimum amount of state φInt using an in-
termediate buffer. Although only a minimal state is required to be transferred,but..

sequential
and

requires
state

transfer

the state transfer still involves costs in time and resources. Furthermore, the
sequential transfer of operators is time consuming. While transferring opera-
tors in a sequential manner consumes fewer network resources, it is another
factor that takes time. Therefore, to solve these issues, we propose the fol-
lowing transition strategy.

Seamless Minimal State (SMS) Concurrent Transition

This strategy differs from the MFGS transition in two ways: (i) concurrent
operator migrations and execution and (ii) seamless execution of migrations.
Algorithm 2: Lines 1-16 presents the strategy where multiple operators areMitigate

issues by
concurrent

and
seamless

migrations

migrated to the target broker simultaneously. In particular, the coordinator
performs at most 2l operator migrations (for binary operator graph) at each
level l = 0 to m in a bottom-up manner (Line 2). This order ensures the in-
tegrity of the operator graph execution. The concurrent operator migrations
contributes to the cost in terms of runtime. The coordinator starts operator
migration by first transferring the execution environment (Line 5). This is
readily available by using the TCEP container as provided in Definition 5 in
the form of Empty Apps. Afterwards, the coordinator determines an optimal
discrete time step topt for each operator ω. The time signifies when the oper-
ator state comprises only the new event tuples, which are already available
at the target broker so that the operator execution can be resumed from the

26Ω here stands for the set of operators as previously defined in the notations, not to be
confused with the generic notation on asymptotic lower bound of an algorithm.
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target broker (Line 7). Essentially, the optimal time topt is determined by wait-
ing for each operator ω to purge from its old state (Line 8), i.e., until BInt
and fω do not hold any old state. To better understand how topt is calculated,
consider an example of a window operator. Select

optimal
time steps
when
anticipated
costs are
low

Algorithm 2 : Seamless Minimal State Concurrent Transition [195].

Variables :

PList ← list of producers connected to ω

OGlevel ← operator graph level for migration

targetOPMechanism ← target OP mechanism

Trg ← target broker node of ω

φsequencer ← state of sequencer

waitTime ← wait time for the current operator
until it is purged from its old state

1 function SMS-CONCURRENTTRANSITION(OGlevel , targetOPMechanism)

2 for all ω ∈ OGlevel do in parallel
3 Trg ← targetOPMechanism.FINDTRG(ω);
4 if Trg 6= ω.SOURCEBROKER then
5 ω.COPYEXECUTIONENVIRONMENT(Trg);
6 NTPCLOCKSYNCHRONIZATION(Trg , ω.SOURCEBROKER);
7 minimalStateTime ← ω.DETERMINEMINIMALSTATETIME();
8 waitTime ← WAITUNTIL(minimalStateTime));
9 φsequencer ← ω.LASTSEQUENCENUMBER;

10 Trg .STARTEXECUTIONWITHDATA(PList , φsequencer );
11 Trg .DETERMINEREFERENCEPOINT(minimalStateTime);
12 if ω.PARENT().RECEIVEDACK(timeout , retries) then
13 STOPEXECUTION(ω.SOURCEBROKER);
14 SMS-CONCURRENTTRANSITION(OGlevel .NEXT(), targetOPMechanism);

15 else
16 SMS-CONCURRENTTRANSITION(OGlevel , targetOPMechanism);

Example: A window operator waits until all the old event tuples have been
processed, say w + δS. Here w is the size of the window and δS is a small
value such that topt time is selected to be after a given time when events are
still received from the source broker. This allows execution of the window at
the target broker after the source broker. The time topt is chosen to be the
transition start time. In other words, the target broker waits until the last old
event of the window is processed, and this time is chosen as transition start
time for a given operator (toptmin(ω)).

It is important to note, to ensure the correctness of complex events, both
source and target brokers run concurrently until all events in the input buffer
are new. In particular, the target broker of the current operator starts execut-
ing with the minimal state (the last SN of the complex event) concurrently at
the transition start time toptmin(ω), while the successor operators in the oper-
ator graph hierarchy still execute on source broker using the placement logic
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of former OP mechanism. Thus, in this strategy, the transition coordinator
also allows coexisting execution of two OP mechanisms.

Seamless and Concurrent Operator Graph Transition

Consider an operator graph from our example scenario in Figure 20 to under-
stand the concurrent operator graph transition. In the figure, Src represents
the source broker, and Trg represents the target broker in Step 1 – 5, through
the initial placement at the source to the final placement at the target after
migration. The operator migration starts with the leaf operators in Step 1,
which starts operating at target brokers in Step 2. This is because the op-
erators ωV 1 and ωV 2 are stateless and do not have previous state to resume
execution at the target broker. We assume clock synchronization using stan-
dard Network Time Protocol (NTP) [196] at both source and target brokers
(Line 6) to ensure that the two clocks do not diverge. Steps 3 and 4 show the
BInt buffer of the sequence operator with the event tuples being processed. In
these steps, the operator graph is concurrently processed at the source and
target brokers until the intermediate buffer has all new tuples. Therefore, the
concurrent execution of operator graph and coexisting OP mechanisms at
source and target brokers enable seamlessness in transition. Furthermore,
the concurrent operator migrations do not interfere with each other, and the
transition is accomplished atomically in the TCEP transition engine.
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Figure 20: The order in which concurrent operator migrations and execution are
performed in SMS strategy. In step 3 and 4, we have concurrently running
operator graphs. The red cross (5) indicates an operator migration from
source (Src) to target (Trg) broker [195].
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The basic idea of this transition strategy is that at the transition start time
toptmin(ω), the input buffer BI and the output buffer BO are shared among
the source and the target brokers until it is safe to discard the source broker.
Both source and target broker for a stateful operator ω run concurrently so
that all the old tuples in the intermediate buffer BInt of the source broker are
gradually purged (cf. step 3 and 4). For instance, in a sliding window operator
with a window size of w events and slide size of s events, the old tuples (w− s
events) have to be processed until the target broker has received a full win-
dow size of w events to ensure completeness. During this time, the output is
continually produced by both the brokers, while duplicates are discarded us-
ing the reference point method [217]. When the intermediate buffer is purged
completely, then the source broker is discarded. This is because the target
broker now has all the new tuples that exist in the source broker. The source
brokers of stateless operators are gradually replaced by their targets, marked
with red cross (5) in Figure 20.

Correctness Properties

We assess correctness on two aspects as widely done in the literature [16],
[218]: the output is complete, and there are no duplicates in the output. Fig-
ure 20 shows the transfer of the operator graph in 1) through 5) steps us-
ing the SMS algorithm. The stateless operators are transferred straightaway, Correct

delivery of
events and
no
duplicates

while stateful operators run in parallel using the SMS algorithm until all the
old tuples are purged. Furthermore, while the predecessor operators are mi-
grated, successors still use the former OP mechanism for resolving the query.
We must also ensure that there are no duplicate output tuples, as we can
see in step 3): the sequence operator leads to duplicate output tuples from
the source and target operator, respectively. A naive approach is to discard
all the input as old tuples that results from the source broker. However, this
would lead to incorrect results, as seen in step 3): the old tuple might be
a true sequence that will remain undetected if dropped. To solve this issue,
though we have the source and target brokers in execution concurrently, we
drop events from target brokers unless all the events in the BInt buffer are
new and the source broker could be stopped. For instance, in Step 3, we
retrieve the output result from the source broker holding the sequence op-
erator, while in step 4, we can safely discard the source broker since all the
tuples in the state are new.

Cost of Concurrent Operator Graph Transition

We present an analysis of the cost of concurrent operator graph transition by
comparing the position of the system before and after the transition. In partic-
ular, we look at the input events and the state at the bsrc and btrg brokers after
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the transition start time toptmin(ω). In this transition strategy, for each opera-Log time
complexity tor ω, the state φω(toptmin(ω)) at toptmin(ω) consists of the sequencer state (Algo-

rithm 2: Line 9). It contains the SN of the last event delivered by the bsrc bro-
ker, which hints at the SN of the first event that the btrg broker must deliver.
This is achieved by partitioning the transition at discrete time steps such
that each operator migration mi in a transition T determines the transition
start time as explained before. Thus, ensuring a live and seamless transition
because of the minimal consumption of resources. Based on the concurrent
migrations of operators, the number of operators in the btrg broker increases
exponentially over time, with the increase in the size of the operator graph G.
Therefore, the total transition time is bounded within O (log(|Ω|) + C), where
C is |φsequencer| that is the state of sequencer, which is constant for a fixed
size of operator graph G.

4.3.3 TCEP Programming Model

The placement programming model of TCEP provides a means to specify
adaptable OP mechanisms that play a key role in the performance of a de-
ployed query in the transition-capable TCEP system. Furthermore, it provides
a way for researchers and application developers to develop CEP queries for
distinct IoT applications. Existing works [120, 30, 81] focus on proposingProgram-

ming model
for

adaptable
OP mecha-

nisms

OP mechanisms optimizing for a diversity of QoS requirements. The growing
interest in novel OP mechanisms becomes obvious due to their application
in many practical problems in the field of CEP and Stream Processing [20,
83, 78]. Nevertheless, there is no substantial work focused on providing a
common programming model to develop adaptable OP mechanisms and val-
idating them in heterogeneous infrastructure, such as fog-clouds. Modern
CEP systems such as Apache Flink [54], Storm [9], and Spark [52] focus on
providing programming abstractions for operators. However, none of them
provides a programming model for specifying and executing a diverse range
of OP mechanisms across large-scale IoT infrastructures27.

This section introduces the major components of the TCEP programming
model as follows. (i) QoS monitors that is an integral part of the programming
model as each OP mechanism observes some QoS metrics. (ii) OP interface
provides methods to develop unique OP mechanism. (iii) Query interface pro-
vides standard operators from stream processing and CEP. In addition, so-
called QoS operators are provided that helps specifying QoS requirements.

27For a detailed discussion, we refer the readers to Table 7.
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Method Description

getPlacementMetrics() Determines the QoS requirements that must be op-
timized

configurePlacement() Resets placement parameters (called initially and on
reconfiguration)

findPlacementNode() Finds placement node based on the QoS metrics

findPossibleNodesToDeploy() Retrieves all nodes that can host operators

initialVirtualOperatorPlacement() Centralized mechanisms treat all operators at once
during the initial placement instead of one-by-one
by using a heuristic to find optimal locations in the
virtual latency space

Table 6: Novel TCEP placement API for developing placement mechanisms [204].

QoS Monitors

The TCEP placement programming model characterizes the OP mechanisms
based on the placement decision into two main categories: (i) centralized
and (ii) decentralized as prominently done in the literature [81, 30, 219]. A
centralized placement mechanism assumes global knowledge on the network
and the nodes. In contrast, a decentralized mechanism assumes only partial
knowledge of the network. For instance, a cluster head assigns an operator
on each node of the cluster. It is known that finding an optimal placement
from the number of possible resources is an NP-complete problem [39]. Fur-
thermore, the assignment varies with the QoS requirements in consideration
for the cost objective function. Hence, there exist many solutions and heuris-
tics towards the OP problem.

Both centralized and decentralized placement heuristics assume monitor-
ing knowledge of the network and node information. The TCEP programming
model provides explicit extensible monitors for commonly used network and
node information metrics, such as latency, bandwidth, and CPU load. These
metrics are measured from end-to-end, meaning the cumulative latency or
bandwidth observed while data streams traverse the path from producer to
consumer. The measurements are accumulated step by step and, hence, indi-
vidual measurements can also be fetched easily. The monitoring information
is collected by every node separately and aggregated on the decision node
based on the placement characteristics. In a centralized OP mechanism, the
QoS monitors transfer the observed metric to a centralized node responsible
for the placement decision. Whereas for decentralized mechanisms, we pro-
vide monitoring based on coordinate system, such as Vivaldi [201], which
is prominently used in several OP mechanisms [15, 40, 19, 120]. It allows
handling the dissemination of monitoring information for better placement
decisions.
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Operator Placement Mechanism Interface

Table 6 lists the foremost API of the TCEP programming model used to im-
plement OP mechanisms in TCEP. The PlacementStrategy API defines these
methods for OP mechanism in order (i) to formulate a single objective and
multi-objective optimization function for centralized OP mechanism, (ii) to
define heuristics for decentralized OP mechanism, and (iii) to make OP mech-
anism exchangeable at runtime to enable transitions. An OP mechanism rep-
resents a cost objective function dictating the QoS requirements. An example
of a cost objective function is to minimize the end-to-end latency from the
producers to the consumers. Each mechanism, centralized or decentralized,
must define a cost objective function for the QoS requirements that need to be
optimized. The cost objective function can comprise a single or multiple QoS
requirements, e.g., latency, CPU load, and bandwidth utilization. The objec-
tive function depends on the runtime measurements from the QoS monitors
defined above, which are used to determine placement decisions on physical
hosts of the fog-cloud infrastructure. The placement coordinator fetches this
information from the QoS monitors for placement using getPlacementMetrics

(cf. Table 6). This serves as an input to the cost objective function. The specific
way in which the optimization problem is solved optimally or sub-optimally
using heuristics is defined in the specific implementations of the OP mech-
anism. In Table 7, we define the currently available implementations of OP
mechanisms in TCEP. Different OP mechanisms use different ways to opti-
mize. For instance, Relaxation uses a spring relaxation method [15], while
MOPA uses an approximation for the Weber problem [40]. However, both op-
timized for the same QoS metric bandwidth-delay product. Also, in optimal
solutions, the optimization problem can be solved using different methods
depending on the nature of the objective function (convex or concave) and
the scenario at hand. Hence, in the TCEP programming model, we segregate
the implementation of a specific optimization approach of the OP mechanism
from the common interfaces.

The placement parameters are initialized using configurePlacement method,
which is invoked in the beginning and each reconfiguration, e.g., during pe-
riodic updates of the same OP mechanism. The findPossibleNodesToDeploy

and findPlacementNode methods determine the possible nodes where the op-
erator can be deployed depending on the cost function. Some centralized
OP mechanisms behave differently when performing placement initially and
on reconfiguration, such as the Relaxation [15] mechanism. This mechanism
places all operators of the query at once inside the virtual coordinate space us-
ing initialVirtualOperatorPlacement() and the physical placement is performed
using findNode() since no operator is physically deployed using virtual place-
ment. However, on reconfiguration, only physical placement is changed. In
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OP Mecha-
nism

Placement
Decision

Optimization
Goal

Approach Section 4.4.2

Relaxation [15] Centralized Bandwidth-
delay2 prod-
uct (BDP)

Spring relaxation tech-
nique

(i)

MOPA [40] Centralized BDP Approximation for Weber
Problem

(ii)

Global Opti-
mal

Centralized BDP Optimally finds node with
minimum BDP

(iii)

MDCEP [79] Decentralized control
message
overhead,
latency

Host operator on the near-
est neighbors unless pro-
ducer or consumer

(iv)

Producer-
Consumer

Decentralized hops Always host on producer
or consumer

(v)

Random Decentralized - Random allocation (vi)

Table 7: Design space of OP mechanism [204].

contrast, decentralized mechanisms only implement the findNode() since their
behaviour is the same during initial placement and transitions.

Query Interface

TCEP builds on AdaptiveCEP [207] to specify CEP queries with QoS demands
that represents IoT applications in TCEP. The queries provide expressiveness
by enable specification of standard operators used in stream processing and
CEP systems, specifically, (i) typical operators in event algebra, such as con-
junction, disjunction, window, and sequence; (ii) aggregation operators, such
as minimum, maximum, and average; and (iii) relational operators, such as
selection, projection, and joins [207]. Queries are composed of one or more
aforementioned operators forming a logical operator graph that is adaptively
processed in TCEP. Section 4.3.3 lists major operators and their syntax as
they are implemented in TCEP. Listing 1 in Section 4.1 gives an example
of such a query.

In addition, we provide QoS operators that allow specification of QoS re-
quirements in the query language. For instance, latency in the delivery of
a complex event can be declared as vehiclesAtSectionV1 demand (latency <

50.ms). Table 9a lists some examples for the supported QoS operators. The
first row explains the general syntax to indicate QoS demands. The remain-
ing rows list specific examples on QoS operators.

The QoS demands can be conditional as explained in Table 9b, so that the
demand applies only when the given condition is met. For instance, in the
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Operator Operator Syntax Description

Stream source stream A stream operator is applied on a single pro-
ducer which used to forward the data stream
to the rest of the operators in the graph

Join (stream0 window win0) join A join operator combines two data streams
from producers by bounding it using a window
and a join condition

(stream1 window win1) on
join-condition

Filter query where
predicate-function

A filter operator (or where clause) is used to ap-
ply a condition specified by the predicate on a
sub query, such as window.

Map query map mapping-function A map operator takes one attribute in a data
stream and produces one attribute by applying
a custom function.

Aggregation
Min

query min
numeral-selection-function

Aggregate operator like min finds a minimum
value using a sub query, such as in a window.

Aggregation
Max

query max
numeral-selection-function

A max operator finds a maximum value using a
sub query.

Aggregation
Avg

query avg
numeral-selection-function

A avg operator finds a aggregate average using
a sub query.

Conjunction
or Logical
AND

query0 ∧ query1 A conjunction (∧) operator express the detection
of an event if either event from query0 or query1
occur.

Disjunction or
Logical OR

query0 ∨ query1 A disjunction (∨) operator specifies an exclusive-
OR under the assumption that simulataneous
events from query0 and query1 cannot occur.

Negation or
Logical NOT

!query A negation operator (1) signifies no event result-
ing from query can occur.

Temporal Se-
quence

query0 → query1 A sequence operator (→) specifies events from
both query0 and query1 should occur but in time
order, i.e., event from query0 happens before
event from query1.

Table 8: CEP Operators [207].

earlier latency example vehiclesAtSectionV1 demand (latency < 50.ms) when

proximity within 100.m, the vehicles which are in 100 m proximity are only
considered for inclusion in the generation of the complex event. Again the
first row presents a general syntax to specify a condition for a QoS demand
using the when clause and the second row specifies condition using the only

clause. The remaining table presents examples on the conditions based on
proximity and frequency of events. The conditions are used to limit the num-
ber of producers considered for processing the low-level events based on the
location information or the event rate information.



4.4 Evaluation 93

Demand Demand Syntax

Demand on
streama

stream demand predicate τqos

Latency stream latency < τlatency

Throughput stream throughput > τthroughput

Bandwidth stream bandwidth > τbandwidth

(a) Quality demands.

aRecall, τqos is the threshold on QoS re-
quirement as introduced previously in Sec-
tion 3.2.1.

Condition Condition Syntax

Condition
on quality
demands

demand when condition

Condition on
event produc-
ers

stream only condition

Proximity proximity within length

proximity < count
Frequency rate > event-rate-threshold

(b) Quality demand conditions.

Table 9: QoS Operators [207].

4.4 Evaluation

We answer the following evaluation questions in relation to our main contri-
butions in Section 4.3.1, 4.3.2, and 4.3.3. Main

evaluation
questions1. Is the programming model able to express transition-capable OP mech-

anisms?

2. Can changing and conflicting QoS requirements be satisfied using tran-
sition betweens OP mechanisms?

3. Do the transitions deliver complex events in a live and seamless man-
ner?

4. What are the transition costs in terms of learning, transition time, and
overhead?

The following sections answer the aforementioned evaluation questions.
Section 4.4.2 evaluates the TCEP programming model in terms of develop-
ment of OP mechanisms and validating their performance. Section 4.4.3 eval-
uates transitions between OP mechanisms in terms of meeting changing and
conflicting QoS requirements. Section 4.4.4 evaluates the properties of tran-
sition and the costs imposed by the proposed transition execution strategies.
Finally, Section 4.4.5 evaluates the cost imposed by transitions in terms of
learning the performance of OP mechanism and selecting a mechanism.

Before that, the following sections present the evaluation environment and
setup related to the implemented system TCEP, scenario modelling, and the
deployment setup, as well as finally the evaluation findings.
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Number of producers 1− 8

Number of brokers 1− 10

Number of consumers 1− 2

Number of queries 1− 50

Type of queries Stream, Filter, Conjunction,
Join, Accident detection (Listing 1)

WINDOW_SIZE 5, 10, 20, 30, 40, 50 secs
QOS_REQTS latency, message overhead, network usage, hops

OP mechanisms Relaxation [15], MOPA algorithm [40],
Mobile DCEP [30], Global Optimal,
Producer Consumer, Random

Transition execution strategies MFGS-Sequential, MFGS-

Concurrent, SMS-Sequential,
SMS-Concurrent

Selection strategies Lightweight learning, Requirement-based

Table 10: Configuration parameters for the evaluation. Default values are underlined.

4.4.1 Evaluation Environment and Methodology

This section describes the TCEP implementation, the dataset, queries, and
the overall evaluation configuration and plots.

Implementation

TCEP is implemented using Scala in a total of 749,047 lines of code. The run-
time environment of TCEP is based on the Akka actor system [220] and Akka
Cluster to build a distributed network for easy deployment in the fog-cloud
scenario. TCEP uses AdaptiveCEP specification language [207] for dictatingTCEP uses

Akka and
Esper CEP

engine

QoS requirements at run time (cf. Listing 1), and Esper [35] as a backend
to run the queries. TCEP uses docker tools such as container, service, and
swarm for the distributed deployment. We use Akka version 2.6.0 [220], the
Esper CEP engine version 5.5.0 [35], and Docker version 19.03.8-ce [221].
TCEP is publicly available for use28.

Evaluation Platform

We deploy Docker services on 8 virtual machines with 8 GiB of memory and
8 processors each on different physical machines as denoted in Figure 21.

28TCEP webpage: https://luthramanisha.github.io/TCEP/ [Accessed in May 2021].

https://luthramanisha.github.io/TCEP/
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MAKI Compute

Things/

Edge

Cloud

Fog

Figure 21: Our setup comprises of 8 physical machines using publicly available net-
work infrastructures running our virtualized TCEP system in docker con-
tainers.

TCEP’s Docker image is build upon the Alpine Linux distribution29, which is
much smaller in size (base image size of only 5 MB) and lightweight than
other Linux based images. This is extremely useful that TCEP has a small GENI and

CloudLab
distributed
testbeds for
evaluations

memory footprint so that it can run on resource constrained IoT infrastruc-
ture. We consider different physical machines comprising deployment infras-
tructures GENI [222], CloudLab [56], and the onsite MAKI [57] compute ma-
chines. This infrastructure together provides a realistic deployment environ-
ment similar to the fog-cloud infrastructure resource model previously in-
troduced in Section 3.2.1 and hierarchically illustrated in Figure 21. With
resources dispersed in North America (Ohio and UCLA) and Europe (Darm-
stadt), we have introduced geographical diversity, realistic network latencies,
and packet loss environment for our experiments [55]. The infrastructure
nodes communicates using a Docker network setup.

Dataset

We use a realistic dataset for a highly mobile vehicular network scenario from
Madrid [223] comprising the input data stream with the event tuples:
< time, position, lane, speed >. This helps in generating complex data streams Real-world

traffic
scenario
workload

of vehiclesAtSectionV1 and vehiclesAtSectionV2 (cf. Listing 1), as well as to
evaluate the congestion detection query. In aggreement with our assump-
tions, the dataset includes at the rush hours a high in-flow of traffic and
reduction in speeds indicating a traffic congestion. While during the normal
hours, the traffic is regular with sparse traffic and high speeds.

29Alpine Linux distribution in Docker https://github.com/gliderlabs/docker-alpine [Ac-
cessed in May 2021].

https://github.com/gliderlabs/docker-alpine
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Queries

Figure 22: Q1–Q5 illustrate the operator graphs of the queries used for the
evaluation. Queries Q1–Q4 define the standard CEP queries written using
the TCEP programming model (Section 4.3.3).

(Q1) Stream Operator

1 Stream => stream[StreamData](speedPublishers(1), demand QoS_REQT)

Q1 represents a Stream operator and acts as a forwarding query that for-
wards the data stream from the speed publisher or the vehicle to the con-
sumer.

(Q2) Filter Operator

1 Filter => stream[StreamData](speedPublishers(1), demand QoS_REQT).where { v1 =>
2 v1.avgVehiclesSpeed < NormalSpeedThreshold}

Q2 is a filter query that detects a complex event indicating one of the con-
ditions of a congestion. It verifies if the average speed from the vehicles
contributing to a stream is less than a threshold.

(Q3) Conjunction Operator

1 Conjunction => stream[StreamData](speedPublishers(0)).and(stream[StreamData](

speedPublishers(1)), requirement QoS_REQT)

Q3 indicates a Conjunction query on two data streams arriving from two
publisher vehicles.

(Q4) Join Operator

1 Join => stream[StreamData](speedPublishers(0)).join(stream[StreamData](
speedPublishers(1)), slidingWindow(5.seconds), slidingWindow(5.seconds)).

where{ case (v1, v2) =>
2 v2.time > v1.time }, requirement QoS_REQT)

Q4 represents a complex event indicating that the second vehicle is behind
the first vehicle useful to study traffic patterns. It performs a Join on a Win-
dow of two data streams such that the second vehicle enters after the first
vehicle at the road section.

Finally, Q5 illustrates the traffic congestion detection query previously in-
troduced in Section 4.1: Listing 1. We extend the query to take input as low
level events from the dataset on speed and density and generate the complex
data streams vehiclesAtSectionV1 and vehiclesAtSectionV2 used to detect a
congestion. In the figure, Q5 comprises eight publishers each representing
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Figure 22: Operator graph for queries Q1 to Q5.

a Stream operator (ωS1 to ωS8). In the operator graph, the speed information
related to the vehicle from the Stream operators are analyzed to get the Aver-
age speed of the two road sections each comprising four publishers. Another
Stream operator (ωSD) contributes the density information related to the two
road sections which is used to detect a sequence for the congestion detection
using a Sequence operator (ω→).

Evaluation Configuration and Plots

Table 10 summarizes the above configuration used for evaluating the per-
formance of TCEP. Each evaluation is done for 20 minutes and the perfor-
mance measurements are sampled after two minutes at a periodic interval of
five seconds. To introduce dynamicity in the environment, we incrementally
increase the query workload upto 50 queries. In addition to the real-world
deployment at the fog-cloud infrastructure, we use Mininet emulation [224]
to introduce publisher mobility in the scenario. We divide the road into two
sections with a length of 2500m each. The link between a publisher and the
current base station is changed to the base station in the next section when it
leaves the section. The mobility factor influences the end-to-end latency of an
event considerably when the publisher moves to the next section. In the eval-
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uations, we study the impact of multiple configuration parameters, includ-
ing the number of queries, the mobility, and the window size. We evaluate
the performance using six distinct OP mechanisms, four transition execution
strategies, and two selection strategies. To gain the confidence interval, each
evaluation is repeated 30 times if not stated differently. We use the Cumu-
lative Distribution Function (CDF), line plots, and bar plots to illustrate the
results. CDF shows the cumulative distribution of the investigated metric. It
represents the probability distribution function P (X ≤ x) such that the value
of the investigated metric is the probability that X takes a value less than or
equal to x. The line plot shows a thin line that depicts the mean (50th per-
centile) while the shaded areas report the percentiles including the values of
the investigated metric between the 5th and the 95th percentile. Finally, the
bar plots show the mean of the investigated metric alongwith the error bar
on the top denoting the values between the 5th and 95th percentile.

4.4.2 Operator Placement Mechanisms

This section shows the expressiveness of our programming model proposed
in Section 4.3.3 by providing an implementation of six distinct OP mecha-
nisms with a minimal effort. We focus on OP mechanisms with the objective
function of the QoS requirements, which are widely investigated, end-to-end
latency (cf. Definition 6), bandwidth-delay product or network usage (cf. Def-
inition 8), CPU load (cf. Definition 10), hops (cf. Definition 9), and control
message overhead (cf. Definition 7). There are two reasons behind this. First,Integrate

six OP
mecha-
nisms

most CEP systems concentrate on minimizing network costs while maintain-
ing load so that operator graph processing is performed with minimum re-
source consumption. Second, highly dynamic scenarios require stable place-
ment that can be achieved by minimizing the overall control overhead and
performing OP as near to the producers and consumers as possible. In the
following, we start by giving a brief description of the essential design char-
acteristics of the implemented mechanisms. Afterwards, we provide an exten-
sive evaluation of their performance to show (i) similar performance charac-
teristics of OP mechanisms implemented using our programming model as
originally proposed and (ii) our hypothesis that conflicting QoS requirements
are hard to be fulfilled by a single OP mechanism.

Adaptable Operator Placement Mechanisms

All the OP mechanisms are made adaptable by integrating them to the MAPE-
K adaptation loop. The main challenge therein is to plan and execute transi-
tions by migrating the operator state, and to maintain the state consistently
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across multiple distributed entities as previously discussed in the transition
engine Section 4.3.2. In the following, we discuss the key differences between
the selected OP mechanisms, their implementation, and the reason for their
selection. The same is important to understand the performance of these
mechanisms defined in the later sections. In addition, Section A.1.2 shows
the realization of the OP mechanisms and the specified queries in a web in-
terface that is used to demonstrate the behavior of transitions and the OP
mechanisms.

(i) Relaxation [15]30. It is based on a so-called cost space that considers
latency and bandwidth together as two dimensions. In this method, authors
achieves placement of operators in two main steps. The first step is a virtual
placement using a cost space representing network usage metric, while in the
second step the operators are physically placed using a KNN algorithm. The
basic idea behind the first step or the virtual placement, is a physics analogy
revolving around springs. The distance by which a spring is extended resem-
bles a link’s latency, and the spring constant specifying its stiffness is the
bandwidth of the link. The product of spring extension and spring constant is
the force needed to extend the spring by Hooke’s Law. Similarly, the product
of latency and bandwidth is the bandwidth-delay product (BDP) or network
usage metric. Another important point is that the Relaxation OP mechanism
uses a squared latency bandwidth product to ensure a unique solution if the
bandwidth observed is equal. Operators are connected by springs that pull
and push them into place inside the virtual coordinate space until the system
has “relaxed” completely, or more specifically, until the sum of forces inside
the operator graph is zero. The operators are then mapped to the nodes clos-
est to their respective physical locations that are not overloaded. Through
this heuristic, the overall BDP or network usage is minimized while ensuring
load fairness among the physical nodes.

(ii) MOPA (Multi-Operator Placement Algorithm) [40]31. MOPA is a variant of
the Relaxation algorithm to minimize the bandwidth-delay product; hence
instead of squared delay, this mechanism considers delay as an optimiza-
tion criterion. Besides the optimization goal, this algorithm finds the local
optimal solution using a gradient method, terminating when the current net-
work usage, given by the above optimization criteria, becomes smaller than
a threshold.

30Open implementation of this algorithm can be found and tried here https://github.com/
luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/sbon/PietzuchAlgorithm.scala
[Accessed in May 2021].

31https://github.com/luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/mop/
RizouAlgorithm.scala [Accessed in May 2021].

https://github.com/luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/sbon/PietzuchAlgorithm.scala
https://github.com/luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/sbon/PietzuchAlgorithm.scala
https://github.com/luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/mop/RizouAlgorithm.scala
https://github.com/luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/mop/RizouAlgorithm.scala
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(iii) Global Optimal32. Compared to the previous two mechanisms that find
a sub optimal solution, we implemented a global optimal mechanism that
chooses the best possible operator placement with minimum network usage
or BDP product based on an exhaustive search of the possible placements.
This OP mechanism uses the global knowledge of the entire network, in con-
trast to the decentralized mechanisms explained previously.

(iv) Mobile DCEP [79]33. The basic principle behind this mechanism is to
maintain low overhead to deal with the high dynamics of mobile scenarios. To
achieve this, the placement coordination is kept local and no cost information
is shared between the nodes in the topology. In particular, only the next hops
towards the data sources are considered for placement. Hence, the objective
function of message overhead and latency is considered in this mechanism.
By considering only the next hops and keeping the communication low, the
mechanism aims to minimize the overhead, while for latency, the shortest
path towards the data source is considered for placement.

(v) Producer Consumer34. For comparison to the above approaches, we con-
sider placement on the randomly chosen producer or consumer only. This is
chosen to complement Mobile DCEP mechanism that places operators near
to the producers or consumers.

(vi) Random35. This mechanism chooses a physical host for each operator
randomly and serves as a naive comparison.

Evaluation of Operator Placement Mechanisms

To understand the design space of OP mechanisms with distinct and con-
flicting optimization criteria, we evaluate them using the TCEP programming
model. We take the QoS requirements, queries, and OP mechanisms as stated
in Table 10 for comparison. The performance metrics, including the QoS re-
quirements used are as follows: (i) Mean end-to-end latency or simply latency:
Recall, latency is the time interval from when the event was first generated
at the producer until the reception of the complex event at the consumer
(cf. Definition 6).

32Open implementation of this algorithm can be found and tried here https://github.com/
luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/GlobalOptimalBDPAlgorithm.
scala [Accessed in May 2021].

33https://github.com/luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/
manets/StarksAlgorithm.scala [Accessed in May 2021].

34https://github.com/luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/
MobilityTolerantAlgorithm.scala [Accessed in May 2021].

35https://github.com/luthramanisha/TCEP/blob/master/src/main/scala/tcep/placement/
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Figure 23: Performance evaluation of OP mechanisms using TCEP programming model for the standard CEP queries Stream,
Conjunction, Filter and Join. All OP mechanisms perform differently for distinct queries and scenarios.
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(ii) Mean message control overhead or simply message overhead: Recall,
network usage is the amount of coordination overhead (in size of exchanged
messages (in MB)) associated in performing operator placement. This in-
cludes establishing the broker network, exchanging network or node in-
formation for placement, and performing the placement (cf. Definition 7).
(iii) Mean network usage: Recall, this is the amount of data in transit through
the node network, commonly referred to as BDP product (cf. Definition 8).
(iv) Number of hops: Recall, these are the number of hops or physical hosts
used for an operator placement (cf. Definition 7).

Figure 23 shows the performance of the presented OP mechanisms (cf. Sec-
tion 4.4.2) and standard CEP queries Q1 - Q4 (cf. Figure 22). The figure
classifies the performance of the queries in terms of (a) latency, (b) message
overhead, (c) network usage, and (d) number of hops. One important obser-
vaton is that OP mechanism behaves differently for different queries. For in-
stance, in terms of latency, Relaxation, and Global Optimal mechanisms per-
form best for Stream and Conjunction operators, while Producer-Consumer
supersedes them when executing Filter and Join queries. This is because the
main objective of Relaxation and Global Optimal OP mechanisms is to min-
imize overall latency. The Producer Consumer mechanism can also achieve
similar performance because of its proximity to the event sources and the
end-users. In terms of message overhead, MDCEP and Random mechanisms
perform the best because of the low coordination overhead in both OP mech-
anisms. In terms of network usage or the BDP product, we again see a dif-
ference in the performance of Relaxation and Global Optimal mechanisms
in different queries. While for simple operators like Stream, the Producer-
Consumer mechanism supersedes the former by a small magnitude for more
complex queries like Conjunction, the Global Optimal and Relaxation mech-
anisms are better. Since we focus on more complex queries, those applied in
IoT application scenarios, we further look into their performance for a traf-
fic congestion detection query introduced in the setup (cf. Section 4.4.1) in
the next paragraph.

Figure 24 presents the performance evaluation of the different OP mecha-
nisms while executing a traffic congestion query for (a) latency, (b) message
overhead, (c) network usage, and (d) number of hops. Similar to the other
queries analyzed above, Relaxation performs well in terms of latency. How-
ever, it possesses much high message overhead due to the maintenance of the
latency cost space. In contrast, MDCEP possesses much low message over-
head while it suffers from very high latency for a high workload of queries.
The variant of Relaxation, the MOPA, and Optimal mechanisms also suffer
in performance in terms of message overhead. Contrarily, the Producer Con-
sumer and Random mechanism suffer in terms of network usage.
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Figure 24: Performance evaluation of OP mechanisms using TCEP programming
model. The key observation is that there is no one size fits all mecha-
nism.

Table 24 in Appendix A.1.1 summarizes the observed mean, minimum,
maximum, and percentiles (90, 95, 99%) for the metrics latency and mes-
sage overhead. The table presents the results for Q1, Q4, and Q5 execution
using the different OP mechanisms. From Figure 24 and Table 24 together, No one size

fits all!we show that Relaxation and MDCEP mechanisms stand representatives for
the metrics latency and message overhead, respectively. This further solidi-
fies our hypothesis that no one size fits all mechanism can satisfy both the
optimization criterion network usage and message overhead. The same has
been also recently investigated by other works on placement [20].

The mechanism transition methodology is suitable for such scenarios fac-
ing dynamics in the environment and QoS requirements. Based on the afore-
mentioned results, in the rest of the evaluations, we will focus on the two
representative OP mechanisms Relaxation and MDCEP and investigate the
performance of mechanism transitions.
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4.4.3 Evaluation of Mechanism Transitions

This section analyzes the performance of OP mechanism transition and
its ability to fulfill changing QoS requirements at runtime. We use the two
QoS metrics in relation to the used OP mechanisms mean network usage
(objective function for Relaxation) and mean control message overhead (objec-
tive function for Mobile DCEP) as defined before. Furthermore, we consider
a traffic congestion detection query for the rest of the evaluations because
it is representative of our scenario (cf. Section 4.1), it captures the major
standard CEP operators, and we have observed significant variation in the
performance of the OP mechanisms as shown in Figure 24.

Figure 25 shows the mean network usage on the first y-axis and control
message overhead on the second y-axis for 5 runs in TCEP. At around 45
seconds (shown by a red dotted line), we observe a change in QoS requirement
from message overhead to network usage.TCEP
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Figure 25: Network usage (y1-axis) (in blue) and message overhead (y2-axis) (in
green) measurement over a transition from MDCEP to Relaxation OP
mechanism. TCEP system seamlessly transits to another OP mechanism
without incurring any overhead in terms of the specified QoS require-
ments.

TCEP handles this by executing a transition between MDCEP to Relaxation
T : MDCEP → Relaxation at run time. TCEP triggers a transition automati-
cally and selects an appropriate placement mechanism that fulfills the QoS
requirement. It is noticeable that TCEP does not induce any interruption or
costs in terms of the optimized metrics while performing a transition to a
completely new OP mechanism. Hence, it can be seen that the execution of
transition takes place in a live and seamless manner. In the next sections, we
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further investigate the transition cost for the different algorithms for transi-
tion and selection of placement mechanism and evaluate seamlessness based
on the throughput (number of output events).

4.4.4 Evaluation of Transition Execution Strategies

This section evaluates the (i) cost of transition execution strategies and
(ii) the seamlesssness of the proposed startegies. For this, we consider the fol-
lowing metrics: (i) transition time, which is measured by the total time taken
from the start of transition until its end (cf. Equation (4)), (ii) transition over-
head, which is measured as the total amount of overhead (in MB) to perform a
transition (cf. Equation (5)), and (iii) throughput in delivery of complex events,
which is measured as the ratio of the actual vs expected number of complex
events (in %) (cf. Definition 11). We extend the transition execution strategies Cost perfor-

mance
analysis

explained in Algorithm 1 and Algorithm 2 to migrate the operator graph both
concurrently and sequentially, respectively. The four evaluated approaches
are enlisted in Table 10. Furthermore, we increase the query load up to 10
queries in order to impose changes in the environmental conditions that trig-
ger transitions in the TCEP system.

Cost of Transition Strategies with Learning-Based Selection

We analyze the cost of the different transition strategies proposed in Sec-
tion 4.3.2. The transition strategies work together with the learning algorithm
that is responsible for selecting the OP mechanism for a transition.

Besides the different transition strategies, we implemented a requirement-
based selection algorithm that selects a placement mechanism by match-
ing the QoS requirement with the optimization criteria for comparison with
our learning algorithm. If there exists more than one mechanism matching
the QoS requirement, there is a random selection. In contrast, the genetic
learning-based selection algorithm takes into account the performance of the
OP mechanism, as explained in Section 4.3.1.

Figure 26 shows the transition (a) time and (b) overhead incurred by the
transition strategies using different selection algorithms.
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(a) Transition time for the proposed algorithms.
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(b) Transition overhead for the proposed algorithms.

Figure 26: The plot shows the transition cost in terms of time and overhead for the
proposed transition algorithms. SMS transition strategies possess a neg-
ligible overhead in state transfer during operator migrations, and hence,
can perform the transition in a mean time of 1.82 seconds compared to
6.29 seconds required by MFGS Sequential strategy. Moreover, the SMS
Concurrent strategy has only a negligible overhead of 0.72 bits, thanks to
the cost-optimal algorithm (cf. Line 14).

Concurrent
transitions

substan-
tially better

in time

Here, the costs of transition includes the cost in time and overhead as rep-
resented earlier in Equation (4) and Equation (5), respectively in Section 4.2.2.
It is noticeable that MFGS algorithms possess higher transition times than
SMS algorithms. This is due to the state involved that is to be transferred by
the MFGS algorithms, whereas the SMS algorithms optimize for the minimal
amount of state transfer (cf. Equation (6)). There is a substantial improve-
ment in the transition time for concurrent strategies compared to sequential.

Finally, using the SMS concurrent strategy, we achieve an effective mean
transition time of 1.82 seconds for the load of ten congestion detection queries
involving multiple stateful operators. We see an effective reduction of around
4 seconds compared to the MFGS sequential transition strategy that takes
6.29 seconds to finish a transition with state transfer. The only cost param-
eter involved in SMS transition strategies is in terms of selection of the OP
mechanism and transition coordination costs in terms of communication be-
tween the distributed nodes.
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In the second plot (b), we observe the total transition overhead incurred
for the selection of a OP mechanism, transition coordination, and operator
migrations due to the transition (Equation (5) in Section 4.2.2). Consistent
with the transition time results, we observe lower overhead of SMS algorithms
due to no state involvement for the migration. Note the scale of the y-axis is Transition

overhead is
only a few
bits

logarithmic to show the amount of overhead involved for SMS algorithms that
is substantially lower. In particular, we have only a mean overhead of 0.72 bits
for SMS concurrent and 379.79 bits for SMS sequential algorithm, where the
former is more than 2000× better and the latter is around 5× better than the
MFGS concurrent strategy.

The second observation from these plots is that the genetic learning-based
selection algorithm performs equally well compared to the requirement-based
selection algorithm. This is because of no offline training costs and negligible
learning costs. In Section 4.4.5, we elaborate on the learning costs of these
algorithms. In summary, the SMS strategies both sequential and concurrent
perform the best in both transition time and overhead, with a mean transi-
tion in the range of 0.85 − 2.83 seconds, ten queries, compared to 35 seconds
when the transition is performed naively using the stop and start migration
strategy for the congestion detection query. We analyze costs per operator
in the next section.

Cost of Transition Strategies for Different Operators

In this section, we analyze the cost incurred by the transition execution
strategies in detail.

The transition time includes time taken to migrate the operator graph as
well as the time taken to wait for the previous operators or predecessors to
migrate and start executing at the target broker (cf. Section 4.3.2). For exam-
ple, the Conjunction operator waits for migration until Average and Stream
operators start their operation at the target brokers. Leaf operators (Stream
or producers) have no wait time as they have no predecessors. The operator
transition overhead involves the cost for first, the state involved in migration
for stateful operators like Window-Aggregates, Joins, and Sequences, and (ii)
second, the coordination overhead for the operator graph migration in terms
of communication, such as acknowledgments (cf. Section 4.3.2: Algorithm 1
and Algorithm 2). Stateful operators have costs in both dimensions, commu-
nication as well as migration costs depending on the transition strategy –
MFGS or SMS, while stateless operators like Filters and Stream do not have
any state migration costs, but do have a small communication cost again
depending on the transition strategy – sequential or concurrent.
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Figure 27 shows the (a) mean transition time and (b) overhead using theStateful
operator

transition in
few millisec-

onds

transition strategies for all the operators while executing ten incrementally
deployed congestion detection queries Q5 (cf. Figure 22). The total migration
time correlates with the number of operators and the transition overhead in
the second plot. Table 11 summarizes the mean, minimum, and maximum
values of the distribution. It can be seen that the stateless operators like
Stream, although high in number (90 operators), can be migrated in around
245.3 ms (first column in table). While other operators like Conjunction and
Sequence need slightly higher mean transition times of 356.89 and 185.32 ms,
respectively, with a mean and maximum transition overhead of 6.2 − 130.98

MBs, and 15.06 − 129.9 MBs, respectively.
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(b) Transition overhead.

Figure 27: Transition time and overhead observed for the different operators in the
congestion detection query. Operator transitions are performed in the or-
der of few milliseconds and with very low overhead using our transition
algorithms.
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Operator
Transition time (in ms) Transition overhead (in MB)

mean min max mean min max

Average 59.43 15 411 5.02 13.679 bytes 64.72

Conjunction 356.89 119 1404 6.2 5.53 bytes 130.98

Sequence 185.32 15 556 15.06 35.507 bytes 129.9

Stream 245.38 8 913 1.67 1.315 bytes 64.72

Table 11: Mean, min, and max values of transition time and overhead per operator
for 10 incrementally deployed Q5 queries. Here bold values (for Sequence
operator) incur low overhead among stateful operators.
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(b) Transition overhead observed for different operators and transition algorithms.

Figure 29: Transition time and overhead measurement for different operators for ten
incrementally deployed Q5 queries. SMS strategies possess minimum mi-
gration time and overhead due to the minimal amount of transition over-
head.
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Operator # ω in 10 Q5

Stream 90

Conjunction 80

Average 30

Sequence 10

Table 12: Number of operators in ten congestion detection query (Q5 in Figure 22)
used for evaluation.

Figure 29 classifies the transition cost analyzed in Figure 27 based on
the transition strategies. The MFGS sequential strategy performs clearly the
worst because of the high amount of state overhead amounting 60.12 MB
(mean value for the Sequence operator). In contrast, the SMS strategies re-
quire very short time to transit, a mean time of 41.1 ms for 30 Average opera-
tors and 85.1 ms for 90 Stream operators. Table 12 denotes the number (#) of
respective operators per ten queries of congestion detection (Q5) in a single
run. The Conjunction operator takes the highest amount of time to migrate
due to high number of operators involved. The same applies to the Stream
operator. The number of Sequence operators to be migrated is less; however,
due to the high amount of state (~60 MB) to be transferred it takes longer to
transit. Table 25 in Section A.1.1 summarizes the mean transition time and
overhead required by the different strategies shown in the earlier Figure 29.

In summary, we analyzed the cost per operator for the transition strate-
gies. Consistent with our findings in the previous section, the MFGS strate-
gies take longer to transit than SMS strategies. The SMS concurrent strategy
performs the best since the costs are minimal because of the optimization
performed in the algorithm.

Seamlessness in Transition Execution

In this section we aim to verify the seamlessless in the transition execution for
the proposed transition strategies. The measurements were taken when tenTransition

strategies
consistently

deliver
events

congestion queries were in execution. Figure 30 measures the throughput
in the delivery of complex events while TCEP’s transition strategies are in
execution. We observe a slight output disruption (mean of 0.02%) for MFGS
Sequential and Concurrent algorithms, because of the large state transfer. In
contrast, both SMS transition strategies exhibit live and seamless properties
and, hence, delivers complex events while ensuring throughput of 100% for
both the selection algorithms.
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Figure 30: Throughput measurements using the different transition strategies and
selection strategies for OP mechanisms. It can be seen that all the transi-
tion strategies consistently deliver complex events and, hence, enabling a
seamless execution of transitions.

4.4.5 Learning Costs of Placement Selection

This section aims to understand the learning costs of the adaptive placement
selection algorithm introduced in Section 4.3.1. Learning

costs are
negligible
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Figure 31: Learning cost comparison with a requirement based selection algorithm.

The following metrics are considered for the costs (i) the time taken to learn
the performance characteristics, in other words, to update the learning model
and (ii) communication cost for the placement selection. The genetic learning-
based learning algorithm has no training costs since the algorithm is based
on online learning. Hence, it induces only a negligible overhead on time within
a range of 2.5 − 3.15 ms (95% confidence interval). Often the update of the
learning model induces no overhead at all. Furthermore, the algorithm does
not induce any communication overhead due to local handling of operator
placement selection.
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Finally, to understand the influence of genetic learning-based selection al-
gorithm on the performance mechanisms transitions, we analyze the transi-
tion costs in terms of time and overhead. We compare the learning algorithm
with a requirement-based algorithm where the selection of a mechanism is
done based on QoS requirements.

In Figure 31, we observe that due to the negligible overhead of genetic learn-
ing algorithm, the cost is comparable to the requirement based algorithm. In
fact, the transition time observed with the genetic learning-based is slightly
less than requirement-based algorithm. In terms of overhead, we see a slight
increase due to the exploration of a suitable placement algorithm that is not
performed in the requirement based algorithm.

4.5 Summary

This chapter proposes the first contribution of this thesis solving the adaptiv-
ity problem to meet the changing Quality of Service requirements in the face
of dynamic environmental conditions. All applications including Internet-of-
Things are inherently exposed to the dynamics of the environment. These
applications have to abide to the changes the Quality of Service requirements
in the face of dynamic environmental conditions. In this chapter, we aim to
meet those changes in QoS requirements by providing adaptation between
Operator Placement mechanisms, so-called transitions, in a CEP system. To
this end, we proposed (i) a programming model that can specify OP mecha-
nisms, (ii) a learning-based selection mechanism to select OP mechanisms
for a transition, (iii) transition strategies that enable live and seamless tran-
sitions while ensuring correctness in results, and (iv) a transition-capable
CEP system, named TCEP, that integrates the aforementioned mechanisms
and models for evaluation. Our extensive real-world evaluation of TCEP using
queries in the context of an IoT scenario and state-of-the-art OP mechanisms
shows that (i) transition-capable OP mechanisms can be specified using our
programming model in a minimum effort, (ii) transition algorithms can fulfill
changing QoS requirements while seamlessly delivering results, and (iii) tran-
sition costs can be reduced to a few milliseconds in terms of time and a few
Bytes in terms of overhead while incurring negligible learning costs using
the proposed methods.
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Network-centric Query Execution

This chapter provides a solution to the efficiency problem in the context of
the Internet of Things applications. In many IoT applications, efficiency in Why

network-
centric?

delivering the events is of extreme importance, for instance, in terms of la-
tency, if violated would lead to dire consequences. An example of this is a
fraud detection application that would lead to heavy monetary loss to the fi-
nancial institutions if fraud is left undetected or if detected not in a timely
manner. To avoid such situations, a CEP system has to detect such complex
events with very high efficiency.
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Figure 32: Overall system architecture with the focus on INETCEP showing hybrid
execution of operator graph on underlay as well as on the overlay network.

Classical CEP systems [23, 22, 99, 54] performs operator graph process-
ing in the form of an overlay network, which costs additional latency to
ship events to the commodity hardware where actual processing is per-
formed. A solution to mitigate this inefficiency is by offloading event pro-
cessing to in-network resources, such as switches and routers. As pointed
out in Chapter 2: Section 2.2.3, in-network processing in this realm has
been investigated, for instance, using programmable data plane languages

113



114 Network-centric Query Execution

like P4 [51, 66, 150], using other Software-defined protocols [130], and us-
ing Information-centric Networking (ICN) paradigm [61]. However, none of
the above approaches model event processing and resolve continuous data
streams, as well as queries using in-network processing resources while
efficiently meeting the quality requirements.

To this end, we provide efficiency in event processing by proposing a unified
communication model, named INETCEP, over an Information-Centric Net-
working architecture to enable processing of continuous data streams. Fur-Solution to

the
efficiency

problem

thermore, we provide an expressive meta-query language that complements
the data plane language of ICN to specify complex events. The efficient query
execution algorithms enables fast and robust processing of events by utilis-
ing the distributed set of ICN nodes. To understand the research challenges
addressed in this chapter, recall the overall architecture introduced in Chap-
ter 3, with INETCEP-centric components as seen in Figure 32.

We focus on challenging Quality of Service (QoS) requirements of exemplary
IoT applications (seen on the right side of the figure), such as in terms of la-
tency. For instance, in a fraud detection application, a very high input event
rate (~100K events per second) has to be processed with very low latency
in the order of a few microseconds [13]. We aim to utilize ICN networking
architecture to realize network-centric CEP because it provides numerous
benefits as follows. (i) In ICN, data is the first class citizen as it shifts the fo-ICN

provides
network-

centric
abstrac-

tions, but...

cus of addressing from named-host to named-data. (ii) Some core concepts of
ICN such as in-network programmability and caching are highly beneficial to
realize event processing on top of ICN architectures. Moreover, as explained
in Chapter 2: Section 2.2.3, previous work has shown advantage of data pro-
cessing in the underlay using ICN [61, 139, 141, 140]. However, current ICN
architectures pose strong limitations in their support to process continuous
data streams or the so-called push-based communication, which is required
to realize CEP on top of ICN. Ideally, a networking architecture should enable... doesn’t

support
continuous

streams

support for both the communication mechanisms pull- and push-based to
enable a broad spectrum of applications. Furthermore, ICN architectures
need a way to resolve and process queries to derive complex events while
ensuring the QoS requirements of the applications. These observations lead
us to our second research question and its sub-questions answered in this
chapter.

RQ2: How to increase the efficiency in executing queries using in-network
architectures, particularly ICN?Second

Research
Question

and its sub
RQs

RQ2.1 How to enable continuous data stream and query processing over the
ICN substrate?

RQ2.2 How to improve efficiency in executing CEP queries on top of ICN?
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We discuss the key research challenges pertaining to the above research
questions in the following. (RQ2.1) An efficient design of a unified communi-
cation mechanism (coexisting push and pull) is challenging because of two
reasons. First, classical ICN architectures are inherently pull-based, which

Challenge 1:
ICN is
inherently
pull-based

requires a major redesign of the communication model of ICN. Second, the
continuous data stream might disturb the flow balance of the networking
architecture that can cause congestion and eventually packet loss or in the
worst case can disrupt the stream completely. Therefore, the first contribu-
tion proposes a unified communication model that enables coexisting push-
and pull-based communication mechanisms for ICN architectures while effi-
ciently providing flow balance using a proposed rate-based lossless flow con-
trol mechanism. (RQ2.2) Existing ICN architectures fall short in expressing
complex events. Moreover, existing CEP programming models cannot be eas-

Challenge 2:
lack of
query ab-
stractions

ily reapplied on top of ICN because of heavy dissimilarities in event as well as
processing layer semantics. Another challenge is to realize distributed event
processing using Operator Placement on top of ICN that is quite different than
overlay network processing as done in classical CEP systems. Thus, the sec-
ond contribution proposes a CEP Query Engine for the data plane of ICN with
the following concepts: (i) A meta query language36 that complements the data
plane language of ICN with the standard CEP operators and the core event
processing semantics required to express CEP operator graphs; (ii) Network-
centric query execution algorithms that enables core CEP functionalities like
query reuse and Operator Placement mechanisms. The algorithms reactively
handle the data stream and process them in a parallel manner to derive the
complex events in an efficient manner while ensuring the correctness. Key

publications
on
INETCEP
and
structure

The findings presented as part of this chapter are based on the author’s pre-
vious publications in [138, 26]. The structure of this chapter is presented as
follows. We start by introducing the extended system model and the problem
statement in Section 5.1. Section 5.2 explains the design decisions, demon-
strating the need of unified communication mechanism as well as the query
engine for ICN substrate. Afterwards, we present the design of the proposed
INETCEP networking architecture comprising the three main contributions
enlisted above. Section 5.3 provides an extensive evaluation of INETCEP us-
ing a real-world system implementation of ICN architecture, Named Func-
tion Networking [61]. INETCEP and its unified communication mechanism, Publicly

available,
try it out!

along with the query engine, are publicly available at https://github.com/

luthramanisha/INetCEP together with the evaluation datasets and emulation
environment used for reproducing the results shown in this chapter.

36We use “meta” for our query language as the semantics of the language complements the
standard language of the used ICN architecture (Named Function Networking).

https://github.com/luthramanisha/INetCEP
https://github.com/luthramanisha/INetCEP
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5.1 Analysis of Efficiency in Network-centric Query Execution

This section discusses the extended system model in Section 5.1.1 with
specifics to the contributions of this chapter, in addition to the previously
introduced common system model in Chapter 3: Section 3.2.1. Later, Sec-
tion 5.1.2 details the problem space by considering alternative approaches
and concludes with a summary of limitations.

5.1.1 Extended System Model

This section describes the network-centric entities corresponding to ICN ar-
chitectures. We consider the deployment infrastructure of edge-fog-cloud for
the execution of queries. Here, we assume ICN-capable hardware or so-called
routers along with standard TCP/IP switches at the fog layer. At the cloud
layer, we assume the presence of more powerful machines from the data cen-
ters. Each node in the infrastructure can act as a producer, consumer, and
broker. A node is an ICN node if it complies with the ICN protocols such
as NDN (Named-Data Networking) and CCN (Content-centric Networking) (cf.
Chapter 2: Section 2.2.2). An ICN node is situated at the fog layer and can
take a broker role, while the producers and consumers are end-devices situ-
ated at the edge, such as a sensor or a mobile device, or at the cloud layer
inside a data center. Each ICN node comprises of (i) a Pending Interest TableIn-network

elements of
ICN

(PIT), which stores the requests from the consumer, (ii) a Forwarding Infor-
mation Base (FIB) table, which acts as a routing table to forward requests
towards the source, and (iii) a Content Store (CS), which acts as a cache for
the data objects. Here, each event tuple from IoT devices is referred to as
a single data object. In terms of QoS requirements, we focus to provide la-
tency (cf. Definition 6), throughput (cf. Definition 11) and accuracy demands
(cf. Definition 13 and Definition 12) of the applications, which are the most
critical objectives for nearly all applications considered for event processing.

Unified Communication Model

For the unified communication, we assume that the communication can be
initiated by both ends, consumer or producer. The consumer can initiate a
pull request using the Interest as conventionally done in an ICN architecture
(cf. Chapter 2: Section 2.2.2). Moreover, a consumer can also send a contin-
uous request or a query Q = {q, qname,QoS, τqos} as described in the common
system model Section 3.2.1. Here, qname is used to identify the query in PIT
similar to the name prefix name is used to identify the request served by
an Interest packet in classical ICN architectures. The producer can initiate
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the communication by sending a continuous data stream that has to be pro-
cessed by the CEP engine presented in this contribution.

An ICN flow consists of packets bearing the same data object name. More-
over, all the flows are considered to be independent of each other and can
change dynamically. For instance, the event rates are known to vary in a dy-
namic environment. Finally, we assume a FIFO order for the packets in a flow.

5.1.2 Problem Space

This section, first, discusses the limitations of plausible solutions for achiev-
ing both push- and pull-based communication functionalities using exist- Limitations

of
alternative
approaches

ing consumer-initiated [128], [131], [141] or producer-initiated [225], [226],
[134] communication mechanisms as present in existing ICN architectures.
Afterwards, we discuss the limitations of using existing naming schemes of
ICN [128], [131] in expressing complex events.

Communication Mechanisms

A potential solution to enable continuous data stream and query processing
over the ICN substrate is by polling queries using standard Interest packets
at regular intervals. We call this Periodic Request mechanism [141] or mimic
push by pull since push functionality is imitated while using pull-based com-
munication. First limitation: Figures 33 (a) and (b) illustrate the commu-
nication mechanism and the problems with this approach, respectively. The
consumer initiates the communication at T1 by continuously issuing a query
using an Interest packet at a regular interval, say rI . At T2, the consumer re-
ceives the data object back in the form of a Data packet from the producer for
each Interest packet based on the name. Each time a Data packet matching
the Interest packet name is received, the pending interest is removed from
the PIT (represented as strikethrough in the subfigure b indicating the PIT
entries of broker node 1). Based on the regular interval rI , a new entry in
the PIT is created for each Interest packet (e.g., at time T2). This approach High

overhead in
terms of
interest
packets

is not suitable because of the following problems: (i) the number of Interest
packets needed to poll for a continuous query, (ii) the state in the PIT for each
Interest packet sent by the consumer, (iii) very short polling interval is re-
quired for latency-sensitive applications, that further increases the overhead
in terms of traffic. In contrast, a large interval would lead to high response
times, which is alleviated even more with the number of brokers involved in
forwarding or processing the data, as noted in figure (a) by red circles at
time T3 and T4.
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ProducerBroker 1Consumer

T1

T2

T3

T4

Broker 2

(a) Periodic request mechanism (mimic push by pull).

Pending Interest Table

Name Face(s)

/node/AggrData 0

Pending Interest Table

Name Face(s)

/node/AggrData 0

/node/AggrData 0

T1 – T2: Broker 1 T2 – T3: Broker 1

Pending Interest Table

Name Face(s)

/node/AggrData 0

/node/AggrData 0

/node/AggrData 0

... ..

T3 – T4: Broker 1

Polling Interest <name>

Renew with periodic Interests

(b) Pending Interest Table entries of Broker 1.

Figure 33: First limitation stands for enormous overhead using the periodic request
mechanism in terms of number of packets and the state in PIT.

Another problem with this approach is the stale data response (cf. Fig-
ure 34) from the Content Store as seen in the CS of consumer, broker 1, and
broker 2 at time T2 for the communication in Figure 33 (a). The second limi-Stale data

in CS tation is that an old data is served from the CS of broker 1 at time T2, while
a new data object is sent by the producer as seen in the CS of broker 2. A
solution to this problem could be to send an Interest packet with an indica-
tion to fetch a new data object and expire the old data object in the PIT entry.
This can be done, for instance, by appending sequence numbers similar to
TCP packets [227] to the Data packet. Still, this mechanism would require
additional synchronization, which results in further management overhead
in addition to the overhead caused by multiple Interest packets.

Another possibility is to use ICN architectures that provide only the
producer-initiated communication mechanism [144] while supporting the
pull-based communication mechanism. Ahmed et al. [134] proposed to sup-
port what we call “mimic pull by push” by using a three-way message ex-
change of what amounts to a one-way message in a pull-based communica-
tion mechanism, as illustrated in Figure 35. In their approach, the authors
use so-called beacon packets, as shown in Figure 35, that announces a name
served by the data objects generated by the producer. The beacon packet
initiates a virtual PIT entry so that later Data packets can be forwarded to
the consumer using the same path. This serves as a callback to the con-
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Content Store (CS)

Name Data

/node/AggrData <old_Data>

T2: Consumer, Broker 1 T2: Consumer, Broker 2

Content Store (CS)

Name Data

/node/AggrData <old_Data>

/node/AggrData <new_data>

Broker 1 still stores old data 

in CS at T2 Simultaneously, Broker 2 has 

<new_data> at T2

Figure 34: CS entries of Consumer and Broker 1 and 2 at T2 illustrating Second
limitation of the old entries returned from the Content Store of Broker 1.

sumer. If the consumer is interested in the data object with name prefix
name announced in the beacon packet, the consumer expresses an interest
in the data object using an Interest packet, which is sent by the producer
in the third step. Third limitation: Apart from the overhead of three-way Three-way

message
exchange

exchange, this approach suffers from other major limitations such as the
double state in the PIT; one of the virtual PIT entry related to the beacon
packet (/node/AggrData) and another of the PIT entry corresponding to the
Interest packet (/node/AggrDataI) as illustrated in Figure 35 (b). Moreover,
the network architecture has to support handling two kinds of Interest pack-
ets: one from the producer (so-called beacon packet) is not supposed to fetch
data and another that is supposed to fetch the data.

One more plausible way to support continuous queries is using long-lived
Interest packets [145], which also has multiple side effects. The approach
is to create long-lived PIT entries that are not removed after a Data packet
is received. Fourth limitation: However, this accounts for a larger state in PIT entry

never
removed

PIT that stays as long as the PIT entry remains, which may become unneces-
sary when the consumer is no more interested in the complex event. Another
overhead is to renew the PIT entry each time so that it does not expire and
predicting the time of expiry for each PIT entry is not a practical solution.

Hierarchical Naming Schemes of ICN

The existing naming schemes of ICN architectures are restricted in terms of
expressing higher-level interests in the data items from the producer. It as-
sumes a hierarchical naming scheme to address named data,
e.g., /cardTerminalA/cardAmount, to fetch data items from card terminal, e.g.,
$450 that acts as a producer. A simple way to achieve a naming scheme to
specify higher-level interests for CEP operators would be to include opera-
tor identifiers as follows: /cardTerminalA/max/cardAmount. However, this has
several problems as follows. Fifth limitation: (i) It is restricted to data items
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ProducerBroker 1Consumer

T1

T2

T3

T4

Broker 2

(a) Beacon mechanism (mimic pull by push).

Pending Interest Table

Name Face(s)

/node/vAggrData 0

Pending Interest Table

Name Face(s)

/node/vAggrData 0

/node/AggrDataI 0

T1 – T2: Broker 1 T2 – T3: Broker 1

Pending Interest Table

Name Face(s)

/node/vAggrData 0

/node/AggrDataI 0

... ..

T3 – T4: Broker 1

Virtual PIT entry

(b) Pending Interest Table entries of Broker 1.

Figure 35: Third limitation: Three-way exchange of packets and double state in PIT
is required.

from a single producer and data transformation from multiple producers is
not possible. (ii) Conventionally in ICN, the processing function is executedSingle node

of failure
and lack of
expressive-

ness

at the consumer, which can be inefficient for queries involving multiple oper-
ators or scenarios with multiple queries. (iii) This approach is not extensible
and expressive as queries with multiple operators would mean appending
them in the naming scheme that further reduces the readability. Therefore,
we need an expressive query language that complements the naming scheme
of existing ICN architectures, such that higher-level operations can be speci-
fied on the data while performing standard network-centric functions.

Sixth limitation: Another problem is how to enable efficient query execu-
tion in the ICN network. The standard ICN resolution engine can only resolve
Interest and Data packets based on the name prefix name and is unable to
express a query. Moreover, engine of Named Function Networking [61] suf-
fers from limitations related to name prefix as detailed above. A way to dealLow

efficiency of
overlay

networks

with this problem is to offload to a separate CEP engine node. However, cen-
tralized processing is not a solution since this would unnecessarily overload
the network with unwanted data, which could have been transformed before
being sent to the central CEP engine. Moreover, a central CEP engine node
is susceptible to a single node of failure for large-scale IoT applications. An-
other way is to offload processing to a distributed CEP system in an overlay
network, as conventionally done in CEP systems. However, similar to a cen-
tralized solution, using this solution also leaves the network with unwanted
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Approach Limitations

Periodic Request mechanism [141]
(mimic push by pull)

(i) This approach demands a very high number of Interest packets
which eventually leads to a large PIT state. Also, very short polling
interval is required for latency-sensitive applications that would
unnecessarily congest the network.

(ii) A separate mechanism to deal with stale data is required.

Beacon mechanism [134] (mimic
pull by push)

(iii) This method requires three-way message exchange of what
amounts to two-way exchange that results into unnecessary over-
head.

Long-lived Interests [145] (iv) This approach results into larger PIT state amounting to as
long as the interest stays. Moreover, a prediction on the time until
the long lived interest remains in PIT is infeasible.

Hierarchical Naming Scheme [128]
for continuous queries

(v) Transformation of data arriving from multiple producers is not
possible. It requires that the data is processed only by the con-
sumer, which can lead to single node of failure. This approach is
not extensible as CEP may require multiple nodes for processing
operator graphs.

Query Resolution Engine of NFN [61] (vi) Besides the limitations in naming scheme (as stated in fifth
limitation) the query resolution engine of NFN is incapable of re-
solving CEP queries because of its original design. Moreover, it
only supports resolving so-called named-functions as part of the
application layer and not inside the network layer like we do.

Table 13: Summary of six key limitations derived from the analysis of alternative
approaches.

data. Moreover, overlay networks are inefficient, and need several middle-
boxes where the data has to be shipped and, hence, unable to meet the chal-
lenging QoS demands (e.g., latency). To deal with this limitation, we propose
centralized and distributed query processing algorithms in the data plane of
ICN that efficiently parse, place, and execute queries.

Overall, we derive six key limitations of the alternative approaches summa-
rized in Table 13 that are mitigated by the proposed unified communication
and query execution mechanisms.

5.2 The INetCEP Architecture

This section presents the overall design of the proposed networking archi-
tecture. First, Section 5.2.1 presents the core ideas to solve the research
problems introduced in Section 5.1. Later, Section 5.2.2 presents the uni-
fied communication mechanism and Section 5.2.3 presents the meta query
language as well as the CEP query engine.
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5.2.1 Core Ideas

In the following, we present the core ideas of this chapter and how we deal
with challenges pertaining to the research questions discussed previously
(i) unified communication and flow control and (ii) processing of continuous
data stream and query processing on top of ICN.

RQ2.1: A Unified Communication Model

We address the limitations enabling co-existing pull- and push-based com-
munication mechanisms as part of a novel unified communication model. To
accomplish this, we enhance the data plane mechanisms of ICN with addi-
tional packets and their behavior for the unified communication. Table 14Novel data

stream and
query

packets

summarises the key differences to the current ICN architectures, and IN-
ETCEP architecture with the proposed unified model. One of the major dif-
ference is in the packet types and their handling at the ICN node. We pro-
pose three new packet types Data Stream, Add Continuous Interest and Remove

Continuous Interest, as well as changes to the data structures to handle
them. The handling of the new packets is proposed in the data plane in
conjunction with the existing Interest and Data packets. For instance, we
trigger query processing on the reception of a new Data Stream packet and we
store Continuous Interest in PIT and the (transformed) Data packets in CS so
that the complex event can be retrieved efficiently. To cope with the flow im-
balance problem, we propose a lossless rate-based flow control mechanism
based on [228], which balances the input event rate using active feedbackFlow control

mechanism
to deal with

event loss

to the producer based on the available resources on the links and flows. We
advance the work [228] by proposing a distributed algorithm for a large net-
work, removing the overhead of management packets, and incorporating the
approach for ICN architectures. The proposed flow control mechanism aims
to reduce the response times further and prevent any event loss.

RQ2.2: Reactive and Asynchronous Handling of Data Streams

We propose network-centric query execution algorithms that reactively han-
dles the continuous flow of data streams and plan execution of queries on the
data plane of ICN (cf. Table 14). The algorithms ensure an efficient distribu-Highly

expressive
meta query

language

tion of operators on the available infrastructure to deliver the required QoS
requirements. As noted in the system model (cf. Section 5.1.1), the query
Q includes the QoS specification that has to be fulfilled by the INETCEP
architecture. Accordingly, the algorithm decides to either resolve the query
centrally or in a distributed manner.
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ICN Description INETCEP Description

Packet Types
(cf. §5.2.2)

Interest Interest packet is used to express a pull-based
request on a data object

Interest Interest packet is used to express a pull-based
request on a (transformed) data object

Data Data packet returns a response on the pull-
based request including the data object of in-
terest

Data Data packet returns a response on a pull-
(Interest) or push-based request (Continuous
Interest) including the data object

- - Data Stream Data Stream packet encapsulates a single event
tuple from the continuous event stream from
the producer

- - Add Continuous
Interest

Add Continuous Interest packet expresses a
push-based (continuous) request on fetching a
(transformed) data object

- - Remove Continuous
Interest

Remove Continuous Interest packet deregisters
the push-based request specified by Continuous
Interest on a (transformed) data object

Data Structures
(cf. §5.2.2)

PIT Stores pull-based requests in a table form in-
cluding the Interest name prefix and the face
information

PIT Stores pull- and push-based requests in a table
form including the Interest name prefix and the
face information

CS Stores data objects already served by pull-
based request for other consumers in a table
form including the Interest name prefix and the
data object

CS Stores (transformed) data objects already
served by pull- or push-based request for other
consumers. Also acts as an intermediate buffer
for stateful operators like windows

FIB Stores routing information towards producers
for the incoming requests in a table form includ-
ing the data object name prefix and face infor-
mation

FIB Stores routing information towards producers
for the incoming pull- or push-based requests
in a table form including the data object name
prefix and face information

Data Processing
(cf. §5.2.3) - - CEP engine A meta query language to express CEP queries,

a query parser, and query deployment module
to process and derive complex events

Table 14: Key differences of INETCEP network architecture to traditional ICN architectures ("-" means no support). Here, PIT is Pending
Interest Table, CS is Content Store, FIB is Forwarding Information Base, and CEP engine is the Complex Event Processing
engine [138, 26].
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An operator placement mechanism is proposed to distribute the query on
to a distributed set of fog-cloud infrastructure comprising of ICN nodes. TheNetwork-

centric
operator

placement

operator placement is complemented with the rate information from the flow
control mechanism that ensures the correctness of delivered events. Using
the operator graph data structure, we decompose the query into primitives,
so-called sub Continuous Interest (s) that are executed on the ICN data plane.
Furthermore, parallel processing of sub Continuous Interest ensures a short
response time and deals with higher event rates requirements of IoT appli-
cations.

5.2.2 Unified Communication Model

This section provides the description of the unified communication model
providing a solution to RQ2.1 (how to enable continuous data stream pro-
cessing?). We identified four limitations of the alternative approach that we
mitigate with our design (cf. Table 13). In the following, first, we provide an
overview on the unified communication model. Later, we explain the key com-
ponents of the model.

Conceptual Overview

The proposed unified communication model supports both push- and pull-
based communication mechanisms. This is accomplished by integrating
three novel packet types in ICN architecture, Data Stream packet that en-
capsulates the continuous event stream, Add Continuous Interest packet
that initiates a continuous query or simple interest, and Remove Continuous

Interest packet that initiates the removal of the continuous query or interest.
In the following, we explain how both the communication mechanisms are
enabled in our approach.

In the pull-based communication mechanism, as illustrated in Figure 36
a, the consumer initiates a request on a data object by sending an Interest

packet. The Interest packet is forwarded by the brokers towards the producer
based on the FIB entries, much like the routing table in IP protocol. On theInterest can

encapsulate
both

request and
query

way to the producer, the PIT entries are updated so that the data object can
follow the path back to the consumer. As soon as the producer receives the
Interest packet, the data object in the Data packet matching the name is sent
back to the consumer. Recall, that name represents the content of the data
objects corresponding to the Data packet in ICN.

We propose the push-based communication mechanism as illustrated in
Figure 36 b. Here, the producer initiates communiciation by sending a con-
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tinuous data stream packet Data Stream towards the broker network (as
seen in the figure comprising of two brokers). The producer uses multi- Continuous

interest for
push-based
mechanism

cast for the Data Stream packet, in order to disseminate it to all the bro-
kers, so that the same can be forwarded towards the consumers. The con-
sumer expresses interest in a higher-level event or a complex event using a
Query Q = {q, qname,QoS, τqos} encapsulated in an Interest or Add Continuous

Interest packet (Add C. Interest in Figure 36 b). Here, qname is used to iden-
tify the query in PIT similar to the name prefix name is the Interest packet
in consistent to ICN architectures. In contrast to the Interest packet, the Add

Continuous Interest registers a continuous query such that the results are
delivered to the consumer unless it is removed. The consumer sends a Remove

Continuous Interest packet to remove the query identified using the qname

by removing the entry from the PIT (Remove C. Interest Figure 36 b).

ProducerBroker 1Consumer Broker 2

T1

T2

T3

T4

P

C

INT. DATA

(a) Consumer-initiated communication mechanism.

ProducerBroker 1Consumer Broker 2

T1

T2

T3

T4

P

C

DS

(b) Producer-initiated communication mechanism.

Figure 36: The unified communication mechanisms supported by INETCEP. The
subfigure (a) shows the pull-based mechanism, while (b) shows the push-
based mechanism [138].

In this way, a basic pull- and push-based communication is established
in the proposed unified communication model. In the next sections, first, we
describe the proposed packet types and its structure in detail. Second, the
handling of the new packet types in the node components, namely, PIT, FIB,
CS and the novel CEP engine are discussed. Finally, the flow control mech-
anism that enables efficient processing of continuous data streams in ICN
is presented.
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Packet Types and Structure

To better understand how we resolve the limitations summarized in Table 13,
we first explain the newly introduced packets and the existing packets su-
ported by INETCEP. Table 15 shows the packets supported by INETCEP, in-
cluding the basic description. Each packet in ICN includes a fixed-size header
depending on the packet type, a variable-length data object name prefix, op-
tional type length value format representing the packet encoding, and the
payload that includes the data object (cf. Chapter 2: Figure 7) [138]. In addi-
tion to the newly introduced packets, we modify the Interest and Data packets
as well to include data transformation function, which is explained as follows.

(i) The Interest packet is used to express a pull-based request on a simple
name prefix that fetches a data object or a CEP query. It can transform
the data object to deliver higher-level information to the consumer, however,
not in a continuous form. In this way, the Interest packet fulfills the basic
functionality required by classical ICN architectures, as well as support trans-
formation of data for CEP. The consumer can use an Interest packet to issueDiscussion

of new
packets

what we call a pull-based query that is encapsulated in the variable-length
name field in the packet. In contrast to Continuous Interest, the function of
this query is to fetch the aggregated data only once and not continuously.
The packet structure comprises a common fixed-size header including the
msg type and msg length, the variable lenght name and TLV fields.

(ii) The Data or reply packet includes the data object requested by the con-
sumer that satisfies an Interest packet or the Add Continuous Interest (cf.
point (iv) ). The packet structure is similar to an Interest with an addition of
the payload that contains the data object.

(iii) The newly introduced Data Stream packet encapsulates the continuous
data stream arriving from the producers. Recall, a data stream is an un-
bounded stream comprising a set of event tuples e = {(k1, v1), . . . , (kmaxe , vmaxe)},
where each event tuple is timestamped (cf. Section 3.2.1). Here, each packet
encapsulates a single event tuple e.g., (k1, v1). However, based on the size of
the packet in the respective ICN hardware, this is reconfigurable and can be
adapted.

(iv) The Add Continuous Interest packet represents a Continuous Interest

encapsulating a CEP query Q. In contrast to an Interest packet, when an Add

Continuous Interest packet is received at an ICN node, a persistent PIT entry
is created that remains until the consumer explicitly removes the Continuous

Interest using a Remove Continuous Interest (cf. point (v) ). Therefore, using
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Packet Type
Code

Packet Type Packet Description

0x00 Interest Interest packet to express a request or a query on
a (transformed) data object.

0x01 Data Data packet comprising a (transformed) data object
to satisfy a request expressed by an Interest.

0x02 Add Continuous
Interest

Add Query Interest packet to express a continuous
query Q or an interest.

0x03 Remove Continuous
Interest

Remove Query Interest packet to remove a (contin-
uous) query or an interest.

0x04 Data Stream Data Stream packet representing continuous event
stream comprising event tuples.

Table 15: Extended packet type codes (0x02 – 0x04) in comparison to standard
packet types in ICN architectures (0x00 – 0x01) (extension to Chapter 2:
Table 3).

a single packet, the query result is continuously received by the consumer
because of so-called persistent PIT entries to resolve the first limitation (cf.
Table 13). The structure of this packet is similar to an Interest packet with
a distinction in the persistence of the PIT entry.

(v) The Remove Continuous Interest packet is used to remove the persistent
entry of Continuous Interest from the PIT. It indicates that the consumer is
no more interested in getting notifications on the previously registered query
given by Add Continuous Interest. The handling of the packets is done in the
forwarding plane of ICN architecture, as later explained in Section 5.2.2.

In the following section, we detail on the INETCEP node components and
how we deal with the limitations of existing approaches.

Node Components

In this section, we introduce the components of an ICN node of INETCEP
architecture. Each node maintains a CS or a cache, a PIT, a FIB table and a
CEP Query Engine. The cache or CS acts as a store to the (transformed) data
objects fulfilling the request from consumer expressed using an Interest or
Add Continuous Interest packet. Example: A CS entry for an Interest packet
with name /node/temperature stores a temperature value, e.g., 45F, while for
an Add Continuous Interest packet with qname expressing transformation on
the temperature readings such as min, max or avg stores a minimum, maxi-
mum or average from the set of temperature values given by the query Q of
Add Continuous Interest packet. Basically, it stores the name or qname with
the result of each respectively. Therefore, if multiple consumers specify inter-
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est in the same (transformed) data object simultaneously, the result can be
retrieved from the CS and the query does not have to be reprocessed.

In the periodic request mechanism (first limitation in Table 13), the pro-
ducer is continuously polled and would need to reprocess data each time.
In contrast, in our proposed unified communication mechanism, the requestQuery sent

once,
processed

continu-
ously

is only received once and processed periodically for each new Data Stream

packet. To ensure that no stale data objects are returned from the CS and
handle the second limitation, a reactive mechanism is proposed in the CEP
Query Engine that handles query processing each time a new Data Stream

packet is received, as explained in the next subsection. The challenge hereAlways
fresh data
in Content

Store

lies in the resolution, decomposition, ution of the query into sub interests
while complying with the strict QoS demands of the consumers. The reactive
mechanism employed in the Query Engine ensures that the always up to date
result of the query is stored in the CS by discarding the old entries.

The PIT acts as a store to the requests expressed by Interest and Add

Continuous Interest packets that are not yet fulfilled. Basically, it stores the
requests from the consumers, such that the (transformed) data objects can be
returned to the interested consumers. The face and name or qname of the in-
coming Interest or Add Continuous Interest packet, respectively, is stored in
the PIT. Here, face stands for the incoming interface of the downstream node,
e.g., a consumer, name stands for a name prefix of the incoming Interest

packet and qname stands for the name prefix of the query. We distinguishPIT stores
persistent

query
requests,
which...

between the Add Continuous Interest and Interest packets in terms of per-
sistent and transient PIT entries, respectively37. Meaning that when an Add

Continuous Interest packet is received, a PIT is persistent, such that it is
not removed when the transformed data object satisfying the query is re-
ceived, but the data objects are continuously sent to the consumer. The PIT
entry for an Add Continuous Interest is removed on the reception of a Remove

Continuous Interest packet.

In contrast, a transient PIT entry for an Interest is removed once the data
object satisfying the request is received at the node. Therefore, the reactive
mechanism and persistent PIT entries handle the third limitation (cf. Ta-
ble 13) of a three-way message exchange. Furthermore, to deal with the... are

removed if
consumer is

not
interested

fourth limitation, Remove Continuous Interest is introduced that removes
the PIT entry once the consumer is no more interested in getting query up-
dates.

The FIB table maintains the routing information towards the producer as
the Data Stream is received at the broker nodes. This information is used to
forward the Interest or the Add Continuous Interest packets towards the pro-

37Each PIT entry has a flag indicating that the entry is related to an Add Continuous Interest
or an Interest packet.
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ducer. The FIB table also stores the face and name information. Finally, each
node maintains a CEP query engine responsible for (i) query specification us-
ing the meta query language, as well as (ii) parsing, placement, and execution
using the proposed query execution algorithms (cf. Section 5.2.3). In the fol-
lowing, we explain how the newly introduced packet types are handled in the
data plane of ICN to achieve network-centric event procesing.

Data Plane Handling

Algorithm 3 (lines 1-30) and Figure 37 together define the packet handling
for Add Continuous Interest and Data Stream packets on an ICN node. In the
algorithm, we define events, packets, and their handlers using the widely
used definition given by the asynchronous event-based composition model
in [209]. Therefore, events, packets and their attributes are denoted as:
〈Event or Packet Type|Attributes,...〉.

Node

/✕
Add Cont. 

Interest

Content 

Store

Pending 

Interest 

Table

Forwarding 

Information 

Base

Data 

Stream

add face

✓

CEP Engine ✓

✕
Forward

Forward

✓ look up hit ✕ look up miss

✓

drop

✕

Downstream

Upstream

Content 

Store

cache

Pending 

Interest 

Table

Forwarding 

Information 

BaseωA

ωB

ω⋈ωσ

✓

✓/✕

✓ & ✕
drop

drop

data object

CS flow

PIT flow

FIB flow

CEP flow

✕
name

qname
Query 

placed?

✓
✕

CEP Engine

store data object

Figure 37: Data plane handling of newly introduced packets Add Continuous Interest
and Data Stream.

On the arrival of an Add Continuous Interest packet, an ICN node looks up
the CS table for the latest transformed data object that matches the qname

(i.e., the name prefix of the query). If the latest matching entry exists and Handling of
continuous
interests
with query
in ICN

no Data Stream packet arrived after reception of the Add Continuous Interest

packet, the node forwards the transformed data object to the downstream
node (consumer or another broker). Additionally, if an entry in the PIT is
found, the face of the downstream node is updated in the PIT. This is differ-
ent than the handling of an Interest packet because of two reasons. (i) For
Interest packet, a transient PIT entry is created, while for Add Continuous

Interest a persistent PIT entry is created. The match found earlier in the CS
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entry may correspond to the Interest packet instead of the Add Continuous

Interest packet. Hence, the PIT entry for the Add Continuous Interest packet
has to be updated. (ii) The face information needs to be updated since the
Add Continuous Interest may originate from another node other than the one
already existing in the PIT table. Also, since the consumer has to be notified
continuously, the persistent PIT entry must be updated. In contrast, if a PIT
entry is not existing and a CS entry is existing, the packet is discarded since
the node is only used for forwarding (lines 2-7).

Algorithm 3 : Packet handling for Add Continuous Interest and Data

Stream packets [138].

Variables :

CS ← Content Store table of the current node

PIT ← Pending Interest Table of the current node

FIB ← Forwarding Information Base table of the current node

qname ← Name prefix representing a CEP query

facelist ← List comprising face information for matching qname in PIT

eventTuple ← Event tuple contained in Data Stream packet’s payload

data ← (Transformed) data object found in the Content Store

ts ← Timestamp of current event tuple in the Data Stream packet

1 upon receipt 〈 Add Continuous Interest |qname〉 packet do
2 if qname is found in CS .LOOKUP() then
3 data ← CS .FETCHCONTENT(qname);
4 if qname is found in PIT .LOOKUP() then
5 PROCESSPIT(qname, Add Continuous Interest);

6 return data;
7 (Discard Add Continuous Interest packet)

8 else if qname is found in PIT .LOOKUP() then
9 PROCESSPIT(qname, Add Continuous Interest);

10 else if qname is found in FIB .LOOKUP() then
11 PIT .ADDFACE(qname);
12 trigger 〈deployAndProcess|qname〉 (Refer Algo. 5);
13 Forward Add Continuous Interest;

14 else
15 Discard Add Continuous Interest packet ;

16 upon receipt 〈 Data Stream |ds〉 packet do
17 for each qname ∈ PIT do
18 if eventTuple satisfies qname then
19 PROCESSPIT(qname, Data Stream) ;

20 else
21 Discard DataStream packet;

22 function PROCESSPIT(qname, packet)
23 if packet is DataStream and packet .ts > qname.ts then
24 trigger 〈deployAndProcess|qname〉 (Refer Algo. 5);
25 Forward packet;

26 else
27 facelist ← PIT .GETFACES(qname);
28 if qname.face is not found in facelist then
29 PIT .ADDFACE(qname);

30 Discard packet;
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If a CS entry is not found, the node continues to look into the PIT for the
qname (lines 8-9). If found, the new face is added to the PIT (lines 27-29),
which means that the current query is in execution. As soon as a result
is generated, it is forwarded to the respective consumers registered in the
PIT (lines 28-30). Otherwise, if the PIT entry is not found, a new PIT entry
is created and the Add Continuous Interest packet is forwarded towards the
producer based on the FIB entry (lines 10-15). In this step, we distinguish be- Difference

between
plain
requests
and queries

tween the conventional request given by name prefix name or a push-based
query given by name prefix qname. If it is a simple request (with name), it is
directly forwarded towards the producer based on the FIB entry. Otherwise
(if qname) and the query given by qname was not earlier placed, the push-
based query is placed by the CEP query engine, and the sub query inter-
ests (Continuous Interest) are forwarded to other brokers for placement and
processing (as defined later in Section 5.2.3). Similar to the Add Continuous

Interest packet, the Interest packet with a standard request name is han-
dled conventionally similar to ICN architectures, while a pull-based query
qname is handled equally as Add Continuous Interest packet with a distinc-
tion of a transient PIT entry and that the query result is retrieved only once
but not continuously (pull-based). Furthermore, if a data object satisfying
a qname is found in CS then the PIT entry is no more checked for Interest

packet, because it is of no more interest to the consumer (as it has received
the data object once).

A Data Stream packet is handled in a similar way like a Data packet (lines 16-
21), with the exception of query execution on the reception of each new packet Handling of

data stream
packet

(lines 23-25). First, the FIB table is populated to keep track of the path to
the producers to forward the Interest and Add Continuous Interest packets.
Second, if an entry in the PIT exists, the event tuples are processed by the
CEP engine, as explained in the later section. Essentially, it executes the
operator dictated by the qname on the event tuples given by the Data Stream

packet. Otherwise, if the PIT entry is not found, the Data Stream packet is
discarded. This is because there are no downstream nodes registered for the
Data Stream packet (as the PIT entry is missing).

Algorithm 4 : Remove continuous interest handling.

Variables :
PIT ← pending interest table of current node

qname ← qname to be removed from PIT

1 upon receipt 〈Remove Continuous Interest |qname〉 packet do
2 if qname found in PIT .LOOKUP() then
3 PIT .REMOVE(qname);
4 Forward Remove Continuous Interest;

5 else
6 Discard RmQInterest;
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Algorithm 4 explains the handling of a Remove Continuous Interest packet.
On the reception of a Remove Continuous Interest packet, the node checks ifHandling of

remove
continuous

interest

a persistent PIT entry indicated by the flag for the qname given by the Remove

Continuous Interest packet exists. If an entry is existing, it is removed, and
the packet is forwarded towards the next node based on the FIB entries. Oth-
erwise, the packet is discarded since this node did not process the query in
the first place (lines 1–6).

In summary, we show that coexisting pull- and push-based communica-
tion mechanisms can be enabled in the data plane of ICN architecture while
complying with the basic principles of ICN architectures involving pull-based
communication. In the next section, we detail how flow balance is achieved
while processing continuous data streams in the data plane of ICN.

Rate-based Flow Control

As noted in the research challenges, it is important to deal with the flow imbal-
ance problem, which could result in heavy inconsistencies in the delivery of
complex events and hence also affect the accuracy of the former. It is a knownHow to

handle flow
imbalance

problem in IP-based push-based approaches. For instance, current CEP sys-
tems such as Apache Flink deals with this problem using a credit-based flow
control mechanism38 with many similarities to the rate-based flow control,
still it experiences many event loss [228]. In contrast, the proposed flow con-
trol mechanism is lossless, as it avoids overflowing the input buffer of events
by keeping the event rate always below or equal (optimal) to the network
capacity [229]. We advance the previous work by introducing a distributed
algorithm and reducing the overhead of management packets by efficiently
utilizing standard packet types in ICN architecture.

Each producer maintains an estimate of an optimal event rate based on
the capacity of the interconnected network. In the beginning, the producerAdapt flow

based on
rate

information

issues event tuples (encapsulated in Data Stream packet) based on its desired
event rate, which is updated based on the estimates provided by the inter-
mediate packets. As introduced above, each Data Stream and Data packet are
appended with two new fields, underloading bit or u-bit and the event rate
estimate known as stamped rate. Each time the producer sends the next
Data Stream or Data packet, it puts the current rate estimate in the stamped
rate field and clears the u-bit. By monitoring the event traffic, each ICN node,
including the producer, calculates the flow capacity of its incoming and outgo-
ing links. This quantity is called the advertised rate. Therefore, before sending
the next Data Stream or Data packet, the producer puts its current estimate

38A deep dive into Flink´s network stack. https://flink.apache.org/2019/06/05/
flink-network-stack.html [Accessed in May 2021].

https://flink.apache.org/2019/06/05/flink-network-stack.html
https://flink.apache.org/2019/06/05/flink-network-stack.html
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in the stamped rate field and sets the u-bit of outgoing Data Stream or Data

packet to 1. When this packet reaches the next ICN node, it compares the re-
ceived stamped rate to its advertised rate. In case the stamped rate is greater
than the advertised rate, then the stamped rate is set to the advertised rate,
and the u-bit is set in the Data Stream or Data packet. Otherwise, the fields
remain unchanged in the respective packet.

When the consumer receives the Data Stream or the Data packet, the
stamped rate is the minimum of the rate estimate that the flow allows be-
tween the broker nodes and the producer. The consumer acknowledges the
reception of the Data Stream or Data packet to the producer. After a complete
round trip of the network, the u-bit indicates if the flow is constrained along
the path to the consumer or not. In other words, if the rate is limited by the
flow, then the producer adjusts its event rate accordingly. Otherwise, the
event rate is increased until the advertised rate threshold is reached. The
flows where the advertised rate matches the stamped rate are the preferred
links and are used for the operator placement (as discussed in Section 5.2.3).

Theoretically, the advertised rate can be computed as follows. Each ICN
node maintains a list of all seen stamped rates which is referred to as
recorded rates. The set of flows where the recorded rates are higher than the
advertised rates are referred to as unrestricted flows, U . In contrast, the set
of flows with recorded rates lower than the advertised rates are referred to
as restricted flows R. The flows in the restricted set R are the bottleneck,
while the flows in the unrestricted set U are continuously monitored to re-
compute the advertised rates. Given this information, the advertised rate µ

can be calculated as follows:

µ =
C − CR
N −NR

. (12)

In the above equation, C is the overall capacity of the link, CR is the overall
capacity of the restricted set, N = f +kb and NR = fR+kbR, where f, b, fR and
bR are the total and restricted outgoing and incoming flows of the respective
links. When k = 0 and k = 1, N and NR are total and the restricted number
of flows traversing from the link, respectively.

Therefore, by controlling the event rate based on the estimates on the set of
flows, we prevent overflowing the input buffers with events and hence event
loss. Furthermore, by preferring nodes connected with unrestricted flows for
placement, we maintain high throughput of events.
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5.2.3 CEP Query Engine

This section provides the description of the CEP query engine that operates
in the data plane of ICN (solution to RQ2.2: how to improve efficiency in
executing CEP queries?). In this section, we solve the limitations in terms of
expressing queries to be resolved in the data plane of ICN. Particularly, fifth
and sixth limitations discussed in Section 5.1.2: Table 13. In the following,
first the meta query language is explained and then the query deployment
component, including query parsing, placement and execution is explained.

Meta Query Language

This section presents a meta query language to specify CEP queries on the
ICN data plane solving the fifth limitation i.e., lack of query specification
abstractions in current ICN architectures (cf. Table 13). The meta query lan-An

expressive
CEP meta
language

for ICN

guage acts as an abstraction on top of the standard naming scheme of ICN,
such that the language can be applied to a variety of ICN architectures fol-
lowing hierarchical naming schemes such as Named Data Networking [136],
Content-Centric Networking [128] and Named Function Networking [131].
The query language aims towards three main design goals: (i) specification of
both push- and pull-based queries, (ii) interpreting the query to an equivalent
naming prefix for ICN architectures, and (iii) support for standard relational
algebraic operators while ensuring extensibility to additional operators and
even custom operators for novel IoT applications.

We differentiate between push- and pull-based queries depending if the
incoming data is continuous or not. Particularly if a single Data packet is
received or a continuous Data Stream is received at the node. This heavilyBoth pull-

and
push-based
queries can

be
processed

changes the way operators function in a CEP engine, especially for the state-
ful operators. In the following, we will show the difference using an example
of a push- and pull-based window operator.
Example: Recall that a window operator accumulates event tuples for a given
window size indicated by either a tuple- or a time-based window, such that
those event tuples can be transformed using an operator succeeding the win-
dow operator in the operator graph. A key difference in the handling is that for
every event tuple, a new packet is fetched by the pull-based window until the
window is complete. Whereas a push-based window operator accumulates
the event tuples until a window size is reached and increments the window
slice for the next window while purging the old state.

Similarly, other operators either dependent on a window or independent,
fetch new event tuples explicitly from the producer in the pull-based im-
plementation. In contrast, in the push-based implementation, the incoming
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tuples are advanced automatically by the incoming Data Stream packets. The
query result is encapsulated in a Data or a Data Stream packet depending on
the kind of result. For instance, a join on two continuous data streams is
stored into a Data Stream packet, while an aggregation on a window of the
combined data stream is stored in a Data packet. The query parser, placement
and execution are defined in the next subsection. In the following, we show
the example specification of standard CEP operators using the meta query
language.

1 WINDOW(GPS_S1, 4s)

Listing 2: A window size of 4 seconds from a gps source one data stream [26]. Specifica-
tion in meta
language

1 FILTER(WINDOW(GPS_S1, 4s), ’ latitude ’<50)

Listing 3: Filter on the window of size 4 seconds with latitude value of less than 50
pts [26].

1 JOIN(

2 FILTER(WINDOW(GPS_S1, 4s), ’ latitude ’<50),
3 FILTER(WINDOW(GPS_S2, 4s), ’ latitude ’<50),
4 GPS_S1. ’ ts ’ = GPS_S2. ’ ts ’
5 )

Listing 4: A join on the window size of 4 seconds for the two data streams gps source
one and two where the event time matches [26].

1 SUM( ’speed ’, Window(GPS_S1, 4s))

Listing 5: A sum aggregate over a window of size 4 seconds arriving from a gps source
one data stream [26].

1 SEQUENCE(

2 FILTER(WINDOW(GPS_S1, 1s), ’ latitude ’=50) →
3 FILTER(WINDOW(GPS_S2, 1s), ’ latitude ’=50)
4 )

Listing 6: Detects if gps source one arrives before gps source two at a certain location
given by the latitude value [26].

Section A.2 presents the query language grammar based on [230] and ex-
tensibility aspects based on the scenarios. In the next sections, we detail on
query parser, placement, and its execution.

Query Deployment

Algorithm 5 presents the query deployment process, including parsing,
placement and execution of a query. This process solves the sixth limi-
tation by proposing a distributed, parallel and asynchronous algorithm for
query deployment. As noted in the data plane handling, the Add Continuous
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Interest and Data Stream triggers the query deployment (cf. Section 5.2.2).
The consumer issues a Continuous Interest, including a query using an Add

Continuous Interest packet that triggers the query placement using the query
engine. If the query result is not found in the CS and a PIT entry with qname

is also not found, the query placement is initiated by the deployAndProcess

event (cf. Algorithm 3: Line 12).

If the query given by the qname is new, first, the query is parsed. In the
later steps, the query parser transforms the query into an operator graph
(lines 1–4 and 12–21). Next, the interpreter constructs an equivalent name
prefix (lines 12-15) used to resolve the query in the given ICN architecture.
Afterwards, the query is placed on the path that fulfills the given QoS ob-
jectives of the query (lines 5–9). Finally, the query is executed on the nodes
given by the path (lines 10–11).Network-

centric
query

parsing,
placement

and
execution

Algorithm 5 : Operator tree creation, placement, and process-
ing [138].

Variables :

query ← Input CEP query

τcurList ← A top-down list of three ω of tuple τ

ωcur ← The current operator

planNode ← A single ω node from the operator graph

curNode ← The current node

allNodes ← A list of all nodes

paths ← The possible paths that can be used for operator
placement

opPath ← The chosen (optimal) path for placement

1 upon event 〈deployAndProcess|qname〉 do
// Query parsing

2 if query ∈ qname is new then
3 τcurList ← GETCURLIST(query);
4 curNode← PARSEQUERY(τcurList);

// Query placement

5 if query ∈ qname is not placed or query must be replaced then
6 allNodes← GETNODESTATUS(curNode);
7 paths← BUILDPATHS(curNode, allNodes);
8 opPath← FINDOPTIMALPATH(paths, allNodes);
9 DEPLOYOPERATORS(optimalPath, allNodes);

// Query processing

10 for all ωcur ∈ τcurList do in parallel
11 PROCESSOPERATOR(ωcur, optimalPath);

12 function PARSEQUERY(τcurList)
13 ωcur ←GETOPERATOR(τcurList);
14 nfnExp ← CONSTRUCTNFNQUERY(ωcur);
15 planNode← new PLANNODE(nfnExp);
16 if size(τcurList) == 1 then
17 return node;

18 else if size(τcurList) > 1 then
19 PARSEQUERY(τcurList .left);
20 PARSEQUERY(τcurList .right);
21 return planNode;
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In detail, the parser transforms the query into a binary operator graph
G given by a tuple T = (L, S,R), where L and R are binary sub trees com-
prising operators, and S is a singleton set representing a single operator (ω).
The operator graph is formed top-down while specifying the dependencies in Operator

graph
formation

the data flow between the operators. Typically, in an operator graph, the de-
pendencies flow is defined in ascending order with the lowest level of a leaf
operator dependent on all its successor operators until the root operator ωcur
(line 4), where the subscript cur = root in the first step. The new operators are
allocated by traversing the operator graph in depth first pre-order manner39

by visiting the successor and then left (L) and right (R) subtrees (lines 12-21).

ωroot(ω1 (param 1...)...)

e.g., JOIN, Filter (...), Filter (...), ...

Segregate 

parameters

Syntactic and 

Semantic analysis

ωroot, ω1, ω2, .., ωnum

e.g., JOIN, Filter1, Filter2,...
Fetch operators

e.g., check if all the parameters are valid and semantically correct

Construct qname 

(query name 

prefix)

Construct an equivalent name prefix for query to be resolved, e.g., for JOIN

„call <no_of_params> /node/nodeQuery/nfn_service_Join“

Construct operator 

graph 

End

ωσ

ω⋈
ωσ

Is leaf 

operator

?

No

Yes

Figure 38: An example of join query parsing as explained in Algorithm 5 [138].

The parser simultaneously maps the subtrees or intermediate subqueries
to the corresponding name prefix given by so-called lambda expressions to Query

parsing
example

execute on ICN nodes while obtaining the operator graph.
Example: We explain this using an example of the join query defined in
Query 4, as seen in Figure 38. The query of the form given in Query 4 is
received as an input to the parser, which in the first step, segregates the
parameters to perform syntactic and semantic checks on the operators. The
operators are identified and mapped to their respective functionalities in the
system, followed by syntactic and semantic checks on them. Afterwards, each
operator node in the operator graph is transformed to an equivalent name
prefix qname or sub Continuous Interest as previously introduced. This pro-
cess continues recursively until leaf nodes in the operator graph are reached.
Those sub Continuous Interest (s) are then resolved in a centralized or dis-
tributed manner on multiple ICN nodes. Overall, the meta query language

39Worse case traversal time is linear in the number of operators (Ω).
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provides an abstraction on top of lambda expressions representing name pre-
fix for queries in ICN architecture so that CEP developers can easily create
queries on top of ICN architectures without any domain knowledge. Specifi-
cally, the interpreted lambda expression for a JOIN query is given as follows.Interpreter

representa-
tion

1 (call <no_of_params> /node/nodeQuery/nfn_service_Join

2 (call <no_of_params> /node/nodeQuery/nfn_service_Filter

3 (call <no_of_params> /node/nodeQuery/nfn_service_Window

4 4s), ’ latitude ’ < 50) (call <no_of_params>

5 /node/nodeQuery/nfn_service_Filter

6 (call <no_of_params> /node/nodeQuery/nfn_service_Window

7 4s), ’ latitude ’ < 50) GPS_S1. ’ ts ’ = GPS_S2. ’ ts ’)

As noted in the listing above, it is not even complex but also not easily read-
able, which is why we need our meta query language. In the above expression,
<no_of_params> represents the number of parameters in the respective lambda
function, nfn_service_Join states the name of an operator, i.e., a join operator
followed by filter and window operator of 4s window size. The name prefix of
each operator is preceded by /node/nodeQuery/.. that is dynamically replaced
by the name of the ICN node that processes the query.

Each placement algorithm requires a means to share monitoring informa-
tion about the ICN node and the network to determine the ICN node that
fulfills the QoS demands of the application. For this purpose, we make useNetwork-

centric
monitoring

of QoS

of Data packets with a flag indicating a management packet. In our design, a
placement module maintains information on the nodes and the network con-
necting them. The information includes runtime statistics on the node and
the network about the QoS metrics specified by the query, such as end-to-
end delay, load, network usage, etc., but also the rate information estimated
by the flow-control mechanism (cf. Line 6). The monitored information is en-
capsulated in the payload of the management Data packet in the form of a
tuple: start|bi|end = lat|NU | . . . |µp. Here, on the left side of tuple, start denotesRate

information
is used for
placement

the initial node given by the path, bi denotes the intermediate ICN nodes
or brokers on the path, and end denotes the last node on the path (whose
metrics are included in the packet). On the right side, lat is the end-to-end
latency of the path, NU is the network usage, . . . denotes other QoS metrics
that can be included, and the last parameter µp is the rate estimate of this
flow on the respective path.

In particular, as an Add Continuous Interest packet is received at a node, it
receives the node status information denoted by prefix node/nodeStatus. The
initial ICN node acts as a placement coordinator and determines the path
where the query given by qname is placed (Line 5–9). The placement is de-
termined only initially when the query is first received or when a placement
update request is received to keep the placement overhead bare minimum.
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So far, we have defined the formulation of the operator graph and its place-
ment on the distributed ICN network.The sub Continuous Interest given by
the query, e.g., filter and join operators in the join query, are deployed on
the nodes determined by the placement. Furthermore, by sending the sub
Continuous Interest, the PIT is populated so that the respective ICN nodes
deployed with a query receive the intermediate flow of events, which are re-
quired to process the sub Continuous Interest. Depending on the flow of the
operator graph, the intermediate Continuous Interest are processed in a par-
allel manner, e.g., a join of two windows, where windows are processed in
parallel. In this way, the operator graph is processed in a distributed asyn-
chronous and parallel manner in the ICN data plane (line 10–11).

5.3 Evaluation

We evaluate INETCEP in a two-fold manner:
Key
evaluation
questionsEQ1: Does the unified communication mechanism enable both pull- and

push-based communication mechanisms, and can it compete with the exist-
ing CEP system, and ICN architecture?

EQ2: How is the query performance for a centralized and distributed setup
in an edge-cloud topology?

In the following, we answer the above evaluation questions. Before pre-
senting the evaluation results, Section 5.3.1 presents the evaluation envi-
ronment. Afterwards, Section 5.3.2 presents the performance analysis of the
unified communication mechanism, and Section 5.3.3 presents the perfor-
mance evaluation of the INETCEP query engine.

5.3.1 Evaluation Environment

This section describes the INETCEP implementation, evaluation platform,
datasets and queries, metrics used for evaluation and finally, baselines used
for comparison.

Implementation
Implemen-
tation on
standard
ICN
architecture

We built the INETCEP system on top of widely used ICN architecture Named
Function Networking [131], [61]. The CEP operators are embedded into the
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so-called named functions used in the name prefix as lambda expressions as
explained in the design. Since there is no way to support coexisting push-
and pull-based communication mechanisms currently in Named Function
Networking, we implemented the unified communication mechanism on top
of the ICN architecture. It works together with CCN-lite [62] (written in C++),
which provides a lightweight implementation of CCNx and Named Data Net-
working protocols that are standard protocols used in ICN. We implemented
the unified communication mechanism (cf. Section 5.2.2) in CCN-lite (v2.0.1)
in 13,454 LOCs that provides the ICN data structures and its handling. In
Named Function Networking architecture (v0.2.1), we implemented the CEP
query engine, particularly, the parser, placement and processing algorithms
as described in Section 5.2.3 in 19,491 LOCs. INETCEP is available pub-
licly for use here40.

Evaluation Platform

We used CCN-lite and Common Open Research Emulator (CORE) [231] for our
evaluations. To repeat the evaluations for different configurations as specified
in Table 21, we used MACI [232]. In contrast to simulation-based approachesCORE and

MACI as
evaluation
platforms

such as NS-3 [233], the CORE emulator uses Linux namespaces to execute
binaries and scripts natively.

Experiment time ts 20 mins

Warmup time tw 60 secs

Number of runs 30

Topologies Manhattan graph (WSN), line and tree-
based topologies

Queries Window, Filter, Join, Heatmap, Predict
(cf. Query 2– 4, 7, 8)

Cloud instances used for distributed
setup

GC c2-standard-8 and AWS c5d.2xlarge
instances

Input event rate 1000, 10000 and 50000 (Poisson distri-
bution)

Our System and Baselines INetCEP_UCL (ours), Apache Flink [54],
Periodic Request (PR) [141]

Table 16: Configuration parameters used for the evaluation. Default or commonly
used parameters are underlined [138].

In CORE, services for the individual components of INETCEP such as
Query Engine and CCN stack are created and initialized on each emulated

40INETCEP webpage: https://luthramanisha.github.io/INetCEP/ [Accessed in May 2021].

https://luthramanisha.github.io/INetCEP/
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node accordingly. The emulator instantiates a topology provided by the user
and exports topology information used to setup CCN-lite and the NFN. It is
used to keep track of the experiment configurations, hence all variables to
be evaluated, such as the topology and query processing. When running an
experiment, MACI creates the cross product of the configuration options and
distributes the experiment instances to multiple workers (cloud machines)
via the network. The workers execute a single experiment using CORE and
return the results, such as log files and performance measurements, to
the MACI instance. For a realistic evaluation environment, we used cloud
instances from Google Cloud and Amazon Web Services (AWS). The config- Cloud

resources
for
deployment

uration of the machines used on AWS type c5d.2xlarge with 8vCPUs, the
processing speed of up to 3.5 GHz, and 16 GiB memory, while in Google
Cloud type c2-standard-8 with 8vCPUs, the processing speed of up to 3.8
GHz, and 32 GiB memory. Each machine acts as an ICN node in our eval-
uation that can host CEP queries. We used real-world topologies for sensor
networks, the well known WSN topology [234] called Manhattan graph, and
a tree topology that resembles edge and data-center networks using a dif-
ferent number of nodes (cf. Figure 39). Each node communicates over ICN
protocols, namely CCNx, and NDN instead of IP.

Datasets and Queries

We use two real-world IoT datasets for the scenarios previously described in
Chapter 3: Section 3.1: 2 post-accident management and 3 smart plug load
prediction application.

First Dataset. As a first application, we consider heat map query using a
real-world field test mimicking a post-accident situation [64]. The dataset Real world

workload
and queries

comprises sensor information, including location coordinates. The sensor
data stream of the first dataset is given in the following schema.
< ts, s_id, latitude, longitude, altitude, accuracy, distance, speed >

Scenario Query. We take a heat map query that aids in rescue operations
after an accident situation. It takes as an input the sensor data stream and
uses the location information to derive an area where survivors are densely
located in an accident location. A reference algorithm from the literature [235]
is used for this purpose41.

1 HEATMAP(

2 ’ cell_size ’, ’area ’,
3 WINDOW(GPS_S1, 4s)

4 )

Listing 7: Display the heat map distribution of the first gps source in the given area
with a given cell size [26].

41 In Section A.2, we explain the reference algorithm in details.
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End to end latency

Throughput

Rate of lost 

events

ProducerBrokerConsumer

T1

T2

T3

(a) End-to-end latency, throughput and loss rate visualized
in a simple setup comprising a producer, consumer and a
broker.
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(b) Topologies used for evaluation: Manhattan graph, line, and tree topology from left
to right.

Figure 39: Centralized and Distributed processing setup [138].

Second Dataset. In the second application, we consider a load prediction
query that predicts when a smart grid could be overloaded. The dataset is
based on the Grand Challenge of a premier distributed systems conference
DEBS [63]. It is based on the real-world information collected from smart
home installations. The dataset represents load measurements from 2001
unique smart plugs as given by the following schema.
< ts, id, value, property, plug_id, household_id, house_id >

Scenario Query. We take the input queries from the Grand Challenge and
provide an existing solution [236] on top of INETCEP architecture41. The
query applies predictions on a given window size of smart plug load and
provides predictions in the future for the given time interval (in the below
example, 30 seconds).
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1 PREDICT(30s, WINDOW(PLUG_S1, 4s))

Listing 8: Predict the load on the smart plug source one every 30 seconds for one
minute into the future [26].

Evaluation Configuration and Plots

Table 21 presents the overall parameters used for the evaluations. Each eval-
uation runs for 20 minutes with a no measurement phase of 60s. All experi-
ments on the defined metrics are repeated 30 times if not specified otherwise.
We evaluate the performance of INETCEP against Apache Flink [54], a widely Configura-

tion
parameters
for
evaluation

used publicly available CEP system that has so far the best performance in
terms of latency and throughput metrics. Another ICN based approach we
evaluate is the periodic request mechanism (PR) (cf. Section 5.1.2), which is
also used extensively [141] to enable push-based communication while still
using consumer initiated interaction.

Metrics. Although INETCEP is capable of delivering specified QoS metric by
using the power of programmable networks, we focus on two major metrics
that are highly important for CEP systems for our evaluations: end-to-end
latency and throughput. Recall, latency is measured as the time interval be-
tween the generation of a low-level event and the reception of the complex
event at the consumer. As a second metric, we focus on throughput, or pre-
cise sustainable throughput (cf. Definition 11) measured as the total number
of events received at the consumer per time unit. To evaluate the performance
of the lossless flow-control mechanism, we refer to the metric event loss rate
(%) given as (total events−processed events)

total events × 100 (cf. Definition 13). Lastly, we are
interested in measuring the loss in terms of complex events using the accu-
racy metric (cf. Definition 12). Figure 39a illustrates the evaluated metrics
in a single node setup.

Plots. We use the Cumulative Distribution Function (CDF), point plots, bar
plots and box plots to illustrate the results. CDF shows the cumulative distri-
bution of the investigated metric. It depicts the probability distribution func-
tion as P (X ≤ x) such that the value of the investigated metric is the prob-
ability that X takes a value less than or equal to x. The point plot shows a
point that depicts the mean value while the error bars report the percentiles
including the investigated metric values between the 5th and the 95th per-
centile. The line that joins each point in the plot between the given discrete
values in x-axis allows for comparison between the heights of the different
groups represented by the x-axis. The bar plot shows the mean of the in-
vestigated metric and the error bar on the top, denoting the values between
the 5th and the 95th percentile. Finally, the box plot represents a five-number
summary of the latency measurements, minimum, first quartile (Q1), median,
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third quartile (Q3), and maximum. The vertical line seen in the box near Q1
is the median, which is also written explicitly in the figure. The left bound
of the box represents the minimum value observed for the investigated met-
ric, Q1 represents the starting value, Q3 represents the ending value, and
the right bound of the box represents the maximum value observed for the
investigated metric. The outliers are not reported in the boxplot.

5.3.2 Evaluation of Unified Communication

The following presents an evaluation of the unified communication mech-
anism proposed in Section 5.2.2. We measure the performance using the
following metrics: end-to-end latency, throughput, and loss rate in forward-
ing the low-level events. For the evaluation setup, we used a Google Cloud
c2 instance, where a producer, a consumer and a broker runs simultane-
ously. Figure 39a illustrates how the measurements for the above metrics
is obtained. The producer sends a continuous data stream comprising event
tuples using Data Stream packets given by the first dataset. The consumer
sends a Continuous Interest using the Add Continuous Interest packet to the
broker, which creates a persistent PIT entry for the consumer in its PIT table.
Afterwards, it starts receiving the GPS sensor data stream. The evaluations
are repeated 30 times to collect enough samples for the confidence inter-
val (12,029 data points are collected). The evaluation runs for 20 minutes,
and afterwards, the consumer deregisters the Continuous Interest using the
Remove Continuous Interest packet. In the following, we analyze the results
for each metric.

End-to-end Latency

Figure 40 shows the cumulative distribution function (CDF) of the observed
end-to-end latency in forwarding the data stream. As anticipated in our hy-Very low

latency
using

unified com-
munication

of around
38µs

pothesis, we observe very low latency when the data stream is forwarded us-
ing the unified communication mechanism. Particularly, we observe a mean
delay of 38.77µs, 38.2µs and 73.57µs for an event workload of 1000, 10000 and
50000 events per second, respectively (cf. Figure 40a, b and c left to right).
In essense, we are 20 (1000 ev/s), 25 (10000 ev/s) and 25× (50000 ev/s) bet-
ter in terms of mean delay than the widely used CEP system, Apache Flink.
This is because of several reasons: (i) Flink inherently relies on Apache Kafka
as a data streaming system or event producer that uses a pull-based ap-
proach to capture and process data streams. (ii) Flink is designed to operate
as a middleware while we offload the CEP functionality to the network and
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leverage from the line speed of ICN substrate. Moreover, we compared the
performance of the unified communication mechanism with the pull-based
reference approach on top of the CCN-lite called periodic request mechanism
(PR). Although the periodic request mechanism inspired by the work [141]
performs equally well in terms of latency, it suffers from severe packet loss,
as explained in the following paragraphs.

INetCEP_UCL INetCEP_PR Flink

102 103

Latency in microseconds
0.0
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(a) x̄(Flink) = 792.19µs, x̄(PR) = 41.82µs,
x̄(UCL) = 38.77µs.
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(b) x̄(Flink) = 982.16µs, x̄(PR) = 39.06µs,
x̄(UCL) = 38.20µs.
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(c) x̄(Flink) = 1162.53µs, x̄(PR) = 50.38µs,
x̄(UCL) = 73.57µs.

Figure 40: End-to-end latency of unified communication mechanism in INETCEP,
Flink and periodic request mechanism using cumulative distribution
function and different event rates. The results show that our approach is
20, 25 and 15× better than Flink for input rate of 1000, 10000 and 50000
events/s (from left to right), respectively. Moreover, the periodic request
mechanism performs at par with our approach but on the cost of event
loss [138].
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Forwarding Throughput

Figure 41 shows the CDF of the observed throughput while forwarding 1000,
10000; and 50000 events per second (left to right). Similar to the performance
evaluations for latency, the setup used is illustrated in Figure 39a.

INetCEP_UCL INetCEP_PR Flink
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(a) x̄(Flink) = 999.86ev/s, x̄(PR) = 999.63ev/s,
x̄(UCL) = 1000.0008ev/s
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(b) x̄(Flink) = 9997.99ev/s, x̄(PR) =
9999.65ev/s, x̄(UCL) = 10000.0008ev/s
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(c) x̄(Flink) = 50035.28ev/s, x̄(PR) =
19372.90ev/s, x̄(UCL) = 49972.34ev/s

Figure 41: Throughput of unified communication mechanism in INETCEP, Flink and
periodic request mechanism using cumulative distribution function and
different event rates. The results show that our approach attains an opti-
mal throughput (maximum possible) without incurring any event loss for
input rate of 1000, 10000 and 50000 events/s (from left to right). For high
event rates of 50000 events, our approach is superseding the periodic re-
quest mechanism by maintaining integrity in the reception of complex
events [138].

The first plot (a) for a smaller event rate of 1000 events per second shows
that all three approaches can perform equally well. Also, a step-wise in-
crement of the throughput values is observed because of the cardinality of
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the number, meaning either 999 or 1000 events are received and not 999.5
events. The second plot (b) shows the performance of the approach while re-
ceiving 10000 events per second. In this plot, we observe that the unified High

throughput
of up to
50000
events/s

communication mechanism (UCL) and periodic request mechanism (PR) are
near the optimal throughput of 10000 events per second, while for Flink, we
observe that it diverges from the optimal throughput in 80% of the values.
The reason is that the pull-based batching mechanism of Flink and Kafka
that forwards events to the consumer in batches instead of a push-based
continuous data stream. Due to this, we observe that events are missing in
the beginning (values less than 10000 events), which are then received in
the middle and towards the end of the experiment (values more than 10000
events). The third plot (c) shows the performance when the input rate is
50000 events per second.

An important observation is that the periodic request mechanism (PR) suf-
fers from heavy event loss; the maximum throughput for this approach is
around 20,000 events per second. This is because the network becomes con-
gested due to the number of packets required to retrieve 50000 events per
second. The periodic request mechanism sends 50000 Interest packets to
retrieve 50000 Data packets, and hence the total number of packets sent is
twice the number of events that are to be received by the consumer, which
results in network congestion. We observe packet loss when the UDP buffer
is full for the periodic request mechanism. This is not seen in Flink because
it is TCP-based, and it incorporates a credit-based flow control mechanism to
prevent buffer overflow. Most importantly, our unified communication mech-
anism does not suffer from packet loss even though it is UDP-based, thanks
to the lossless rate-based flow control mechanism.

Event Loss during Forwarding

To measure the event/packet loss during the transmission, we use the loss
rate metric. Table 17 presents the observed loss rate (mean, min, max and No event

loss
because of
flow control

percentiles (90, 95, 99) values) for unified communication, periodic request
mechanism and Flink. For smaller event rates, we observe only a small
amount of event loss in the periodic request aproach due to a lower amount
of packet exchange; for a higher event rate of 50000 events per second, a
mean loss rate of 61.18% is seen. This correlates to the throughput evalu-
ations seen above, where only around 40% of events were received at the
consumer due to the network congestion and the UDP buffer overflow.

An even interesting observation is that Flink, with Kafka as an event pro-
ducer, also suffers from event loss. Although Kafka is assumed to be highly
resilient and performant, it depends on multiple configuration parameters
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to avoid event loss that is conflicting at times and hardly optimizable42. Us-
ing the default configuration parameters, we saw an event loss using Apache
Flink as a CEP query engine, which can be problematic for many applica-
tions that need 100% accuracy.

In contrast, the unified communication mechanism does not suffer from
any event loss thanks to the proposed flow control mechanism.

5.3.3 Evaluation of INETCEP Query Engine

This section provides a performance analysis of the INETCEP query engine
as proposed in Section 5.2.3. We provided a two-fold analysis, centralized
(cf. Figure 39a) and distributed (cf. Figure 39b) with different topologies and
queries specified in Table 21. In centralized evaluation, the query engine runsQuery

engine
evaluation

with known
WSN

topologies

on a single node; we show the benefit of operator placement in the distributed
setup. We use end-to-end latency as a metric to analyze the performance
because, for most IoT applications, low latency is very important, especially
for safety-critical applications. To analyze if optimal throughput is reached,
we refer to an accuracy metric that implicitly includes event loss depicted by
low accuracy since the output events delivered is incorrect.

Centralized Processing

We perform this evaluation on a Google Cloud c2 instance, where a consumer
issues query 2–8 by encapsulating them into the Add Continuous Interest

packet. For comparison, we implemented the same queries on Apache Flink
and measured the performance using the Google Cloud c2 instance. In the
periodic request mechanism, we use the same implementation as INETCEP
except for the underlying communication strategy, which is pull-based and
the placement of the queries. Particularly, an Interest packet is sent contin-
uously to retrieve the data item, and hence the operator placement is per-
formed each time as if a new query is placed. In the experiment, we set the
rate at which the Interest packets are sent to be equal to the input rate of
events at the producer. However, intuitively this rate would differ for complex
events where the output rate of events is not equal to the input event because
of the event transformation (filter, join, etc.), which accounts for another prob-
lem with the periodic request mechanism. In the following, we analyze the
latency metric for centralized processing.

42Data loss in Flink with Kafka. https://ci.apache.org/projects/flink/flink-docs-stable/
dev/connectors/kafka.html [Accessed in May 2021]

https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/kafka.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/kafka.html
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1000 events per second 10000 events per second 50000 events per second

System mean max min percentiles (90, 95, 99) mean max min percentiles (90, 95, 99) mean max min percentiles (90, 95, 99)

Flink 0.013 0.014 0.013 0.013, 0.014, 0.014 0.135 0.271 0.069 0.211, 0.241, 0.265 0.0135 0.020 0.003 0.016, 0.018, 0.019

INetCEP_PR 0.038 0.044 0.036 0.04, 0.042, 0.043 0.003 0.004 0.001 0.004, 0.004, 0.004 61.185 61.226 61.153 61.216, 61.221, 61.225

Table 17: Event loss rate (in %) of Flink and periodic request mechanism in INETCEP for event rates 1000, 10000 and 50000 events per second.
Both the baselines suffer from event loss. However, the unified communication mechanism in INETCEP does not suffer from any loss,
thanks to the flow-control mechanism [138].

window filter join heatmap predict

System mean percentiles (90,95,99) mean percentiles (90,95,99) mean percentiles (90,95,99) mean percentiles (90,95,99) mean percentiles (90,95,99)

Flink 2.97 0.15, 0.16, 0.18 0.329 0.155, 0.17, 0.191 10.627 20.64, 41.52, 41.53 2.098 4.09, 4.128, 4.167 12.44 0.34, 0.36, 0.39

INetCEP_PR 1.51 1.9, 1.96, 2.01 1.41 1.85, 1.92, 1.97 5.54 5.94, 5.99, 6.03 1.46 1.75, 1.85, 1.91 1.49 1.88, 1.95, 1.99

INetCEP_UCL 0.007 0.009, 0.010, 0.014 0.010 0.014, 0.017, 0.020 0.011 0.017, 0.02, 0.025 0.010 0.013, 0.015, 0.019 0.014 0.019, 0.02, 0.024

Table 18: Mean and percentiles of end-to-end latency (in seconds) observed in Figure 42 for Flink, unified communication mechanism and query
engine in INETCEP, and periodic request mechanism using the standard and application queries. Our approach outperforms both
significantly, in particular, 888× (best case: predict query) and 32× (average case: filter query) in comparison to Flink; and 503× (best
case: join query) and 106× (average case: predict query) in comparison to periodic request mechanism [138].

window filter join heatmap predict

System mean percentiles (90,95,99) mean percentiles (90,95,99) mean percentiles (90,95,99) mean percentiles (90,95,99) mean percentiles (90,95,99)

INetCEP_PR_M 1.634 1.951, 1.98, 6.31 1.883 2.559, 2.702, 5.354 7.424 9.646, 9.652, 10.678 2.061 2.985, 2.991, 6.926 2.503 3.702, 5.38, 6.939

INetCEP_UCL_M 0.006 0.008, 0.009, 0.012 0.011 0.014, 0.015, 0.021 0.011 0.015, 0.017, 0.023 0.011 0.014, 0.016, 0.020 0.018 0.027, 0.029, 0.035

INetCEP_PR_T 1.59 1.764, 1.789, 1.886 1.542 1.664, 1.698, 1.797 6.955 9.527, 9.56, 9.594 1.599 1.768, 1.82, 1.943 1.556 1.704, 1.725, 1.784

INetCEP_UCL_T 0.007 0.009, 0.010, 0.012 0.012 0.015, 0.017, 0.021 0.013 0.019, 0.022, 0.030 0.012 0.015, 0.016, 0.021 0.016 0.021, 0.023, 0.027

Table 19: Mean and percentiles of end-to-end latency (in seconds) observed in Figure 43 for unified communication mechanism and
query engine in INETCEP, and periodic request mechanism using the standard and application queries for the different topologies.
Here, INetCEP_PR_M refers to the periodic request mechanism with the manhattan graph, and INetCEP_PR_T refers to the results
on tree topology. Similar to centralized evaluations, our approach supersedes again substantially by a factor of 674× (best case
for join query in manhattan graph) and 97× (average case for predict query in tree topology) [138].
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Impact on Latency

Figure 42 shows the CDF and Table 18 summarizes the mean and percentiles
(90, 90, 99) of the observed end-to-end latency in the three approaches for the
given application and standard CEP queries. The performance of the query
engine is as good as the forwarding results using the unified communication
mechanism. In particular, it is around 32× better in latency (mean value)
than query processing using Apache Flink (cf. Table 18). For instance, a filter
query is processed in a mean latency of 10.72 ms using the unified commu-
nication mechanism in the INETCEP query engine, while in Flink, it takes
around 329.47ms for the same query. We see a substantial gain for application-
related queries (heat map and predict) involving complex operations, typically
required by IoT applications. Our approach performs around 966× and 888×
better than the Flink baseline for the join and predict query, respectively (cf.
Table 18). Although Flink is known to have a pretty good performance in
terms of latency that is the best amongst the available state-of-the-art CEP
systems, it lags behind our approach due to multiple reasons. One of the ma-
jor causes is the serialization and deserialization overhead of data stream ob-
jects in Flink and the standard pull-based implementation of the Kafka event
producer in Flink. However, using a batching mechanism, it supersedes the
performance of periodic request mechanism for simple queries like filter. But
most of the times periodic request mechanism supersedes the performance of
Apache Flink due to the network-centric execution similar to our approach.Very low

latency in
query

processing
of around

10ms

Most importantly, the unified communication mechanism with the query
engine realization outperforms the periodic request mechanism substantially,
specifically 503× for the join query and 106× for the predict query (cf. Ta-
ble 18). This is because for more complex operations like join, heatmap and
predict queries, the periodic request mechanism needs a significant amount
of packets to retrieve the complex event. It is clear from the above evalua-
tions that Flink suffers highly because of the pull-based implementation of
Kafka event producer. Therefore, we compare with a single pull-based refer-
ence implementation based on ICN, i.e., periodic request mechanism for the
remaining evaluations, since it is more comparable to our approach due to
the similar network stack.
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Figure 42: Centralized evaluation of end-to-end latency for unified communication mechanism and query engine in INETCEP, Flink, and periodic
request mechanism using cumulative distribution function and different queries. The results show that our approach outperforms
both Flink and periodic request mechanism in all the queries (lowest mean time for the window query x̄(UCL) = 7.3ms and highest
for the predict query of x̄(UCL) = 14.48ms) [138].
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Figure 43: Distributed node evaluation of end-to-end latency for unified communication mechanism and query engine in INETCEP compared
to periodic request mechanism using cumulative distribution function, different queries, and topologies. Our approach outperf-
orms against periodic request mechanism again consistently to centralized evaluations in all the queries and the manhattan
graph (top) and tree topology (bottom) with 7 and 10 nodes. Lowest x̄(UCL) = 6.46ms for window query and highest
x̄(UCL) = 18.08ms for predict query [138].
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Distributed Processing

We use different topologies for the distributed node evaluations as given in
Figure 39b: line, manhattan graph, and tree topology. We use the applica-
tion and CEP standard queries for the evaluation, similar to the centralized
processing. In these evaluations, we aim to understand the performance of
operator placement, deployment and query execution using multiple nodes
for processing. For deployment, we consider a cloud server, edge switches
and end nodes using the AWS instances as given in Table 21. Each node
executes the unified communication mechanism, CEP query engine, opera-
tor placement and the nodes communicate using the ICN protocol. In the
following, we present the results per topology.

Manhattan Graph

For the distributed evaluation, we used the manhattan graph, which is a
widely used topology in wireless sensor networks [234] (cf. Figure 39b). Here
node n6 acts as an event producer, n5 as an event consumer and all the
other nodes n1, . . . , n4, n7 acts as event brokers. Figure 43 shows the CDF
and Table 19 presents the mean and percentiles (90, 90, 99) of the observed
end-to-end latency measurements. We compare our approach: INETCEP us-
ing a unified communication mechanism and query engine including opera-
tor placement to the periodic request mechanism and query engine including
operator placement for each new request. In Figure 43, the first row showsConsistent

with other
scenarios
latency of

only around
6 ms

the results of the Manhattan graph, where the lower the value (towards left),
the better it is. Our approach (INETCEP_UCL_M) outperforms the periodic
request mechanism substantially by a factor of 674× for the join query (best
case) and around 139× for the predict query (average case). The improvement
is even better than centralized processing because the periodic mechanism
suffers from large delays in disseminating the request each time to the bro-
kers and have an additional placement overhead. Our approach does not have
such an overhead, thanks to the push-based approach in unified communi-
cation mechanism as well as the reactive and concurrent query deployment
algorithm that places a query and triggers query processing each time it en-
counters a new Data Stream packet. Table 19 lists the mean and percentile
values of latency for the two approaches using the manhattan and tree topol-
ogy. In summary, we encounter the lowest mean delay of x̄(UCL) = 6.46ms for
the window query, while the highest x̄(UCL) = 18.08ms for the predict query,
which is still 139× better than the periodic request mechanism.



5.3 Evaluation 153

Tree Topology

We performed a similar distributed query evaluation for the tree and line
topologies (cf. Figure 39b (top and bottom on the right)) using the AWS in-
stances. Here, a lower number of nodes are required and we use CORE and
MACI for a higher number of nodes. Since the results for the line and tree
topologies are identical, therefore, we report the results for tree topology in
Figure 43 (second plot). In consistent to the evaluations using the manhattan
graph, we observe that our approach substantially supersedes the periodic
request mechanism by a factor of 535× in the join query and about 97× in
the predict query (cf. Figure 43, refer INETCEP_UCL_T and INETCEP_PR_T).
The minimum and maximum mean dealy are also again for the window query
x̄(UCL) = 7.07ms and predict query x̄(UCL) = 16.65ms, respectively.

heatmap predict

System mean percentiles (90,95,99) mean percentiles (90,95,99)

Centralized,

INetCEP_PR
54.36 69.80, 70.90, 71.78 48.70 46.62, 51.88, 56.09

Distributed,

INetCEP_PR
66.66 66.66, 66.66, 66.66 66.66 66.66, 66.66, 66.66

Table 20: Accuracy evaluation for the application queries: heatmap and predict
queries in the periodic request mechanism. The approach suffers from
severe event loss and a significant decrease in the accuracy of up to 66%,
while INETCEP consistently delivers 100% accuracy in detecting the com-
plex events [138].

Impact on Accuracy

This section evaluates the event loss and correctness of the delivered complex
events using the queries. As indicated in the scenarios, many applications
need to be highly robust and cannot tolerate any event loss; for example, a
missed fraud detection event might lead to heavy monetary loss. Similarly, 100%

accuracy
because of
no event
loss

in a prediction query, a miss prediction of high load might lead to smart
grid breakdown. A known cause of false negatives or false positives in event
detection is due to event loss. We represent this using accuracy previously
defined in Chapter 3: Definition 12. We use the F1-score metric that precisely
measures the accuracy given by TP

TP+ 1
2

(FP+FN)
. Here, TP , FP and FN are

true positive, false positive and negative, respectively. Table 20 presents the
F1-scores for the centralized and distributed query processing using the pe-
riodic request mechanism for heatmap and predict queries, where event loss
can lead to hard implications. We observe a significant drop in F1-scores for
this approach as a consequence of event losses due to network congestion,
around 45% and 33% in centralized and distributed processing, respectively.
Similar observations were seen in Apache Flink due to event loss. Contrarily,
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the unified communication mechanism in the INETCEP query engine does
not suffer from any event loss and hence delivers 100% F1-score, because
of the responsive and parallel query processing along with the lossless flow
control mechanism.

5.4 Summary

This chapter proposes the second contribution of this thesis solving the effi-
ciency problem in the face of dynamic environmental conditions. Efficiency
in Internet of Things applications, for instance, in terms of latency, is of ex-
treme importance, which if not delivered would cause heavy monetary loss
(fraud detection application) can be even life threatening (accident detection
application for autonomous cars). In order to react in such situations, a CEP
system has to perform event processing in a very efficient manner, for ex-
ample, using in-network resources that can deliver the results very quickly.
We tackle this challenge using Information-centric Networking paradigm and
propose to perform event processing over ICN resources. To this end, we
contribute (i) a unified communication model for ICN architectures to enable
event processing in the programmable data plane of ICN substrate, (ii) a meta
query language to express CEP queries that can be resolved on the ICN sub-
strate, (iii) query execution algorithms that reactively handle events and pro-
cess them in a parallel manner to derive the complex events in an efficient
and robust manner while ensuring the correctness, and (iv) a networking
architecture called INETCEP that integrates the above models, abstractions
and algorithms into an in-network processing architecture for their evalua-
tion. Our evaluation using INETCEP in the context of two IoT case studies
and standard CEP queries shows that (i) event forwarding using the unified
communication model is about 15× faster than than the state-of-the-art CEP
system Flink, (ii) IoT queries can be easily expressed using the proposed meta
query language, and (iii) using the proposed query execution algorithms, the
complex events are delivered about 32× faster than Flink and about 100×
faster than a pull-based reference approach.
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Unified Serverless CEP Middleware

This chapter provides a solution to the interoperability problem in the context
of Complex Event Processing, aiming to enhance the reusability of mecha-
nisms across multiple CEP execution environments. Current CEP systems
both in academia [21, 22, 23, 24, 25, 26, 27] and industry [35, 36, 52, 28, 9]
are restricted in terms of reusability (cf. Chapter 2: Section 2.3.3). The main Key

research
gap: lack of
reusability

reason for this restriction is that usually in CEP systems, the specification
language used to express the complex events, and the execution environment
used to detect events, are tightly coupled. Although, this tight coupling have
been regarded as a key to high performance in CEP, this dependency is prob-
lematic because of the following arguments. (i) The foremost problem is that
the application developers need to have an extensive knowledge on the exe-
cution environment, which is highly complex by nature. (ii) Another problem
is that due to the tight dependency there is little support to update operators
on the fly that is often required by applications. For instance, a fraud detec-
tion application (right side of Figure 44) requires to dynamically update or
even change machine learning models to deal with the newly observed fraud
patterns. Due to the monetary cost associated with the fraud detection appli-
cation, it becomes critical that the system is updated in a very short time (in
few milliseconds) and ideally without any downtime [13].

To overcome these open problems, this chapter proposes a programming
interface and mechanisms that unify heterogeneous CEP execution environ-
ments while allowing dynamic changes in the operator specification. We pro- Solution:

serverless
CEP
middleware

pose CEP middleware, which is a serverless, named CEPLESS. It enables
developers to write applications without depending on or knowing the un-
derlying execution environment, and therefore, benefit from multiple CEP
systems simultaneously. CEPLESS supports dynamic changes in the opera-
tor specification, allowing to switch functional components of CEP operators
at runtime that often becomes necessary, as noted in Chapter 3 for appli-
cations like fraud detection. However, such unification of multiple CEP sys-

Challenge 1:
tight
coupling

tems and dynamic changes in the operator specification is not trivial. The
reasons are manifold, and let us explain them using the overall architecture
seen in Figure 44 with CEPLESS-centric components. On the top-most tier,
we see the numerous CEP programming models, including those proposed
in this thesis, TCEP (in Chapter 4) and INETCEP (in Chapter 5), and oth-
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ers from academia [54] and industry [35]. Each of these CEP systems offers
very distinct mechanisms and concepts for specific infrastructures in mind.
For instance, INETCEP is designed to provide network-centric execution in
the ICN routers, while Apache Flink [54] is designed specifically for cloud
infrastructures. Comprehending each of these systems is a tedious process
and without a detailed understanding on how each of these work, it is not
only difficult but a never-ending process to unify them. Moreover, there is no
means to combine or to reuse mechanisms because of the tight coupling of
the language and execution environments as mentioned before.

Placement

Execution

Transition in ω

User-defined ωωUD

ω


ωV1

ωV2

FlinkTCEP INetCEP Esper

Cloud 
(Broker)

Fog 
(Broker)

Things/Edge 
(Producer) ...

Latency: <1s
Availability: 
99.9%
Rate: kbps

Fraud detection

Latency: ~30ms
Availability: 
99.99%
Rate: Gbps - Mbps

Traffic control

Latency: < 1ms
Availability: 
99.9999%
Rate: Mbps - Kbps

Autonomous
control 

Operator 
Graph

Applications
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[   ]I

ωUDCEPless
Middleware

ωσω


ωV1
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Figure 44: Overall system architecture focusing on CEPLESS that enables interoper-
ability in the CEP execution environment and the operator deployment.

A novel paradigm that is currently used to provide decoupling in huge cloud
computing environments such as Amazon [163] and Google [164] is using
Serverless Computing (cf. Chapter 2: Section 2.3.2). Basically, it provides a

Challenge 2:
State man-

agement

programming abstraction to the developers so that the system-specific com-
ponents are hidden and the developers can focus on the application-specific
components. Although existing serverless platforms provide important con-
cepts that can accelerate scalable execution of operators, these platforms are
missing crucial semantics needed for CEP such as state management and
operator placement as discussed in Chapter 2: Section 2.3.3. Moreover, cur-
rent CEP systems provides many mechanisms such as query optimization,
placement and execution, which are not easily extendable to the existing
serverless platforms.
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These findings lead to our last research question, which is solved in this
chapter:

RQ3: How to achieve interoperability across different CEP programming mod-
els? Final

Research
Question
and its sub
RQs

RQ3.1 How to express operators without dependency on the underlying CEP
system’s programming model and execution environment?

RQ3.2 How to enable reusability of distinct CEP execution environments while
ensuring dynamic operator updates?

To enable reuse and interoperability across distinct CEP programming mod-
els, we solve two crucial challenges corresponding to the above sub research
questions. (RQ3.1) Because of the dependency between the specification lan-
guage and execution environment as detailed above, simply rewriting the
query specification from one to another CEP programming model does not
work, especially because the query execution semantics and the language
is known to diverge a lot. Therefore, we answer this sub research question
by providing a common programming interface inspired by the concept of
serverless computing in cloud infrastructures [180, 173]. Similar to serverless
computing, we propose so-called user-defined operators ωUD (seen in the fig-
ure on the middleware tier) that can be implemented using our programming
abstraction. Using ωUD operators, we combine the benefit of multiple CEP exe-
cution environments by interacting with them using the middleware. Most im-
portantly, the programming interface allows the CEP application developers
to specify operators using the language of their preference without imposing
any side-effects on the system-dependent operators (inbuilt CEP operators).

(RQ3.2) Another limitation of the above dependency is that there is limited
support in updating the operators at runtime. This becomes highly essen-
tial for applications such as fraud detection, where the business logic has
to be updated at runtime while ensuring system availability throughout the
deployment. Furthermore, the statefulness of some CEP operators raises ad-
ditional challenges for the CEPLESS middleware towards state management.
Therefore, we answer this sub research question by proposing mechanisms
that allow dynamic operator updates: in-memory queue management and
batching mechanisms. These mechanisms handle the state and continuously
delivers output to the consumers, respectively. Thus, current CEP systems
can quickly adapt their event detection logic based on the application context
and the underlying infrastructure.

The findings presented in this chapter are based on the author’s previous
publications in [237], [238]. The structure of this chapter is explained as
follows. Section 6.1 presents the extended system model and the problem Key

publications
and
structure
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statement. Section 6.2 presents the overall design of the novel CEP server-
less middleware CEPLESS that introduces the individual contributions: (i)
the programming interfaces and the (ii) in-memory queue management and
batching mechanisms. Finally, Section 6.3 presents the extensive evaluation
and implementation of CEPLESS on two CEP systems Apache Flink [54] andOpen

source, try
it out!

TCEP [195] (cf. Chapter 4). CEPLESS with the programming interfaces and
the extensions to the CEP systems are publicly available for use here43.

6.1 Analysis of Flexibility in Operator Specification

This section extends the common system model presented in Chapter 3 to
define the flexibility problem (cf. in Section 6.1.1). Moreover, we describe the
flexibility problem using the fraud detection scenario (cf. in Section 6.1.2).

6.1.1 Extended System Model

Figure 44 illustrates the common system model used in this chapter with a
focus on the presented CEPLESS middleware components as described be-
low.
In CEPLESS, operator graphs can be deployed on the infrastructure compris-
ing fog-cloud and things producing continuous data streams to be processed
by the higher tiers. A query Q = {q,QoS, TQoS}, including the QoS require-
ments such as latency, etc., can be specified by the distinct CEP execution
environment from the execution tier, Apache Flink [54], Esper [35], and novel
CEP systems presented in this thesis, including TCEP (cf. Chapter 4) and IN-
ETCEP (cf. Chapter 5). The CEP systems can specify so-called user-defined
operators that are designed to be exchanged and reused across the differ-
ent execution environments. These operators are processed by the CEPLESS

middleware (seen in the middle tier), instead of the execution environments
directly but they can interact with the other standard CEP operators in the
operator graph (so-called system defined operators) using event queues. The
user-defined operators can be developed using the CEPLESS programming in-
terface that allows for language and platform independence to the application
developers. These are maintained in a repository which is meant to be reused
across different CEP platforms. The CEPLESS middleware presented in this
chapter that (i) benefits from the distinct execution environments of the top
tier, (ii) allows placement on the heterogeneous infrastructure of the bottom
tier, and (iii) can replace operators at runtime. In the following, we elaborate

43CEPLESS webpage https://luthramanisha.github.io/CEPless/ [Accessed in May 2021].

https://luthramanisha.github.io/CEPless/
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on the two extensions to the common system model: the operator model and
the queue model, which help us model the aforementioned contributions.

Operator Model

As seen represented in the CEPLESS middleware in Figure 44, the operator
graph mainly comprises two kinds of operators: Ω = {ΩS ,ΩUD}. Here ωS ∈ ΩS

are referred to as system-defined operators and ωUD ∈ ΩUD are referred to as
user-defined operators. The definitions are given as follows.

Definition 16. System-defined operators (ΩS) are standard operators
already defined in a CEP system, such as single-item operators like se-
lection, logical operators like conjunction, window operators like sliding
window, and flow management operators like join [6].

Definition 17. User-defined operators (ΩUD) can contain custom busi-
ness logic, which typically could not be expressed by system-defined
operators, such as machine learning models.

The functionality of ωUD operators is defined in such a way that they can
be dynamically changed. Each node hosting the user-defined operator ωUD
is managed by a node manager NMn (recall, n stands for node), which han-
dles all the requests related to the ωUD. Operator containers Cω are used as
defined in the common system model in Definition 5 to provide an execution
environment for all operators. Especially, for user-defined operators ωUD, the
operator container serves as an interface to deliver the incoming events pro-
cessed by the given processing function fω. The user-defined operators ωUD
interact with the underlying CEP systems using the above interface by send-
ing one or multiple events for further processing, e.g., using system-defined
operators. We provide in-memory queues that handle the transfer of events
to and from the ωUD and act as a store for the stateful operators. In the
following, we detail the queue model.

Queue Model

We use a queuing system as a messaging interface between the CEPLESS

middleware and the execution tier. With the queuing model, we aim for three
main goals (i) statefulness, (ii) in-order processing, and (iii) high performance
in event processing. The queue is not restricted in terms of size44 and it can

44The model can support different sizes based on the implementation of the in-memory
queue, e.g., using off-the-shelf implementations like Redis [239].
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hold as many events as to be processed. In the following, we define the related
concepts of the queuing model, (i) the event queues that stores the incoming
and outgoing events, (ii) the event batch that determines the subset of the
emitted events, (iii) the back-off interval that waits for remaining events to
fill the batch, and (iv) the interface responsible for interaction between the
CEP system and the queues.

Definition 18. Event queue (eqωUD ) acts as a store for event transfer
between the CEPLESS middleware and the execution tier for better per-
formance.

Each node contains two event queues: Input (eq_inωUD ) and Output (eq_outωUD ).
The former is for the incoming events from the CEP system to the user-
defined operator ωUD and the latter is for the outgoing events from the ωUD
to the CEP system. The user-defined operators ωUD and the underlying CEP
systems can communicate only using these queues placed on their respective
node. Since we assume that the queue resides on the same node, there is no
networking overhead to ship the events to the queue (at a remote location)
and send them back. Therefore, the communication between the queue and
the CEP system is local.

Definition 19. Event batches (bs and br) represent a subset of event
tuples sent to (bs) and from (br) the CEPLESS middleware via the event
queues (defined in Definition 18).

Instead of sending the events one by one, we use event batches to com-
municate with the underlying CEP systems. This avoids the unnecessary
overhead of opening and closing connections for requests each time a new
event is received.

Definition 20. Back-off interval (tbackoff ) is the time to backoff from
polling the event queue eqωUD when no events are received.

Definition 21. User-defined operator (UDO) interface. The event queues
interact with the execution tier using the UDO interface. Each CEP
system implements this interface, a minimalistic realization of opening
and closing connections to and from event queues eqωUD .
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package operator;

public class ServerlessFilterOperator

implements ProcessInterface {

public Boolean process(String item) {

ComplexModel model = new ComplexModel(); 

float result = model.predict(value);

if (result > Fraud_Threshold) {

return true;

} else {

return false;

…

(a)

Serverless CEP Query in CEP system

Serverless Operator Code „serverless-filter-model“ (Java)

Query in classical CEP form (b)  Query using CEPless

DataStream<String> src1 = ..

DataStream<String> src2 = ..

DataStream stream = src1.join(src2)

DataStream<Boolean> result = 

stream.filter(new FilterFunction<String>() 

{

public void filter(String item, Collector 

<Boolean> out) { 

ComplexModel model = new ComplexModel(); 

float result = model.predict(value);

if (result > Fraud_Threshold) {

return true;

} else {

return false;

}

…

result.addSink(new NotifyConsumer())); 

DataStream<String> src1 = ..

DataStream<String> src2 = ..

DataStream stream = src1.join(src2)

DataStream<Boolean> result = 

stream.serverless(“serverless-filter-model”)

result.addSink(new NotifyConsumer()); 

Figure 45: A simple fraud detection logic using Filter operator, where
highlighted code refers to the operator business logic. We repre-
sent Filter operator, in the left figure (a) using the specification language
of a CEP system, Flink and (b) using Flink (top) and CEPLESS program-
ming interface for Java (bottom). In (b) we have provided a serverless
abstraction for serverless-filter-model to decouple operator logic from
the CEP runtime APIs like DataStream.

6.1.2 Problem Statement

This section analyzes the ability of modern CEP systems to flexibly specify
operators and signify their importance using the fraud detection scenario
previously introduced in Chapter 3: Section 3.1 4 .

Typically, a fraud detection algorithm is expected to detect complex fraud
patterns encapsulated in business logic comprising machine learning mod-
els. Consider a financial institution that uses an exclusive machine learning
library that is implemented in the fraud department of the institute. The
fraud department wants to use a CEP system to model the fraud and detect
it in real-time and at a very large scale of events. Moreover, since frauds are
detected in real-time and the fraud patterns vary over time, the department
wants the system to specify complex business logic and exchange it at run-
time based on the observed patterns.

It is important to note that existing CEP systems fail to fulfill these require-
ments, which we exmplarily show in the following using a simple specification
of fraud detection in a highly performant CEP system Apache Flink [54] (cf.
Figure 45 (a)).
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In the figure, the highlighted code represents the complex business logic
or a pre-trained machine learning model used to detect fraud. In this exam-
ple, we hide the complexity of the prediction logic behind model.predict for
better understandability. It can be seen that the specification of filter oper-
ator in Figure 45 (a) is highly dependent on Flink’s APIs such as DataStream

and FilterFunction. Moreover, the filter operator is ossified and dynami-
cally updating it without redeployment is not possible. Also, the language of
preference of the financial institution, in this example, Rust, cannot be used
due to the missing APIs. This dependency on the CEP execution environmentProblems:

language
and runtime
dependence

and the programming language is problematic for multiple reasons. (i) The
fraud detection algorithm might benefit from the libraries defined in more
than one CEP system, which can be achieved by integrating two or more
CEP systems that are not currently possible. For instance, integrating the
machine learning models by extending the runtime and external modules of
the CEP system can be very cumbersome, if not impossible. (ii) Existing CEP
systems are highly complex (e.g., Flink in total comprises more than 900,000
LOC), and the respective department responsible for developing the fraud de-
tection system might not have the expertise to deal with the complexity. (iii)
Finally, the financial institution might have a programming language of pref-
erence for developing the fraud detection algorithm, e.g., Rust in the above
example. This is not easily possible using existing CEP systems without com-
pletely extending the APIs of the CEP system or a complete rewrite of all the
operators in the CEP system

In Figure 45(b), on the right side, we show our proposal of the programming
model that mitigates all the limitations stated above. As shown in the figure,
we segregate the business logic of the operator serverless-filter-model us-
ing serverless abstractions, making them independent of the CEP runtime.
This means ServerlessFilterOperator can be executed independent of the
underlying CEP execution environment and can be written in any program-
ming language of preference.

6.2 The CEPLESS System Design

CEPLESS proposes the following mechanisms and programming interfaces
targetting key research questions discussed previously: (i) (RQ3.1) Program-
ming interfaces to express user-defined operators ωUD that interacts with the
middleware and the CEP systems to execute them. Here, User-defined Opera-
tor Interface acts as a communication channel between the given CEP system
and the ωUD, and the User-defined Programming Interface facilitates an easy
submission of ωUD to the CEPLESS middleware. (ii) (RQ3.2) Mechanisms for
in-memory queue management and batching enable stateful processing of
events, in-order, and efficiency in delivering complex events. Moreover, the
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mechanisms aid in dynamic operator updates while consistently delivering
complex events.

In the following, we introduce the CEPLESS system design conceptually
before presenting the main contributions of this work: the CEP serverLESS
middleware in Section 6.2.1 and the programming interfaces in Section 6.2.1.

Conceptual Overview.
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Figure 46: The conceptual view of the CEPLESS system. Here, the dotted line shows
the components encapsulated in each node.

Query
workflow
with UD
operators

Figure 46 presents the three key components of the CEPLESS System. (i) The
Execution layer comprises distinct CEP systems providing the execution en-
vironment for the queries. (ii) The CEPLESS middleware allows reusability
of different execution environments from the Execution layer while ensuring
dynamic operator updates. (iii) The Programming interfaces enable the spec-
ification of user-defined operators in the preferred programming language
and integrate distinct CEP execution environments to the CEPLESS middle-
ware. In the following, we present the workflow of specifying, instantiating,
deploying, and processing user-defined operators ωUD using the execution
environment. First, as seen in the CEPLESS programming interface layer,
the CEP application developers can specify user-defined operators ωUD ei-
ther using the 1a interface or using the 1b centralized operator registry. The
programming interface provides a means to define and deploy user-defined
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operators ωUD independent from language and execution environment. The
centralized registry maintains the executable operator containers Cω, such
that multiple applications can reuse them. 2 After submitting the code for
ωUD using the programming interface, the system wraps the code into a con-
tainer and pushes it to the common registry. 3 Once the code is pushed into
the registry; any node can use the ωUD with a deployed CEPLESS middleware
instance. The node in question can simply download the ωUD and interact
with other CEP systems in the Execution layer. 4 The deployment of ωUD is
triggered by the Node Manager by invoking the User-Defined Operator (UDO)
interface (cf. Definition 21) of a specific CEP system. Whenever interested, the
UDO Interface initiates the deployment of the required ωUD by requesting the
Node Manager NMn instance, which is responsible for downloading the oper-
ator container CωUD on the node. 5 Once the operator ωUD is available; it is
instantiated on the respective node for execution on a specific CEP system.
The communication between the CEP system and the ωUD that operates on
the CEPLESS middleware happens using the event queues (cf. Definition 18).
6 On the one hand, using the input queue eq_inωUD , the incoming events
from the CEP system are sent to the CEPLESS middleware for processing of
the ωUD. 7 On the other hand, the complex events are emitted from the
middleware via the output queue eq_outωUD to the CEP system for further
processing by the system-defined operators or forwarding to the consumer.

6.2.1 Serverless Middleware

The CEPLESS middleware communicates with the CEP systems in the Execu-
tion layer using input and output in-memory queues eqωUD . The in-memoryIn-memory

event
processing

queues aim for two main design goals (i) high performance in the delivery
of events and (ii) in-order and stateful event processing while ensuring sys-
tem independent transfer of events from the user-defined operator ωUD to the
CEP system. As seen in Figure 46, CEPLESS middleware and the CEP system
resides on the same node and avoid any network latency. In a distributed
setting where multiple instances of ωUD interact with the CEP system, we
ensure that operators with dependency on the predecessors are residing on
the same node. For instance, if a ωS is dependent on a ωUD operator, they are
enforced to reside on the same node.

In-memory Queue Management

We provide in-memory queue management and batching mechanisms to en-
sure efficiency in delivering events from CEPLESS middleware. These mecha-
nisms aim to process multiple events per time unit to ensure high throughput
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in forwarding events. The forwarding of events from the middleware to the Ex-
ecution layer is done using a client-server model. Instead of opening a new
request for each event, we use batching to send the events such that the num-
ber of requests and the socket connections are reduced. These mechanisms
aim to (i) maintain high performance in terms of throughput and latency and
(ii) provide in-order and stateful processing of events. In the following, we
elaborate on the above two design goals.

Guarantee High Performance in the Delivery of Events

To guarantee high performance in delivery events, we use a well-known con-
trol mechanism of in-memory queues called command flushing [239]. The
command flushing mechanism, essentially, manages the time when a new
command for a request is issued. Existing queueing systems [239, 240] uses
automatic command flushing, which issues commands on each invocation by
the client. This is very inefficient as it results in many commands written to
the network sequentially, i.e., every time a new event is received. In contrast,
we aim to issue concurrent command flushes at specified intervals, which
works independently of the CEP query. In the context of CEPLESS middle-
ware, each command refers to the request to receive or send an event.

Algorithm 6 presents the manual command flushing mechanism triggered
when events are received from the CEP system and sent to the CEP system.
In the algorithm, we define events and their handlers using the widely used
definition given by the asynchronous event-based composition model in [209].
Therefore, events, modules, and attributes are denoted as
〈Name of Module, Event|Attributes,...〉.

In the main thread, the events are collected from the Execution layer, i.e.,
the primary events arriving from a producer via a specific CEP system or
complex events arriving from the system-defined operator (ωS) of the CEP
system (Line 1–2). Simultaneously, another background thread continuously Timely

dispatch of
events
allow high
perfor-
mance

processes the primary and complex events received from the CEP system
(Line 3–17). We use two batches to store events for sending (bs) and receiv-
ing (br). We maintain a threshold for sending (outBatchSize) and receiving
(inBatchSize) events for each batch. The batching mechanism collects the
events and sends the batch to the in-memory event queue (eq_inωUD ) after the
threshold is reached (Line 9). Once the buffer is full, the background thread
issues command flushes (Line 14–16). The background thread then waits un-
til the events are sent and processed, as well as there are no new events in
the batch (Line 5). The waiting time or the backoff time tbackoff is determined
based on new events in the batch bs. In other words, we linearly increase the
total backoff time tsleep every time we encounter an empty batch bs.
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Algorithm 6 : Event queue handling and command flushing mecha-
nism.

Variables :

bs ← Sent and processed batch of events at ωUD

br ← Batch of events received from ωUD

tbackoff ← Increment in the back-off interval

tsleep ← Total current back-off time

eq_inωUD ← Input event queue for the ωUD

eq_outωUD ← Output event queue for the ωUD

eUD, eS ← Events to and from user-defined operator
(UD) and system-defined operator (S)

cmds ← Event queue client commands

inBatchSize ← Batch size of commands to be received

outBatchSize ← Batch size of commands to be sent
// actions when receive event is triggered by the Execution layer (ωS)

1 upon receiveEvent 〈ωS , eS〉 do
2 bs.push(event);

// actions when send event is triggered by the ωUD

3 upon sendEvent 〈ωUD, eUD〉 do
4 tsleep ← 0;
5 if bs.size = 0 then
6 tsleep ← tsleep + tbackoff ;
7 sleep(tsleep);
8 else
9 if bs.size > outBatchSize then

10 eq_inωUD ← bs.pop(0, outBatchSize);
11 else
12 eq_inωUD ← bs;
13 bs.clear();

14 if eq_inωUD .size > 0 then
15 cmds ← eq_inωUD .compileCommands();
16 cmds.flush();

17 tsleep ← 0;

// actions when receive events is triggered by the ωUD

18 upon receiveEvent 〈ωUD, eUD〉 do
19 tsleep ← 0;
20 tsleep ← 0;
21 br ← range(0, inBatchSize) ;
22 if br.size = 0 then
23 tsleep ← tsleep + tbackoff ;
24 sleep(tsleep);

25 eq_outωUD ← br ;
26 trigger forwardEvent 〈ωS ,Events in br〉 ;
27 tsleep ← 0;

Furthermore, tsleep ensures that no event keep waiting for long until the
batch is full, for example, that aids in keeping the latency in delivery of events
low. In this way, we avoid wastage of resources since there is no need of
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sending a request for an empty batch. We reset the total backoff time tsleep
once there are events processed in the batch bs (Line 17).

After being processed by the ωUD operator, the events are retrieved by an-
other background thread (Line 18–27). To fetch all the events at once, we
utilize a range query (Line 21). Like database range queries, in CEPLESS, the
in-memory queue defines a start index and the length to fetch events from
the queue. Using a range query, we again reduce the number of requests to
retrieve an event and fast-forward the process. This thread also uses a lin-
early increasing backoff interval to avoid filling the queue with commands or
requests, much like sendEvent background thread (Line 23).

We provide a universal format45 to encapsulate events that are passed to
the queue that provides runtime independence. This allows the middleware
to interact with the different CEP systems without worrying about their se-
mantics. Also, the format allows to keep the event size low that is necessary to
avoid high latencies. Therefore, a combination of manual command flushing
and batching mechanism aids in delivering events with efficiency, i.e., high
throughput, while maintaining low latency.

In Order and Stateful Processing of Events

The in-memory queues use a FIFO ordering in forwarding and reception of
the events. This means if a client at the CEPLESS middleware creates a re-
quest to add a new event, the same is appended to the tail of the specified
operator event queue eqωUD . Note, each user-defined operator ωUD maintains
its unique event queues for incoming and outgoing events. The communica-
tion to the Execution layer is managed using the commands push and pop
for sending and receiving the events, respectively, which inherently ensures
FIFO ordering (cf. Algorithm 6). Therefore, the FIFO mechanism, combined
with the communication to the Execution layer, ensures in-order process-
ing of events. Furthermore, CEPLESS relies on the Execution layer ordering
mechanisms, e.g., Flink ensures ordering using watermarks, such that the
output events are produced in a correct manner46. For stateful processing,
we make use of in-memory queues, as explained in the above paragraph. The
queues store the history of events without having to persist the events on the
external storage that could induce high I/O latency.

45Specifically, JSON data format is used in our implementation. https://www.json.org/
json-en.html [Accessed in May 2021].

46The assumption is that the underlying CEP system is able to handle changes in the order
of events, e.g., using on mechanisms for out-of-order arrival [241]

https://www.json.org/json-en.html
https://www.json.org/json-en.html
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6.2.2 Programming Interfaces

We provide a set of interfaces for the application developers to develop CEP
applications and the domain experts to extend existing CEP systems for com-
patibility with the CEPLESS middleware. The goal for these interfaces is to
provide runtime and language independence to the application developers. In
the following, before detailing the interfaces, we first explain the Node Man-
ager component introduced in Figure 46 that is responsible for interaction
between the user-defined operator interface in the specific CEP systems at
the Execution layer. Afterwards, we detail the User-defined Operator Interface
used to extend existing CEP systems to interact with CEPLESS middleware
for runtime independence and the CEPLESS Programming Interface used to
develop runtime- and language-independent operators in CEPLESS.

Node Manager

Each node holding a ωUD operator is managed by a Node Manager, as seen in
Figure 46. Hence, each node has a running NMn instance. The node manager
is colocated with the CEPLESS middleware (cf. Section 6.2.1) on the same
node. The main function is to manage the deployment and processing of the
ωUD once requested by the CEPLESS programming interface. The node man-
ager can handle multiple incoming requests for operators distinguished using
a unique operator identifier. Thus, the manager can handle multiple ωUD op-
erators at the same node simultaneously by multiple CEP system instances.

The CEP system initiates a request through the UDO Interface implemented
in each CEP system of the Execution layer. If the requested ωUD operator ex-
ists in the registry at the programming interface, the operator is fetched and
deployed at the middleware. Once deployed, the events are exchanged be-
tween the ωUD operator via the event queues. Here, each operator remembers
the queue address with which it communicates to the CEP system instance.
In the following, we elaborate on the functionality of the User-defined Op-
erator Interface. Another important functionality of the node manager is to
support dynamic updates in the ωUD operator specification while maintain-
ing the state. If an update of an operator is trigerred from the programming
interface, the node manager deploys the new operator, empties the old event
queue, and redirects the “new” events to the “new” successor operator in the
operator graph. If the old operator is not required anymore, it terminates the
same or transfers it to a new node location.
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User-Defined Operator (UDO) Interface

We propose a UDO Interface that handles communication to the user-defined
operator ωUD running in the CEPLESS middleware. The interface needs to UDO

interface
provides
platform in-
dependence

implement common functionality that handles events to and from the ωUD
and the CEP system. Motivated by the serverless computing principles, the
interface provides a minimalistic abstraction for CEP systems to support
operators-as-a-service in the CEPLESS middleware. Depending on the under-
lying mainstream programming language of the CEP system, the interface
differs slightly. However, it provides a minimal overhead to the existing CEP
system codebase.

Listing 9: User-Defined Operator Interface.

1 trait UserDefinedOperatorInterface {

2 def requestOperator(operatorName: String, cb: OperatorAddress => Unit): Unit

3 def sendEvent(e: Event, address: OperatorAddress): Unit

4 def addListener(address: OperatorAddress, cb: Any => Unit): Boolean

5 def removeListener(address: OperatorAddress): Boolean

6 }

In Listing 9, we show the major functionality of this interface required to
be implemented by a CEP system to interact with the proposed CEPLESS

middleware. First, the CEP system issues a request for a specific ωUD operator
at the CEPLESS middleware (Line 1). The first parameter operatorName gives
the unique operator identifier for the ωUD operator. The second parameter is
a callback cb that is invoked when the ωUD is deployed and returns a unique
address at which it is reachable through the interface. The operator address
is used to transfer the events between the CEP system and the CEPLESS

middleware via the interface. sendEvent() method is used to send an event to
a ωUD operator at the middleware. The Event parameter is specific to a CEP
runtime and has to be serialized to a readable format for the ωUD operator
(Line 3). To be able to receive events from the deployed ωUD operator, the
respective CEP system can add or remove listener using the methods in Line
4 and 5, respectively. The listener uses the operator address and expects a
callback function, which is invoked every time new events arrive at the CEP
system from ωUD at the CEPLESS middleware.

UDO Programming Interface

This module enables application developers to program ωUD in runtime- and
language-independent way. We allow user-defined operators ωUD to be used
across different CEP systems without having to change the operator design
based on the execution semantics. Hence, we abstract away the processing
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function fω encapsulated inside ωUD from the CEP system. The ωUD operatorsProgram-
ming

interface
enables

operators
as a service

can be developed, utilized, and updated using the preferred programming
language supported by the virtualization environment47. This design choice
gives the application developers the ability to use effectively any programming
language of choice that is executable in a virtualization environment of the
container by doing only minor modifications.

The applications can submit new ωUD operators in two different ways to
the CEPLESS middleware: (i) submitting only the function using our program-
ming interface (CLI and web) and (ii) submitting a pre-built ωUD operator
container into the registry. By this, motivated by the serverless computing
principles [163], we provide an equivalent operator-as-a-service for CEP sys-
tems. While providing the predefined ωUD operator container, we allow appli-
cation developers to use any programming language to implement operators.
In contrast to the traditional serverless platforms like AWS Lambda [163] that
supports a handful of programming languages, we provide essentially sup-
port any language, such as introduced in the example, to be integrated into
CEPLESS. Besides, we provide the advantage of using multiple CEP systems
simultaneously, facilitating the reuse of enormous functionalities provided
by the CEP systems such as backpressure, query optimization, and query
placement mechanisms.

Furthermore, developers do not have to know the underlying handling
mechanism of forwarding events to the specific CEP system running in the
Execution layer. The only assumption towards the implementation of ωUD
operators we have is that they can handle the transformations of input and
output events. In CEPLESS, we do this using event queues as explained in the
previous Section 6.2.1. CEPLESS manages all the registered ωUD operators’
containers Cω and the privileges of the developers in a centralized container
registry48 that provides a central database for all the containers.

Once the application developer submits a ωUD, the programming interface
prepares a container along with the communication interface, namely the
UDO Interface, in a single container Cω to have a fully functioning ωUD op-
erator. The UDO then handles the communication to and from the CEP sys-
tem at the Execution layer along with the serialization and deserialization
of event objects for the interaction with the middleware. Using the CEPLESS

programming and UDO interfaces, the application developers need not know
the underlying communication methodology of the used CEP system in the
Execution layer and can seamlessly use ωUD to execute a query. In this way,
CEPLESS provides application developers with the freedom to develop ωUD
operators using only “operator” as a starting point.

47In this work, we base our implementation on Docker virtualization environment, which
can support a variety of programming languages.

48Much alike docker registry. https://docs.docker.com/registry/ [Accessed in May 2021].

https://docs.docker.com/registry/
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6.3 Evaluation

This section evaluates CEPLESS in a three-fold manner aligned to our re-
search contributions presented in Sections 6.2.1 and 6.2.2. Key

evaluation
questions1. Is it possible to replace operators dynamically, and how long does it

take? (Section 6.3.2)

2. How much is the overhead of CEPLESS in terms of forwarding events
and query performance compared to event processing in CEP systems?
(Section 6.3.3)

3. Is CEPLESS able to provide runtime and programming language inde-
pendence? (Section 6.3.4)

Section Structure

Section 6.3.1 explains the evaluation environment: implementation, platform,
dataset, queries, configuration, and the plots used for representation. Sec-
tion 6.3.2 provides the performance evaluation of dynamically updating user-
defined operators ωUD compared to Apache Flink [54], a highly performant
widely used CEP system. Section 6.3.3 provides the performance evaluation
of CEPLESS middleware in terms of latency and throughput compared to
Apache Flink and TCEP (cf. Chapter 4). Section 6.3.4 shows that user-defined
operators ωUD can be executed in CEPLESS middleware without any prior
knowledge using two case studies of Flink and TCEP. Moreover, by using CE-
PLESS for ωUD operators in five different programming languages, we show
that ωUD operators can be developed in a preferred programming language
with minor modifications.

Simulation time ts 20 min

Warmup time tw 60 s

Number of runs 30

Back-off interval increment tbackoff 1 ns

Output batch size outBatchSize 1, 10, 100 events

Input batch size inBatchSize 1, 10, 100, 10000 events

Input event rate 1000, 10000, 100000 events per second

CEP systems Apache Flink [28], TCEP [25]

Queries Fraud detection (Listing 10), Forward, and K-
means [242]

Table 21: Configuration parameters for the evaluation. Default or mostly used param-
eters are underlined [238].
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6.3.1 Evaluation Environment and Methodology

This section describes the CEPLESS implementation, evaluation platform,
dataset, queries and the plots used for evaluation.

Implementation

CEPLESS system follows a modular design and implementation written ma-
jorly in Golang and Java. In the middleware, the node manager is written inCEPLESS is

extended
with Flink
and TCEP

Golang that offers integration of in-memory queues like Redis [239] and Infin-
ispan [240] with the proposed functionalities in Section 6.2.1. The CEPLESS

programming interface provides a means to develop user-defined ωUD opera-
tors, which is written majorly in Java, and the web interface is provided using
the Angular framework written in TypeScript as proposed in Section 6.2.2. Fi-
nally, the UDO interface for the respective CEP system is written in the given
programming language of the CEP system, example, for Apache Flink, it is
written in Java, while for TCEP it is written in Scala. CEPLESS implementa-
tion with all its components and integration to TCEP and Flink is available
open-source for use49.

Evaluation Platform

We use a machine with Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz pro-
cessors and Ubuntu 18.04 operating system for evaluation. The machine is
equipped with 128 GiB of memory and 24 cores. CEPLESS is a stand-alone
CEP system with current extensions on Flink and TCEP. For comparison, we
use two modes for evaluation (i) direct implementation of queries on the re-
spective CEP systems (baseline) and (ii) implementation of ωUD operator using
CEPLESS extension on respective CEP systems. In the former mode, the query
containing the ωUD residing in a docker container executes inside a CEP sys-
tem, while in the latter the ωUD container and the query with system-defined
operators ωS run as separate containers on the CEP system50.

Dataset

We use a dataset with financial transactions [65] specially dedicated for a
fraud detection application. The dataset is taken from the real world and

49CEPLESS webpage: https://luthramanisha.github.io/CEPless [Accessed in May 2021].
50The docker containers are not restricted in terms of resources they can use but can use

all the resources of the available machine.

https://luthramanisha.github.io/CEPless
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(b) An operator graph for a simple fraud detection query.

Figure 47: Queries used for evaluating CEPLESS: (a) Filter and (b) Fraud detection
query [238].

is anonymized for research purpose. It contains 284,807 event tuples com-
prising credit card transactions. Each event tuple is of the following form:
<timestamp, amount, cardId, terminalId>. Real world

workload

Queries

Figure 47 shows the queries used for the evaluation. For the performance
evaluation of CEPLESS (cf. Section 6.3.3), we use a Forward operator that for-
wards the event tuples to the consumer and a Filter operator (a). To evaluate
for dynamic operator updates (cf. Section 6.3.2) and runtime independence
(Section 6.3.4), we replace the Filter operator with a user-defined ωUD opera-
tor (b) provided in Listing 10. As shown in Figure 47, we consider credit card
terminals as event producers, which generate continuous data stream as
transactions from the terminal. The event tuples act as an input to the CEP
query (a) and (b) that transforms the events to detect fraud. Both queries (a)
and (b) joins event tuples from multiple card terminals using a Join operator
(ωon) that joins the event tuples within a sliding window of 30 seconds. The
resulting data stream is sent for further processing to (a) a system-defined
ωS Filter operator or (b) a user-defined Filter ωS operator. The Filter operator
depicts if the processed transaction is fraudulent or not and this information
is forwarded to the credit card fraud department.

Evaluation Configuration and Plots

Table 21 presents a summary of the parameters used for the evaluation. Out-
put and Input Batch Size describes the number of sent and fetched events
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from the respective event queue in use as presented in Section 6.2.1. Back-
off time interval increment is the value incremented on top of the back-off
time. It is time until when the event queue waits for the new events to ar-
rive (cf. Algorithm 6).

We use line plots, bar plots, and point plots for comparing our evaluation re-
sults. The line plot shows a thin line that depicts the mean, while the shaded
areas report the percentiles, including the values of the investigated metric
between the 5th and the 95th percentile. The bar plot shows the mean of
the investigated metric and the error bar on the top, denoting the values
between the 5th and the 95th percentile. The point plot, similar to the line
plot, shows a point that depicts the mean value while the error bars report
the percentiles, including the investigated metric values between the 5th and
the 95th percentile. In the next sections, we present the performance eval-
uation of CEPLESS.

6.3.2 Evaluation of Dynamic Operator Update

This section aims to understand the performance of dynamic operator up-
dates using CEPLESS middleware. We repeated the experiment 30 times to
measure a 95% confidence interval on the investigated metrics. We utilize
three evaluation metrics for measuring the performance: (i) downtime, (ii) up-
date time, and (iii) throughput or (output) events. Here, downtime refers to
the time interval when no events were received at the consumer and update
time refers to the time interval between the termination of the old operator
and initiation of the new ωUD operator. Throughput is defined as the the max-
imum amount of event traffic that a CEP system can handle at a given time.
As earlier motivated in Section 6.1.2, such updates in the business logic of
custom operators are crucial for applications like fraud detection. In such
examples, small downtimes and update times are considered good because
system availability is critically important. In the experiment, we exchange
the ωUD operator with a new pattern ωUD operator capable of detecting even
more fraud patterns, and hence, we see an increase in the throughput af-
ter the exchange at time t = 300. There should be no throughput decline or
spike in an ideal case and it should remain constant as it was before the
update in the operator.CEPLESS

promisingly
updates the
operator in

a few ms

Figure 48 shows the observed throughput measurements and operator up-
date at t = 290s. Here, the experiment time is shown on the x-axis and the
y-axis shows the throughput. We compare dynamic operator updates with
Apache Flink, which do not have support for updating operators at runtime.
We extended Flink to support this using an automated shell script. However,
even when using a script in Flink, the query has to be redeployed, which
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Figure 48: Throughput of Apache Flink with and without CEPLESS over the simu-
lation time. CEPLESS quickly updates the operator while guaranteeing
delivery of events. Whereas Flink experiences a downtime of around 8.6
seconds [238].

causes a mean downtime of around 8.6 s as seen in the plot at t = 298. The
spike at t = 300 is seen due to the buffered events that were not processed due
to the downtime of the operator. However, as soon as the query is deployed
again, it is processed from the saved checkpoint where it stopped.

In contrast, CEPLESS, we see no downtime. We observe a small mean up-
date time of around 238 ms (~97% reduction) while ensuring continuous
delivery of output events. In fact the throughput of the new ωUD operator is
observed quite steadily in the system, as seen at t = 300. Therefore, we ob-
serve a very small update time using our implementation while inducing no
disruption in the output, thanks to the quick deployment of the new oper-
ator by the node manager in contrast to bringing down the complete query.
It is also important to note that while the update is taking place, the events
are stored in the event queues earlier explained in Section 6.2.1, thus, none
of the events are lost.

6.3.3 Evaluation of CEPLESS Middleware

This section aims to understand the performance of CEPLESS middleware in
terms of event processing. We consider two metrics that are extremely impor-
tant for CEP applications, but also in the context of the fraud detection appli-
cation: end-to-end latency (cf. Definition 6) and throughput (cf. Definition 11).
In this evaluation, we use a Forward operator introduced in Section 6.3.1
to observe all the output events emitted from the CEP system. We use two
metrics in this evaluation, (i) the latency is measured as the time taken to for-
ward the events from the producer to the consumer and (ii) the throughput is
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measured as the number of output events received at the consumer per time
unit. We consider the following system configurations:

1. Forward operator executed on the native CEP system without CEPLESS

(baseline).

2. Forward operator executed on the CEP system as a ωUD using our CE-
PLESS extension, Redis [239] as an in-memory queue, with and without
batching.

In the following, we show impact on the performance in terms of (i) through-
put, (ii) latency and (iii) different batch sizes using our reference implemen-
tation of CEPLESS on Flink and TCEP. By showing the applicability of two
CEP systems, we emphasize that CEPLESS can be extended with diverse
CEP systems.

Impact on Throughput

This section aims to understand the performance of CEPLESS by measuring
the throughput. We refer to the throughput being optimal when the output
events match the input event rate, i.e., all the forwarded events are received
at the consumer. Again, we collected the measurements over 20 minutes and
repeated the evaluations 30 times (cf. Table 21). We report the 95% confi-
dence interval of throughput measurements in the barplot with different in-
put event rates. The error bar on the top shows the interval bound. Figure 49
(a) presents the mean throughput values observed for Flink with and without
CEPLESS over an event rate of 1000, 10000, and 100000 events per sec-
ond, respectively (left to right). Consistent with our hypothesis, we do not see
any drop in the throughput. In fact, we can match the optimal throughput
in the output events as done by Flink. Table 23 in Section A.3 elaborates
on the statistics presented in Figure 49 (a) with mean, minimum, maximum,
and percentile (90, 95, and 99) of the throughput observations. Here also,
we see that CEPLESS with Flink matches the baseline implementation under
all the event rates.Zero

overhead in
terms of

throughput
compared
to native

CEP

Figure 49 (b) shows similar observations with the underlying CEP system as
TCEP. Again, with CEPLESS with TCEP, we can match the optimal through-
put as done by TCEP. The reason why we do not report the observations
for 100000 events is due to the inability of the TCEP baseline to deal with
this amount of events. This is due to the absence of backpressure and flow-
control mechanisms.
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(a) Throughput of Apache Flink with CEPLESS and without CEP-
LESS (baseline) and with CEPLESS.
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(b) Throughput of TCEP with CEPLESS and without CEPLESS (base-
line).

Figure 49: Throughput evaluation of CEPLESS compared to native (without) CEP sys-
tem Flink and TCEP. We show that the respective extensions with CEP-
LESS is equally performant to the baseline thanks to the efficient queue
management and batching mechanisms.

Nevertheless, we show that using CEPLESS on top of Flink and TCEP can
match the throughput performance of the baseline even for very high event
rates of 100000 events per seconds. Another important observation is the
batch size setting to achieve the optimal throughput. Especially for a higher
event rate of 100000 events per second, we had to set the input batch size
to 10000 events. The empirical analysis on this is presented in Section 6.2.1.
However, the main reason for achieving high throughput is that while the
size of the range query has increased, there are fewer requests for event
processing and eventually lower internal network round-trips. However, at
times, larger batch sizes cost higher latency, which we evaluate in the next
subsection. One more interesting observation is that we see at times a higher
throughput than the input event rate for the CEPLESS extension. After fur-
ther analysis, we found out that due to the batching mechanism proposed
in Algorithm 6, the events stay in the batch for some time (backpressured)
instead of getting processed immediately. These events are emitted as soon
as the batch size threshold is reached, which means that, initially, a lower
number of events than the input rate could be received, while later, a higher
number of events could be received (see max value in Table 23).
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1000 events/s 10000 events/s 100000 events/s

System mean min max percentiles (90, 95, 99) mean min max percentiles (90, 95, 99) mean min max percentiles (90, 95, 99)

Flink 0.78 1.0 31.46 0.98, 1.06, 1.55 1.71 1.0 341.61 2.09, 2.22, 3.11 1.74 1.0 87.91 2.29, 2.45, 2.88

CEPLESS-Flink 3.19 1.0 26.19 4.10, 4.35, 4.9 3.63 1.15 503.50 4.21, 4.48, 5.15 4.61 1.82 956.31 5.71, 6.11, 7.80

TCEP 1.14 1.0 27.89 1.45, 1.57, 1.82 4.21 1.0 496.63 2.54, 2.74, 24.32 - - - -

CEPLESS-TCEP 4.94 0.72 21.27 6.10, 6.37, 6.86 5.21 1.97 488.84 6.25, 6.75, 10.38 - - - -

Table 22: Latency measurements: mean, min, max, and percentiles (90, 95, 99) for the Forward operator (in ms).

1000 events/s 10000 events/s 100000 events/s

System mean min max percentiles (90, 95, 99) mean min max percentiles (90, 95, 99) mean min max percentiles (90, 95, 99)

Flink 1047 108 1093 1001, 1002, 1002 10475 2180 19990 10010, 10011, 10020 100123 16770 200168 100098,100136,100797

CEPLESS-Flink 1070 378 1190 1003, 1004, 1004 10477 1174 20007 10019, 10027, 12081 100353 18353 249689 100623,100815,101806

TCEP 1021 396 2292 1001, 1002, 1002 10022 2660 45185 10010, 10015, 10110 - - - -

CEPLESS-TCEP 1000 214 4927 1001, 1002, 1004 10002 580 32091 10015, 10025, 10163 - - - -

Table 23: Throughput measurements: mean, min, max, and percentiles (90, 95, 99) for the Forward operator.
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Figure 50: Latency evaluation of CEPLESS compared to native (without CEPLESS)
CEP system Flink and TCEP. The results show that CEPLESS induces a
very low overhead of around 2 ms for very high event rates of up to 100000
events per second.

Impact on Latency

This section aims to understand the performance of CEPLESS in terms of end
to end latency. Like the throughput evaluations, we measure the latency in re-
ceiving output events using the Forward operator with and without CEPLESS

in Flink and TCEP, respectively. Figure 50 (a) shows the latency measure-
ments of running a Forward operator on the Flink with and without CEP-
LESS for the different event rates from 1000 to 100000 events per second. We
observe that CEPLESS induces only a minimal overhead on top of Flink and
attains a good performance in terms of latency compared to the baseline.
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In particular, we elaborate on the results in Table 22 and see that CEPLESS

induces an overhead of only 1.92 ms for 10000 events per second and 2.87 ms
for 100000 events per second (calculated by subtracting the mean latency
with baseline with mean latency with CEPLESS). Similar observations were
made for CEPLESS with TCEP as a CEP system. For TCEP a mean overhead of
around 1 ms was observed over a load of 10000 events per second.Negligible

overhead in
latency We observe only a small overhead in latency because we have parameter-

ized batch size for different event rates, as we elaborate in Section A.3.1. In
essence, the overhead majorly comprises two factors (i) the serialization and
deserialization of event objects to and from the universal format and (ii) the
total round trip time to and from the event queues and the CEP systems.

6.3.4 Runtime and Language Independence

This section evaluates the runtime and language independence of CEPLESS

middleware. We show this by a two-fold evaluation. (i) We show the language
independence by showing that specification of user-defined operators can be
performed in different languages: Go, Java, Scala, C++, and Python, irrespec-
tive of the mainstream language of the CEP system. (ii) We show the runtime
independence by integrating previously introduced CEP systems into the Exe-
cution layer, which can be selected independently for executing operators. Be-CEPLESS

operator
specifica-

tion is
available in

five
different

languages

sides, we show the analysis on the implementation overhead for user-defined
operators using the proposed programming interface compared to native CEP
systems in Section A.3.1. In the following, we present the realization of CEP-
LESS middleware using different programming languages and the respective
CEP systems, hence validating the universal applicability of our approach.

Language Independence

We implemented a fraud detection operator using the CEPLESS middleware
specification interface introduced in Section 6.2.2. Listing 10 shows a basic
implementation of the operator. First, the function receives a map as input
with keys of string type and values of any type containing the previously
introduced structure of events received from a terminal (Line 1). To know
which events were already received, we define a cache that saves the previ-
ously received events (Line 3). When an event is received, the function iterates
through the cache and checks the following requirements: Line 4-6: Checks
if the card ID of the previously received event is equal to the current event,
and if the card ID is equal, the transaction was received in a shorter time-
frame than 10 minutes. If both requirements are met, the incoming event is
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Listing 10: A Java example for a user-defined fraud detection operator as described
in the scenario.

1 public void handleEvent(Map<String, Any> input) {
2 for (int idx : events) {
3 Map<String, Any> event = events[idx];
4 if (!input["cardId"].equals(event["cardId"]) && TimeUnit.MILLISECONDS.

toMinutes(input["timestamp"] - event["timestamp"]) > 10) {
5 continue;
6 }
7 Map<String, Any> compositeEvent = new Map<String, Any>();
8 compositeEvent.put("event1", input);
9 compositeEvent.put("event2", event);

10 this.emit(compositeEvent);
11 }
12 this.events.add(input);
13 }

considered to be fraud. The operator emits a composite event consisting of
two conflicting transactions.

In CEPLESS middleware, we provide templates containing the UDO inter-
face (cf. Listing 9), in Golang, Java, Scala, C++ and Python made publicly
available here51. Furthermore, the programming interfaces and the project
structure are written to be easily reused for other programming languages
in order to realize custom applications. Hence, we show that the CEPLESS

middleware can be used to specify user-defined operators in the different
programming languages, with easy possibilities of extension.

Runtime Independence

We evaluate the applicability of CEPLESS on existing real-world CEP systems
to show runtime independence. Therefore, we ported it on two open-source
CEP systems: Apache Flink [28] and TCEP [25]. The ported versions are not
simplified, but the respective components of CEPLESS are implemented to
achieve a functionally equivalent system.

Apache Flink

To enable the usage of CEPLESS in a widely used streaming system, like
Apache Flink [28], we first extended the respective query language. We im-
plemented a new keyword named .serverless() (as seen in Figure 45) that
enables end-users to specify a user-defined operator in a query. This function

51Operator templates in CEPLESS. https://github.com/luthramanisha/CEPless/tree/main/
operators [Accessed in May 2021].

https://github.com/luthramanisha/CEPless/tree/main/operators
https://github.com/luthramanisha/CEPless/tree/main/operators
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expects an operator name and returns an AbstractStreamOperator reference
as expected by the Flink streaming engine. Besides this, we implemented the
UDO interface to enable communication between Flink and UD operators. As
soon as an event is received, we transform it into the universal format and
submit it to the event queue, as seen in Algorithm 6. Furthermore, we start
the receiving process to listen to the results of the operator. When an event
is received by this process, the UDO interface converts the universal format
back into the Flink event format and passes the event object down the query.
We mainly see dependencies on the following three aspects: query language,CEPLESS

can be
easily

extended
with CEP
systems

operator architecture, and event architecture. These aspects have to be con-
sidered when implementing the extension of CEPLESS middleware into a new
execution engine. The implementation of the UDO interface took 90 lines of
code (LOC) in the Flink engine.

TCEP

As a second case study, to demonstrate the extensibility of our approach, we
use TCEP [25] written in Scala. Coherently to the Flink implementation, we
started by extending the used query language of the system by defining a new
.serverless() function to define new operators. We implemented the UDO
interface to send and receive events as well, equally to the Flink implemen-
tation. Furthermore, we extended TCEP to include a Kafka producer, which
was already provided natively by Flink. In comparison to Flink, the UDO in-
terface took 130 lines of code. The difference in LOC is mainly caused by the
different communication semantics internally in TCEP.

6.4 Summary

This chapter proposes the third and the final contribution of this thesis solv-
ing the interoperability problem in the context of Complex Event Processing
systems. So far, it is hard to share or reuse functionalities across the diverse
CEP programming models because of the tight dependencies between the
specification language and the runtime environment of operators. Such de-
pendencies can be problematic for applications which require flexible change
in operator specification, for instance, fraud detection application. Further-
more, reuse across CEP systems becomes necessary for IoT applications that
often need very distinct but unifiable functionalities between heterogeneous
systems. We aim to resolve these challenges by proposing a middleware in-
spired by serverless computing principles called CEPLESS. With CEPLESS

we contribute a operators-as-a-service model providing the following program-
ming interfaces and mechanisms. (i) Novel programming interfaces to develop
user-defined operators that can be independently programmed without de-
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pendency to the CEP runtime environment and still be the part of the query
pipeline. (ii) In-memory queue management and batching mechanisms to pro-
cess events with high performance as well as to manage state for stateful op-
erators. At the same time, by changing the operator specification at runtime,
we enable dynamic operator updates that are highly desirable for many ap-
plications like fraud detection. Our evaluation using CEPLESS demonstrates
that it integrates well into existing CEP systems Apache Flink and TCEP pro-
posed in this thesis. Furthermore, for the ingested workload of up to 100,000
events per second, it can attain equivalent throughput as the native CEP sys-
tem (Flink and TCEP) and dynamic operator updates can be accommodated
in around 238 ms.
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Conclusion and Outlook

“One accurate measurement is
worth a thousand expert
opinions.”

– Grace Murray Hopper

This thesis presents three key contributions to solve the problems of adap-
tivity (RQ1), efficiency (RQ2) and interoperability (RQ3) in the context of Com-
plex Event Processing (cf. Figure 51).
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Figure 51: Summary of all the contributions as a single architecture. Here, TCEP

contributes a novel transition-capable programming model for OP mecha-
nisms, INETCEP contributes a unified communication model for network-
centric query execution, and CEPLESS proposes a novel unified serverless
middleware for query specification that is independent from the CEP exe-
cution model.

Overall con-
tributions

In particular, we proposed (i) a programming model and a methodology
for transitions in CEP systems, (ii) a unified communication model and effi-

185



186 Conclusion and Outlook

cient algorithms to support adaptivity in operator placement and query exe-
cution mechanisms, and (iii) a serverless middleware with programming ab-
stractions to allow reuse of multiple and diverse CEP execution models. We
implemented and evaluated the findings of the aforementioned contributions
in three novel concepts, named TCEP, INETCEP, and CEPLESS, all of which
are publicly available52.

This chapter summarises the contributions of this thesis and thereby the
answers to the research questions in Section 7.1. After that, we provide con-
clusions based on the contribution results in Section 7.2 and finally highlight
a few directions for potential future work in Section 7.3.

7.1 Contributions Revisited

This thesis solves three fundamental problems related to adaptivity, effi-
ciency, and interoperability in the mechanisms as well as programming mod-
els of CEP as identified in Chapter 1. We identify three critical research gapsKey

research
gaps and
summary

in Chapter 2, namely, (i) lack of adaptivity in mechanisms of CEP failing to
fulfill changing quality requirements in the presence of dynamic environmen-
tal conditions, (ii) missing network-centric abstractions in expressing event
processing operations and executing them in the underlay, and (iii) missing
programming abstractions that allow reuse of diverse CEP execution environ-
ments and allow changes in the query specification.

To this end, in Chapter 4, we proposed a novel transition-capable program-
ming model, named TCEP, and methods for transitions between OP mecha-
nisms to meet the changing quality requirements of applications. In TCEP,
we propose concepts to express adaptable OP mechanisms and cost-efficient
transition execution strategies.In Chapter 5, we proposed a unified communi-
cation model, named INETCEP, that enabled processing of continuous data
streams in the network layer. We proposed network-centric query execution
on top of Information-centric Networking architecture to increase the effi-
ciency in event processing. Finally, in Chapter 6, we presented a unified
serverless middleware, named CEPLESS, that provides a programming ab-
straction for specification of queries independent of the underlying CEP exe-
cution model. Using CEPLESS, application developers can combine the ben-
efit of the proposed and other CEP systems in a unified way, as well as the
queries can be updated at runtime as and when required by the applications.

52TCEP https://luthramanisha.github.io/TCEP/ [Accessed in May 2021].
INETCEP https://luthramanisha.github.io/INetCEP/ [Accessed in May 2021].
CEPLESS https://luthramanisha.github.io/CEPless/ [Accessed in May 2021].

https://luthramanisha.github.io/TCEP/
https://luthramanisha.github.io/INetCEP/
https://luthramanisha.github.io/CEPless/
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7.2 Key Results

We show the benefits of the proposed contributions by performing extensive
real-world system evaluations for each of our three contributions (cf. Fig-
ure 52). Key

answers on
the
contribution
results

TCEP

What: How to specify and adapt between Operator Placement mechanisms?

Why: Meet changing QoS requirements in the face of dynamic environments

How: Cost-efficient Mechanism Transitions in Operator Placement

Key takeaway: Optimal selection of time steps for transitions allow for fast and low cost 

transitions, particularly only a few milliseconds and bytes for the presented scenario

Key takeaway: Network-centric query execution over ICNs can accelerate event process-

ing, e.g., 15X and more than 100X compared to Flink and pull-based approach, resp. 

Key takeaway: No significant overhead on top of CEP (up to 100K ev/s). In fact, it allows 

for reconfiguration by reducing the operator update time (up to 97% compared to Flink)

INetCEP

What: How to increase efficiency in query execution?

Why: Meet challenging QoS requirements in the face of dynamic environments

How: In-Network Complex Event Processing over Information-centric Network

CEPless

Middleware

What: How to achieve interoperability across diverse CEP programming models?

Why: Runtime independence & changing query specification needs of applications

How: Unified Serverless Complex Event Processing

Figure 52: Key insights into the research contributions based on the motivation, the
methods and the evaluation results.

First, we showed, using the proposed programming model of TCEP, that
transition-capable OP mechanisms can be specified considering a broad-
spectrum of QoS requirements and algorithm design. By implementing six TCEP

reduced the
transition
costs

state-of-the-art OP mechanism, we showed that TCEP enables the utilisation
of distinct mechanisms and provides a good understanding of their per-
formance and cost characteristics. We showed that TCEP enables (i) quality-
based selection of OP mechanism and (ii) transitions between OP mechanisms
to meet the changing QoS requirements of applications.

We analyzed the ability to deliver events while performing a transition and
showed that a transition can be performed in a live and seamless manner.
We performed a detailed analysis of the costs involved in terms of transitions
and the learning overhead for a transition. An important observation is that
the transition algorithms induce only a negligible overhead while performing
a transition, thanks to the optimal selection of time steps to perform a transi-
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tion when the state to be transferred is minimal. Similarly, for learning, over-
head is negligible because of zero offling training costs. Another reason is the
appropriate balance between exploration and exploitation that is achieved by
applying an appropriate selection pressure.

Second, using the unified communication model and network-centric query
execution algorithms proposed in INETCEP, we improved significantly the effi-
ciency of event detection using in-network resources by applying the concepts
of Information-centric Networking. By proposing the unified communicationINETCEP

improved
the

efficiency
by reducing

event
delivery

time and
loss

model for ICN, we enabled a broad-spectrum of applications to benefit from
the network-centric resources. The concept can be applied to the applications
that need continuous processing of data as well as to the applications that
need data on request.

Our evaluations showed that INETCEP enables specification of both kinds
of applications: push- and pull-based. Notably, for the push-based applica-
tions we observed a tremendous improvement in latency while forwarding
events compared to a widely used open-source CEP system Flink (15× bet-
ter for the event rate of 50K events per second). Morover, we observed a 0%
loss rate compared to 61.18% seen in the ICN pull-based reference approach.
Similar observations were made for throughput, where our methods achieve
a high equivalent throughput as Flink. We performed an extensive perfor-
mance evaluation of query execution algorithms using two IoT case studies:
disaster and smart plug prediction scenarios. Using these queries and the
standard CEP queries, we again observed a tremendous improvement in the
performance in terms of latency compared to Flink that processes a query
in an overlay network in contrast to the underlay. Like Flink, our approach
superseded the performance of the pull-based reference approach due to the
unified communication model that induces no overhead on the network in
retrieving the query results continuously. Similarly, our approach outper-
formed for distributed evaluation with distinct topologies, by benefiting from
the query execution algorithms that pragmatically places operators on the in-
network resources while considering the QoS requirements and link capacity.

Finally, by proposing a serverless CEP middleware, named CEPLESS, we
provided an abstraction for application developers to specify queries indepen-CEPLESS

abstracts
the

complexity
and

enables
reuse

dent of a specific CEP execution environment. This platform independence
hides away the complexity of the CEP system53 from the application develop-
ers that aids in the fast development of application queries. Furthermore, the
ability to update operators at runtime in a very quick and seamless manner
allows to deal with the dynamic needs of an application.

53For instance, Flink comprises more than 900,000 LOC, which can be highly complex to
understand by application developers.
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Our results show that using the CEPLESS middleware, queries can be spec-
ified in the programming language of choice and can run independently of
the CEP execution model. Our evaluation shows runtime and language in-
dependence by the specification of user-defined operators in five different
programming languages and two distinct CEP systems: Flink and TCEP. We
show that CEPLESS is equally performant in throughput as the native CEP
systems Flink and TCEP. Moreover, we reduced the reconfiguration time of an
operator by 97% compared to Flink while ensuring no downtime and steady
throughput of complex events.

7.3 Future Outlook

We present the future work for the respective contributions in the following.

TCEP

While the proposed learning algorithm in TCEP aims to provide less over-
head for resource-constrained IoT applications, other applications with no Deep

learning
methods for
transitions

resource constraints might benefit from exhaustive machine learning models
like neural networks. Deep learning models can provide better estimations
on the OP mechanism. Furthermore, estimations could incorporate environ-
mental conditions. An optimal selection method and performance modelling
of the OP mechanism can better fulfill the QoS requirements.

TCEP proposes a generic transition-capable CEP system that enables mech-
anism transitions between OP mechanisms. The system can benefit from Coordinat-

ing
transition-
and non-
transition
capable
mecha-
nisms

transitions between other query mechanisms such as query optimisation
and elasticity in conjunction with OP mechanisms. Moreover, transitions
can be extended to other state-of-the-art CEP systems that are originally
non-transition-capable. Coordination between transition- and non-transition-
capable systems is a core research topic in the third funding phase of Collab-
orative Research Centre “MAKI”.

INETCEP

INETCEP proposes to meet the efficiency requirements of IoT applications by
network-centric execution of queries. Probabilistic guarantees in this realm
can be investigated so that by using in-network resources guarantees on the
fulfillment of the QoS requirements can be provided. To provide such guaran- Mission-

critical
guarantees

tees, an estimation of the performance related to the in-network resources are
required. Guaranteeing such mission-critical requirements is another core
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research topic in the third phase of Collaborative Research Centre “MAKI”.
Although INETCEP shows the benefit of hybrid processing in the underlay
and the overlay network, larger benefits can be uncovered by offloading pro-
cessing to the underlay pragmatically.

Other networking paradigms such as Software-defined Networks provide
control over the in-network resources and the ability to process operators
inside the programmable hardware, for instance, P4 [243] is a programmingP4 pro-

grammable
CEP

abstraction for data plane of SDN. In our early work [66], we show that simple
filter operations can be supported using such hardware to uncover tremen-
dous performance improvement.

CEPLESS

CEPLESS provides an important programming abstraction for CEP middle-
ware and serves as a crucial initial work in the realm of serverless CEP.
While we have enabled independent specification for queries, other CEP mech-Serverless

Operator
Placement

anisms can benefit from this independence as well, such as OP mechanisms.
By doing this, a common programming model for OP mechanisms can be
established, which do not rely on a single CEP execution model. Such an
abstraction is highly beneficial for the development of novel OP mechanisms,
that is crucial for distributed query processing in CEP.

Finally, CEPLESS presents a foundation to develop CEP systems with ad-
vanced serverless features such as just-in-time billing and auto-scaling inAuto-

scaling and
just-in-time

billing
operators

the cloud environment. By doing this, the applications do not have to depend
on the CEP specific scaling strategies [244]. For instance, the proposed user-
defined operator programming interface can provide information required for
billing and the virtualisation using containers, which is at the core of CEP-
LESS can be utilised to support auto-scaling.
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A.1 Supplementary Material to Chapter 4

In the following, Section A.1.1 provides additional insights into the perfor-
mance evaluation for the proposed programming model and the transition
strategies. Next, we present additional proof for the proposed selection algo-
rithm in the Chapter 4: Section 4.3.1.

A.1.1 Additional Insights on the Performance Evaluation

OP Mechanism

In this section, we report additional insights into the performance of OP mech-
anisms analyzed in Section 4.4.2: Figure 23. Table 24 summarizes the mean,
minimum, maximum, and quantiles (90, 95, 99%) of the metrics latency and
message overhead for the different OP mechanisms. The table presents the
results for Q1, Q4, and Q5 (cf. Table 10) execution using the different OP
mechanisms. An observation here is that the mechanisms behaves different
for distinct queries, for instance Relaxation and Global Optimal mechanisms
perform well for Stream and Conjunction queries, while Producer Consumer
supersedes them for Filter and Join queries. This is because the former has
an objective function involving latency while the latter can achieve this per-
formance because of its close proximity to the producers and consumers.
Similar observations are for other metrics, thus there is no single mecha-
nism that performs the best in all queries or all scenarios. Furthermore, it
can be derived from Figure 23 and Table 24 that Relaxation and MDCEP
mechanisms stand representatives for the metrics latency and message over-
head, respectively.
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ixLatency (ms) Message Overhead (MB)

OP mechanism Query mean min max
percentiles

(90, 95, 99)
mean min max

percentiles

(90, 95, 99)

Relaxation
Stream 4.52 2 24 6, 6, 10 11.03 10.3 10.3 10.3, 10.3, 10.3

Join 8.98 4 34 12, 14, 19.86 21.38 19.12 22.83 22.83, 22.83, 22.83

Congestion
Detection

9.23 6 34 12, 13, 19.96 249.52 145.74 330.16 329.77, 330.16, 330.16

MOPA
Stream 6.19 3.0 24 7, 9, 12 11.03 10.3 11.8 11.8, 11.8, 11.8

Join 12.33 7 49 16, 19, 33.04 23.84 20.48 27.34 27.34, 27.34, 27.34

Congestion
Detection

19.42 12 64 26, 29.15, 50.32 246.23 150.6 364.15 354.23, 263.27, 364,15

Global

Optimal

Stream 4.62 3 10 5, 6, 8.29 7.21 7.16 7.31 7.31, 7.31, 7.31

Join 9.05 5 23 12.3, 14, 16.86 14.31 14.24 14.49 14.49, 14.49, 14.49

Congestion
Detection

11.17 6 51 15, 17, 20.68 130.5 127.45 132.48 132.48, 132.48,132.48

MDCEP
Stream 6.07 4 38 8, 8, 12 1.08 1.08 1.08 1.08, 1.08, 1.08

Join 11.07 6 45 15, 17, 24 3.13 1.92 4.96 4.96, 4.96, 4.96

Congestion
Detection

15.68 10 53 21, 25.25, 41.10 17.97 6.22 25.04 23.19, 25.04, 25.04

Producer

Consumer

Stream 4.82 3 14 6, 7, 11 - - - -

Join 7.7 3 24 11, 12, 17 - - - -

Congestion
Detection

10.22 5 47 15, 15, 19 - - - -

Random
Stream 5.22 3 23 7, 8, 12 - - - -

Join 12.41 6 36 17, 20, 26.03 - - - -

Congestion
Detection

34.54 13 1036 25.6, 33, 1022.3 - - - -

Table 24: Performance results of OP mechanisms Relaxation and MDCEP are among the best compared (marked in bold) to their alternative
mechanisms for the conflicting metrics latency and message overhead.
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Transition Cost for the Proposed Transition Strategies

Table 25 elaborates on the statistics of transition cost for different transitions
strategies as presented in Figure 29. It summarizes the mean transition time
and overhead required by the different strategies. Clearly, the SMS strategies
supersede both in terms of cost in time and overhead.

Operator
Mean transition time

(in ms)

Mean transition

overhead (in MB)

MFGS Sequential

Average 105.13 20

Conjunction 607.49 24.74

Sequence 287.50 60.12

Stream 676.50 6.67

MFGS Concurrent

Average 37.06 0.05

Conjunction 445.98 0.05

Sequence 210.30 0.107

Stream 163.78 0.005

SMS Sequential

Average 66.66 0.007

Conjunction 219.56 0.009

Sequence 243.7 0.023

Stream 352.6 0.002

SMS Concurrent

Average 41.1 23.74 Bytes

Conjunction 158.2 21.13 Bytes

Sequence 158.3 41.86 Bytes

Stream 85.1 2.41 Bytes

Table 25: Mean values for transition time and overhead for MFGS and SMS strate-
gies. SMS strategies clearly supersedes in both time and overhead required
to transfer the operator.

A.1.2 Illustration of TCEP System

Figure 54 and Figure 53 demonstrates the proposed transition strategies and
selection algorithm while placing a traffic congestion query on a set of GENI
cloud nodes. In the following, we show the demonstration in four key steps
utilized to acquire cloud nodes to place queries and perform transitions.
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Figure 53: The transition interface that enables the application developers to pro-
gram Operator Placement mechanisms and use the proposed transition
strategies to execute transitions between them [207].

The TCEP demonstrator is based on Akka distributed toolkit that employs
an actor programming model. In TCEP, each Akka actors and Docker con-
tainers together enables a large-scale and efficient communication on top of
fog-cloud infrastructure as shown in teh demonstration. Although, we show
the workflow for acquiring GENI cloud nodes, TCEP facilitates integration of
heterogeneous infrastructures with CloudLab and MAKI compute instances.

The workflow is divided into four main steps as seen in Figure 54. 1
First, the topology generator requests for the specified number of resources
required to place operators. Although, the demonstrator initially accepts
request for a fixed number of nodes, this is later made flexible using dy-
namic scaling of nodes. For the initial configuration, the generator provides
templates to acquire the mentioned resources. 2 We make use of Docker
swarm that manages the allocated resources. The nodes communicate using
a Docker-based overlay network, even though the underlying physical topol-
ogy is different. 3 Next, the TCEP and TCEP Gui applications are downloaded
which are readily available in the Docker registry54. 4 For visualization
of the transitions, OP mechanisms and its performance characteristics we
provide a web-based interface as seen in Figure 54 based on d3js55. The
interface allows selection of various queries, OP mechanisms, the proposed
transition strategies and the selection algorithm. Furthermore, TCEP allows
easy integration of different queries and OP mechanisms in future that are
automatically made available in this interface. In summary, in this demon-
stration we have shown the advantage of TCEP using real-world fog-cloud
infrastructures of GENI, CloudLab and MAKI.

54TCEP in the docker registry. https://hub.docker.com/repository/docker/mluthra/tcep [Ac-
cessed in May 2021]

55d3js library. https://github.com/d3/d3 [Accessed in May 2021]

https://hub.docker.com/repository/docker/mluthra/tcep
https://github.com/d3/d3
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Figure 54: The visualization of TCEP system with real-time query execution on GENI
cloud infrastructure and a live topology seen on the right side.

A.1.3 Selection Method for OP mechanism

In Section 4.3.1, we noted that using an appropriate selection pressure, we
can have a balance between exploration and exploitation. Blickle et al. [215]
derived to what they call “selection intensity” presented as selection pres-
sure in the following.

Definition 22. Selection pressure (S). It is used to characterize the strong
or high respectively weaker or small emphasis of selection on the best OP
mechanisms. The selection pressure S for the fitness disrtribution s(f) is
defined as follows.

S =
M∗ −M

σ
(13)

In Equation (13), the selection pressure depends on the fitness distribution
of the population. Therefore, for different fitness distributions will generally
lead to different selection pressure even for the same selection method. In
order to define it specifically, we assume that the fitness distribution follows a
Gaussian distribution G(0, 1). In our evaluation, we have empirically validated
this fact that the fitness distribution of all OP mechanisms follows a Guassian
distribution, which leads to the following definition.
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Definition 23. Standardized Selection Pressure (SR). The standardized selec-
tion pressure SR is the expected average fitness value of the OP mechanism
distribution after applying the linear ranking based selection method to the

normalized Guassion distribution G(0, 1)(f) = 1√
2π
e−

f2

2

SR =

∫ ∞
−∞

f(R
∗
)(G(0, 1))(f)df (14)

The effective and average fitness value of a Gaussian distribution with mean
µ and variance σ2 can be easily derived asM∗ = σSR + µ.

Theorem A.1.1. The selection pressure using a linear ranking method can
be derived as follows.

SR(η−) = (1− η−)
1√
π

(15)

Proof. Using the definition of standardized selection pressure in Definition 23
and the Gaussian function for the initial fitness distribution, one can obtain
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Equation (15) follows.
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A.2 Supplementary Material to Chapter 5

This section defines the query grammar for the proposed meta query language
in Chapter 5: Section 5.2.3 in Section A.2.1. Furthermore, Section A.2.2
shows the extensibility of the concept using two case studies. Finally, Sec-
tion A.2.3 gives additional insights into the evaluation of INETCEP.

A.2.1 Query Grammar

Typically, a programming language grammar consists of four main compo-
nents defined as follows. (i) A set of terminals or tokens symbols occurring in
a language. (ii) A set of non terminals or syntactic variables represented by a
set of strings. Usually, these are defined the way they are used. (iii) A set of
production rules defining the replacement of non-terminals with terminals or
non-terminals or a mixture of both. Here, the terminal represents the head or
the left side of the production rule, while the replaced part is the body or the
right side of the production rule. (iv) A non-terminal can act as a start sym-
bol for a production. Given the above definition and the Chomsky-Hierarchy
[231], we select a type 2 grammar for the proposed meta query language
of INETCEP. There are two reasons for this. (i) The type 2 grammar or the
context-free grammar enables to combine the production rules. Furthermore,
the head of a producer comprise of one non-terminal and the body is not to
one terminal or non-terminal. (ii) We need a way to embed the operators in
parentheses complying the rules of data plane language of NFN. This ability
is provided by context-free grammars where paranthesis can be memorized.

We present the grammar of INETCEP meta query language using the BNF
(Backus-Naur form) in Table 26, considering the above arguments. We make
use of regular expressions as seen in the table, REG(. . .). Here, (. . .) can be
literals or numbers. As per the guidelines of Backus-Naur form, the plus sign
+ in REG([a − z ]+) denotes that at least one lowercase letter must appear.
The relational algebra operators referred to as comparison introduces a binary
relation between two elements. For instance, this can be a key,value pair of
an event tuple, and using the grammar rules a comparison symbol can filter
values from an event tuple.

A.2.2 Extensibility

To facilitate extensions in the query language we follow a widely used design
principle of object-oriented programming known as Abstract Factory. The pre-
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ω ::= on |σ|win|agg|seq
on ::= JOIN( format , ω , ω , boolExp )

σ ::= FILTER( format , ω )

win ::= WINDOW( latinNumber , number )

seq ::= SEQUENCE( format , ω → ω)

agg ::= AGGFUN(format, latinNumber, win)

AGGFUN ::= SUM | MIN | MAX | AVG | COUNT

number ::= REG([0-9]+)

latinNumber ::= REG([a-zA-Z0-9]+)

boolExp ::= latinNumber comparison latinNumber | boolExp concat boolExp

comparison ::= < | > | = | <= | >=

concat ::= & | "|"

time ::= nn : nn : nn . nnn

n ::= REG([0-9]{1})

format ::= Data Stream | Data

Table 26: Query Grammar for the meta langauge proposed in Section 5.2.3 [26].

viously presented Algorithm 5 starts the creation of an operator using our
query parser.

To develop a new operator, the operator implementation has to override
existing predefined methods of an abstact class Operator. The correctness
rules for the parameters has to be defined for each new operator. The abstract
pattern facilitates integration of new operators with minimum changes and
serves as an important foundation for future work, for example, to integrate
user-defined operators as done in Chapter 6.

In the remaining subsections, we define how the query language is used to
implement applications which were used as a basis to evaluate INETCEP
(cf. Section 5.3).

Prediction Algorithm

One of the applications used to evaluate INETCEP is the prediction on smart
plug query taken from the DEBS Grand Challenge in 2014. We reimple-
mented an existing solution on the problem [237] with the following design
requirements. (i) Collect historical data to perform better predictions on the
future energy consumption. (ii) Implement a lightweight solution for resource
constrained IoT infrastructure.

The prediction formula was given in the original challenge, where i refers
to the current time, si is the current recorded energy value at time i, sj gives
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the past values at time j = i + 2. Thus, the prediction done two steps in the
future comprise of the current and the average electricity consumption.

predicted_load (si+2) = (avgLoad (si) +median ({avgLoads (sj)})) (16)

As per the above requirements and the Query 8, we define the prediction
algorithm. It is determined whether or not for each time window of 1 minute,
the prediction time is reached, that is given as another input to the query.
If not, then the value of the prediction is stored as a state object to be used
later. In contrast, if the prediction time is reached, the load prediction of the
following form is emitted. < ts, plug_id;household_id;house_id; predicted_load >
Here, ts is the current time, plug_id identifies the smart plug, household_id
identifies the household, house_id identifies the house within a household
and predicted_load gives the prediction calculated in Equation (16).

Heatmap Algorithm

In this section, we explain the second scenario used for the evaluation of IN-
ETCEP in Section 5.3. A heatmap is a widely used tool used for visualization
in disaster scenarios [64]. We use an existing algorithm based on the work
[236] and use the INETCEP meta query language to realize the query as given
in Query 7. The algorithm takes as an input from the query, the window size,
area of the location and the cell size that indicates how finely the output heat
map is meshed. Algorithm 7 defines the process of heat map creation and
visualization using the disaster field dataset. First, the horizontal and the
vertical cells are computed based on the input area (Lines 1–2). Afterwards,
for every window of the data stream of location tuples, the absolute longi-
tude and latitude values are retrieved (Lines 3–5). Finally, the position in the
heatmap is obtained by dividing the absolute values by the cell size (Line 6).

A.2.3 Additional Insights on the Performance Evaluation

This section provides additional insights into the evaluation of the concepts
introduced for network-centric query execution in Chapter 5. Specifically, we
elaborate on (i) the placement time for the different queries considered for
the evaluation in Section 5.3.1 and (ii) the hybrid processing of queries in
the underlay and overlay.
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Algorithm 7 : Algorithm used to compute heat map in the Query 7 [26].

Variables :

loc ← Window of location < lat, long > tuple of the survivor data

Latmin ← minimum latitude value

Latmax ← maximum latitude value

Longmin ← minimum longitude value

Longmin ← maximum longitude value

HC ← number of horizontal cells needed to map the values

V C ← number of vertical cells needed to map the values

cell_size ← granularity

Grid ← two dimensional array
1 HC = bLongmax−Longmin

cell_size c ;

2 V C = bLatmax−Latmin
cell_size c ;

3 for each line in SD do
4 absLatVal = loc[lat] - Latmin;
5 absLongVal = loc[long] - Longmin;
6 Grid[babsLatV al

cell_size c][b
absLongV al

cell_size c] += 1;

7 return Grid

Placement Time

We investigated the difference in query processing in terms of the number of
nodes, where we found that the placement time differs for the queries with
more operators, which is intuitive. In the following paragraph, we present
those results.

We analyzed the time taken for placement where the number of nodes and
the topologies is different. The placement time is defined as the time taken to
determine a path where the operators are placed. Quite intuitively, the place-
ment time should be higher when the number of nodes is higher. However, we
also analyze how the same differs between topologies. We use the manhattan
topology and tree topology with seven and ten nodes, respectively. Figure 55
presents the result in the form of a point plot. As expected, the higher the
number of nodes considered for placement, the higher is the time taken to
find the placement and vice versa.
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Figure 55: Analysis of the time taken to place operators for different topologies and
number of nodes. The key take away is that it depends on multiple factors
like operator depth. Still, it takes only a few milliseconds to place multiple
operators thanks to parallel processing [139].

Interestingly, for all queries besides join, there is no large difference in the
required placement time. This is because of the high number of operators (6
in total) required to place while executing the join query. In the tree topology
case, it takes almost double the time with ten nodes than in the manhattan
graph. Another reason operator placement in the manhattan graph is faster is
that the number of paths possible for placement is quite less than in the tree
topology. Therefore, multiple factors besides the number of nodes contribute
to the metric placement time, such as the number of paths possible in a
topology, operator graph depth and the number of operators.

Another interesting observation is that the error bar representing the 95%

confidence intervals is larger for the manhattan graph than for the tree topol-
ogy. This can be explained by the evaluation setup used to run the experi-
ments for a different number of nodes. Due to the unavailability of sufficient
cloud resources for tree topology, the experiments were executed using CORE,
where the results are not affected by real network latencies. In contrast, in
the manhattan graph experiments, due to the execution of real-world cloud
resources, network latencies are incorporated in the results. More impor-
tantly, using this evaluation, we understand the involvement of other factors
in the placement time and the difference between them.
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Figure 56: End-to-end latency evaluation for hybrid processing of operator graphs
with the implementation of window operator in unified communi-
cation mechanism. Here, hybrid is denoted by H_Q, where Q ∈
{window, filter, join, heatmap, predict}). We note that the hybrid query pro-
cessing is always faster than the standard processing when a single oper-
ator is moved to the network layer implementation [139].

Hybrid Processing

We take our evaluations one step further to understand if the operator execu-
tion can take advantage of the in-network line speed by directly implement-
ing CEP operators in the ICN data plane. We call this implementation hybrid
query processing since part of the operator is implemented directly in the net-
work, while the other operators are executed isolated from the network inside
the query engine. The implementation with standard INETCEP query engine
differs in how the window operator is realized in the CCN-lite implementation
alongwith the unified communication mechanism, while the other operators
are implemented in Named Function Networking compute server implemen-
tation. Figure 56 presents the evaluation of hybrid query processing in the
form of a box plot, where the value given by the middle line represents the
median. We represent the hybrid implementation results using the keyword
H_Q. We observe a benefit of offloading the implementation to the network,
which is clear from the box plot. Although moving only a single operator
opens such benefits, more operators will unfold substantial gains in terms of
latency and the multiple open questions like coordination of query execution
with network-centric operations.
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A.3 Supplementary Material to Chapter 6

In this section we provide additional insights into the performance evaluation
of CEPLESS middleware in Section A.3.1 and the programming interface of
CEPLESS middleware in Section A.3.2.

A.3.1 Additional Insights on the Performance Evaluation

We review the batch size effect on the performance of CEPLESS event queues
based on the algorithm proposed in Section 6.2.1. Afterwards, we discuss
additional insights into the implementation overhead using the proposed pro-
gramming interface (cf. Section 6.2.2).
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Figure 57: Impact of different batch sizes on the performance of Flink with CEPLESS.

Impact of batching on performance

To understand the impact on the performance of the different batch sizes
where one corresponds to no batching, whereas 10, 100, and 10, 000 corre-
sponds to the respective input batch sizes (inBatchSize) for the incoming
events ingested in the Redis event queue as described earlier in Algorithm 6.
Both performance metrics, throughput as seen in Figure 57a, and latency in
Figure 57b are affected. With no batching, i.e., batch size of 1, we observe
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that the throughput is declined and latency is increased at higher event rates
which match our hypothesis as follows. There are more TCP requests per
batch with a smaller batch size, which blocks I/O for higher event rates and
results in higher latency and low throughput, as observed in Figure 57. Using
this empirical result, we determined the batch size of 100 events as suitable
for 1K, and 10K for 100K event rate.

Implementation Overhead of Operators

In addition to improving the flexibility, we also simplify the integration of new
operators into the CEP system using CEPLESS. In this section, we evaluate
the complexity of integrating new operators into CEPLESS in terms of LOC
(lines of code). We integrate the three queries as introduced in Section 6.3.1
to compare the process of implementing these directly into the CEP system
or using CEPLESS.

Forward Fraud-detection K-means

Operator LOC 1 14 94

Total LOC (Flink) 25 39 132

Total LOC (TCEP) 25 39 155

Total LOC (CEPLESS) 7 20 115

LOC Overhead (Flink) 96% 64% 28%

LOC Overhead (TCEP) 96% 39% 39%

LOC Overhead (CEPLESS) 85% 30% 18%

Table 27: LOC comparison of Apache Flink, TCEP, CEPLESS.

Table 27 shows the comparison of the implemented operators in the dif-
ferent systems. The first row shows the operator LOC, which serves as a
comparison towards the overhead added by different systems.

We calculate the LOC overhead in % as Total LOC−Operator LOC
Total LOC ∗100. Here, Total

LOC includes the operator logic; hence, the remaining lines is the overhead
associated with respect to the CEP systems. As an example operator that
could be integrated into a CEP system, we chose to use an unsupervised ML
algorithm named k-means. To get realistic evaluation results, we utilized the
k-means implementation of the open-source Android codebase that encapsu-
lates the algorithm in its machine learning library [243]. This implementation
requires 94 LOC in order to give a result. The same operator implemention
into Apache Flink requires 132 total LOC and in TCEP even 155 total LOC,
resulting in an overhead of 28% and 39% compared to the baseline version of
the algorithm. However, implementing the same algorithm code using CEP-
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LESS is done in a total LOC of only 115, an overhead of only 18%, an effective
reduction of 21% and 10% for Flink and TCEP, respectively.

While we understand that LOC is a flexible measure heavily dependent on
language semantics and syntactic sugar, we want to see how the same busi-
ness logic compares in different environments. Therefore, we also performed
a user study in the Multimedia Communications Lab with the students en-
rolled in Computer Science and Electrical Engineering and Information Tech-
nology. Ten students participated in the user study, with 80% of them having
some CEP experience. Every student used the CEPLESS platform web inter-
face and evaluated it based on the usability and simplicity of the program-
ming interface. Around 90% of the students found the interface usable and
simple to use in the lab. In the Appendix A.3, we provide screenshots on the
programming interface as well as the user study that was performed. A large
scale user study with detailed feedback on the usability of the interface is
visioned for the future work.

A.3.2 Programming Interface of CEPLESS

Figure 58 shows the programming interface of CEPLESS. It uses Monaco Ed-
itor56, a web-based code editor by Microsoft. It inherently supports many
programming languages such as Java, Golang, Python, C++, JavaScript, etc.,
in syntax highlighting, keyword suggestion and syntax validation for frontend
languages. In addition, bootstrap templates for decorative purpose are used.

The main section of the interface allows developers to select the program-
ming language and an initial operator template for developing the user-
defined ωUD operator. When the code is ready for deployment, the user must
click on Check Operator to validate the operator in terms of syntax. After-
wards, the respective compiler builds the code for the next step. In case the
build fails for some reason, the feedback is returned to the Output Console re-
lated to the errors. Otherwise, the operator is successfully built. This enables
the Submit Operator button that enables the application developer to build
the operator container that is maintained in the centralized Operator registry,
as discussed in Chapter 6: Section 6.2. The developer can also locally save
the operator using Save Operator that creates a local copy of the operator
source. On the other hand, Delete Operator deletes the same.

56Monaco Editor by Microsoft. https://microsoft.github.io/monaco-editor/ [Accessed in
May 2021]

https://microsoft.github.io/monaco-editor/
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Figure 58: The programming interface of CEPLESS that enables application develop-
ers to program operators in the range of programming languages and use
operator templates deployed before.

At the back-end, for each new programming language for operator speci-
fication, specific handlers have to be implemented for the operators and a
Dockerfile to build the container. The implementation of the handlers is kept
minimum corresponding to the UDO interface presented in Chapter 6: Sec-
tion 6.2.2.



A.4 Supervised Student Theses 225

A.4 Supervised Student Theses

[1] Sebastian Hennig. “Virtualizing CEP Execution Environment Using Server-
less Paradigm for Latency Sensitive Applications.” KOM-B-0649. Bachelor
Thesis. Technical University of Darmstadt, 2019 (cit. on pp. xvi, xix).

[2] Niels Danger. “Specification of Transitions in Complex Event Processing Sys-
tems using Context Feature Models.” KOM-B-0609. Bachelor Thesis (In col-
laboration with Real Time Systems Lab, Technical University of Darmstadt).
Technical University of Darmstadt, 2018 (cit. on p. xvii).

[3] Raheel Arif. “Transition between Placement Strategies for Operator Net-
works.” KOM-M-0596. Master Thesis. Technical University of Darmstadt,
2017 (cit. on p. xviii).

[4] Ali Haider Rizvi. “Situation-Aware Complex Event Processing over Information-
Centric Networks.” KOM-M-0620. Master Thesis. Technical University of
Darmstadt, 2018 (cit. on p. xviii).

[5] Johannes Karl Pfannmüller. “Unified Communication Layer for In-Network
Complex Event Processing.” KOM-M-0701. Master Thesis. Technical Univer-
sity of Darmstadt, 2020 (cit. on p. xix).

[6] Lukas Fey. “A Migration Cost-Aware Evaluation Framework for VNF Place-
ment Strategies.” Master Thesis(co-supervised). Technical University of
Darmstadt, 2017.

[7] Benedikt Lins. “Optimal decisions of transitions based on online learning
methods.” KOM-M-0689. Master Thesis. Technical University of Darmstadt,
2019.

[8] Niels Danger. “Optimal selection of performance models for operator place-
ment.” KOM-M-0726. Master Thesis currently running. Technical University
of Darmstadt, 2021.

A.5 Supervised Student Labs and Seminars

[1] Sebastian Hennig. “Large Scale Evaluation Experiments of Complex Event
Processing on GENI testbed.” AOC-6. Lab Project. Technical University of
Darmstadt, 2018 (cit. on p. xviii).

[2] Johannes Karl Pfannmüller and Ahmed Zukic. “Evaluating In-Network Com-
plex Event Processing over Named-Data Networks.” AOC-2. Lab Project.
Technical University of Darmstadt, 2018 (cit. on p. xviii).

[3] Sebastian Hennig. “Unified API for Complex Event Processing Operators us-
ing Serverless Paradigm.” AOC-1a. Seminar. Technical University of Darm-
stadt, 2018 (cit. on p. xix).

[4] Moritz Fischer and Rupert Leimbach. “Point Cloud Stream Processing.” AOC-
1. Lab Project. Technical University of Darmstadt, 2019.

[5] Matheus Vieira, The-Khang Nguyen, and Minh Tran. “Serverless Program-
ming for Streaming Systems.” ACS-7. Lab Project. Technical University of
Darmstadt, 2020.



226 Appendix

[6] Pedro Matsumoto and Berk Namal. “An Analysis of Placement Strategies for
Data Stream Processing Systems.” AOC-5. Seminar. Technical University of
Darmstadt, 2017.

[7] Benedikt Lins. “Analysis of Performance Influence Model for Operator Place-
ment.” Proseminar. Technical University of Darmstadt, 2018.

[8] Ahmed Zukic and Pascal Dornfeld. “Study on Function as a Service for State-
ful Events.” AOC-1b. Seminar. Technical University of Darmstadt, 2018.

[9] Sebastian Sadkowiak and Siyuan Ye. “Research Advancements of Data Pro-
cessing in Modern Networks.” ACS-6. Seminar. Technical University of Darm-
stadt, 2020.

[10] Azeem Ishola. “Efficient Data Processing on Modern Hardware.” ACS-6. Sem-
inar. Technical University of Darmstadt, 2020.



B
Curriculum Vitæ

Personal

Name Manisha Luthra

Date of Birth 24 July 1990

Place of Birth New Delhi, India

Nationality Indian

Work Experience

Since 11/2016 Research Scientist at the Technische Universität Darmstadt,
Member of the Adaptive Communication Systems Group at the
Multimedia Communications Lab

08/2016 & 09/2021 Visiting Lecturer at the University of Bremen,
19th and 24th International Summer University for Women in
Computing

08/2014–10/2016 Junior Research Assistant (as working student) at the Technis-
che Universität Darmstadt,
Distributed Multimedia Systems Group at the Multimedia Com-
munications Lab

11/2015–04/2016 Teaching Assistant (as working student) at the Technische Uni-
versität Darmstadt,
Telecoooperation Lab

04/2014–10/2016 Software Developer (as working student)
Kobil Systems GmbH, Darmstadt

08/2011–09/2013 Member Technical Staff at HCL Technologies Pvt. Ltd., India



228 Curriculum Vitæ

Education

Since 11/2016 Doctoral Candidate at the Department of Electrical Engineering
and Information Technology, Technische Universität Darmstadt

10/2013–07/2016 Master of Science: Distributed Software Systems,
Technische Universität Darmstadt
Master thesis: A Novel Approach for Multimodel Analysis of User-
Generated Video Quality

06/2008–06/2011 Bachelor of Science (Hons): Computer Science,
Delhi University, India

Teaching Experience

Since 04/2020 Seminar “Multimedia Communications”,
Organizer and Supervisor at the Multimedia Communications
Lab, Technische Universität Darmstadt

Since 04/2019 Seminar “Proseminar ETiT”,
Organizer and Supervisor at the Multimedia Communications
Lab, Technische Universität Darmstadt

10/2017–04/2020 Seminar “Advanced Topics in Future Internet Research”,
Organizer and Supervisor at the Multimedia Communications
Lab, Technische Universität Darmstadt

08/2016 & 09/2021 Workshop “Introduction to the Android Operating System” (planned
to be in Sept this year),
Visiting Lecturer at the University of Bremen

10/2015–04/2016 Lecture “Distributed Systems”,
Teaching Assistant at the Telecoooperation Lab, Technische Uni-
versität Darmstadt

Honors and Awards

2021 Recipient of the Student Scholarship to attend 2021 Virtual Grace
Hopper Celebration in the EMEA Region

2016 Recipient of the MAKI Female Mentoring and Networking Award
to attend the ACM Multimedia Conference (ACMMM) 2016 in Am-
sterdam, Netherlands

2015 Recipient of the MAKI Female Student Travel Award to Summer
University at Bremen

2011 Silver Award by Sony Corporation Japan at HCL Technologies Pvt
Ltd, India in recognition of an idiosyncratic idea for the product



Curriculum Vitæ 229

Scientific Projects

Since 11/2016 Part of the C2 subproject within the Collaborative Research Cen-
tre 1053 MAKI – Multi-Mechanism Adaptation for the Future Inter-
net funded by the Deutsche Forschungsgemeinschaft (DFG)

Academic Services

2021 Artifact Evaluation Program Committee
15th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI)

2021 Publicity Co-Chair
22nd ACM/IFIP International Middleware Conference (Middle-
ware)

2021 Reviewer
IEEE Internet of Things Journal

2020 CoronaSurvey Ambassador
Collaborative research project to present estimations on evolution
of COVID 19

2019 Web Co-Chair
13th ACM International Conference on Distributed and Event-
Based Systems (DEBS)

2019 Reviewer
ACM Computing surveys

2018, 2019 External Reviewer
ACM/IFIP International Middleware Conference (Middleware)

Darmstadt, May 11, 2020

Manisha Luthra





C
Erklärung laut Promotionsordnung

§ 8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation
mit der schriftlichen Version übereinstimmt.

§ 8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Pro-
motion versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt,
Hochschule, Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen.

§ 9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und
nur unter Verwendung der angegebenen Quellen verfasst wurde.

§ 9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 11.05.2021

Manisha Luthra





Erklärung laut Promotionsordnung 233

Colophon

This document is based on a typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic Style”.
classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

https://bitbucket.org/amiede/classicthesis/

	Abstract
	Kurzfassung
	Acknowledgments
	Publications
	Previously Published Material
	Contents
	1 Introduction and Motivation
	1.1 Research Challenges
	1.2 Research Questions and Contributions
	1.3 Structure of the Thesis

	2 Fundamentals and State-of-the-Art
	2.1 Event-Based Systems
	2.1.1 Stream Processing
	2.1.2 Complex Event Processing
	2.1.3 Discussion

	2.2 In-Network Processing
	2.2.1 The Push and Pull Dilemma
	2.2.2 Content-Centric Networking
	2.2.3 Discussion

	2.3 Deployment Infrastructures
	2.3.1 Cloud Computing
	2.3.2 Serverless Computing
	2.3.3 Discussion

	2.4 IoT and its Applications in Event Processing
	2.5 Summary

	3 Scenario and System Architecture
	3.1 Scenario Description
	3.2 System Architecture
	3.2.1 System Model
	3.2.2 Architecture and Contributions Overview


	4 Mechanism Transitions in Operator Placement
	4.1 Analysis of Adaptivity in OP Mechanisms
	4.2 Transition Problem Formulation
	4.2.1 Extended System Model
	4.2.2 Transition Problem Statement

	4.3 The Tcep System Design
	4.3.1 Placement Performance Evaluator
	4.3.2 Transition Engine
	4.3.3 TCEP Programming Model

	4.4 Evaluation
	4.4.1 Evaluation Environment and Methodology
	4.4.2 Operator Placement Mechanisms
	4.4.3 Evaluation of Mechanism Transitions
	4.4.4 Evaluation of Transition Execution Strategies
	4.4.5 Learning Costs of Placement Selection

	4.5 Summary

	5 Network-centric Query Execution
	5.1 Analysis of Efficiency in Network-centric Query Execution
	5.1.1 Extended System Model
	5.1.2 Problem Space

	5.2 The INetCEP Architecture
	5.2.1 Core Ideas
	5.2.2 Unified Communication Model
	5.2.3 CEP Query Engine

	5.3 Evaluation
	5.3.1 Evaluation Environment
	5.3.2 Evaluation of Unified Communication
	5.3.3 Evaluation of INetCEP Query Engine

	5.4 Summary

	6 Unified Serverless CEP Middleware
	6.1 Analysis of Flexibility in Operator Specification
	6.1.1 Extended System Model
	6.1.2 Problem Statement

	6.2 The CEPless System Design
	6.2.1 Serverless Middleware
	6.2.2 Programming Interfaces

	6.3 Evaluation
	6.3.1 Evaluation Environment and Methodology
	6.3.2 Evaluation of Dynamic Operator Update
	6.3.3 Evaluation of CEPless Middleware
	6.3.4 Runtime and Language Independence

	6.4 Summary

	7 Conclusion and Outlook
	7.1 Contributions Revisited
	7.2 Key Results
	7.3 Future Outlook

	Bibliography
	A Appendix
	A.1 Supplementary Material to Chapter 4
	A.1.1 Additional Insights on the Performance Evaluation
	A.1.2 Illustration of Tcep System
	A.1.3 Selection Method for OP mechanism

	A.2 Supplementary Material to Chapter 5
	A.2.1 Query Grammar
	A.2.2 Extensibility
	A.2.3 Additional Insights on the Performance Evaluation

	A.3 Supplementary Material to Chapter 6
	A.3.1 Additional Insights on the Performance Evaluation
	A.3.2 Programming Interface of CEPless

	A.4 Supervised Student Theses
	A.5 Supervised Student Labs and Seminars

	B Curriculum Vitæ
	C Erklärung laut Promotionsordnung
	Colophon

