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Abstract Smart Manufacturing integrates methods of Artificial Intelli-
gence and the Internet of Things into processes to enhance efficiency and
flexibility. However, analysis of time series sensor data, crucial for process
optimization, is susceptible to Data Quality Issues (DQIs) and can lead to
operational problems. Traditional Machine Learning approaches struggle
with limited error data availability in addressing DQIs. The knowledge-
driven approach of Case-Based Reasoning targets this issue by reusing
experiences regarding already identified DQIs. While some DQIs can be
detected using conventional similarity measures, the common, frequently
occurring DQI type of missing sensor values pose challenges that can-
not be solved using established measures. To address this, this paper
proposes a weight-based extension of similarity measures for time series
data. This extension aims at the identification and handling of missing
sensor values in smart manufacturing processes. Furthermore, analog ex-
tensions of established time series measures are presented and possible
areas of application outside the DQI domain are outlined.

Keywords: Temporal Case-Based Reasoning · Time Series Data ·
Time Series Similarity Measures · Data Quality Issues

1 Introduction

Smart Manufacturing [49] refers to the integration of advanced technologies such
as Artificial Intelligence (AI) and the Internet of Things (IoT) into manufactur-
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ing processes to increase their efficiency, improve their flexibility and enable
data-based decisions. In the course of this development, more companies are
integrating sensors into their processes to achieve tighter control and a more
profound understanding of the processes, based on which these processes can be
optimized [40]. The sensor data generated during the process serves as a valu-
able resource for analysis and control purposes. However, due to the presence
of Data Quality Issues (DQIs) [17], the reliability of this data can occasionally
be compromised. These can lead to problems during process execution, such
as production downtimes due to defects, or falsify process analyses, resulting in
possible incorrect action recommendations. Therefore, it is important to identify
and eliminate DQIs before an analysis is carried out based on this data. Several
types of data quality issues are already investigated in preliminary work [6], such
as time shifts, complete missing sensor time series, or missing sensor values in
a recorded time series. Traditional approaches focus on Machine Learning (ML)
methods for this purpose. However, DQIs are a domain in which little error data
is available, as they have to be recognized and processed mostly manually [12].
It is often not possible to train suitable ML models on such small databases.
Therefore, instead of a data-driven AI method, the usage of a knowledge-driven
approach is suitable that does not attempt generalization based on the limited
data, but instead directly reuses experience [34]. An established AI method for
reusing collected experience is Case-Based Reasoning (CBR) [1,4]. To apply this
technique, a case base can be created in which similar problem situations with
already detected faults are stored. During runtime, queries are generated, and
similar cases are retrieved from the case base. If a similar case is found, the
solution of the case determines whether the current time series data from the
IoT sensors is faulty and, if this applies, how this fault effects resulting event
logs or other higher-level systems.

In CBR retrieval of time series, established similarity measures are utilized to
assess the resemblance between the time series of a query and that of a case [29].
Some types of data quality issues, such as time shifts and complete missing
sensor time series, can be detected and classified using conventional time series
measures in combination with traditional local-global approaches [4]. In con-
trast, individual missing sensor values in a recorded time series pose a particular
challenge. These are common across domains and often occur frequently so that
it is necessary to identify them. Due to the length of the time series, individual
outliers usually do not have a significant impact on the similarity calculation,
making it difficult to detect whether this type of DQI is present based on es-
tablished similarity measures alone. If this data is recorded at fixed intervals,
a simple algorithm for determining this type of DQI would be suitable, which
would take place outside a CBR system. However, this underlying assumption
does not always hold, as in some domains, for example, only value changes are
recorded (cf. [29]). While this anomaly of missing values can be easily recogniz-
able for simple value domains (e. g., Boolean values), they are hardly visible for
more complex domains such as coordinates. Furthermore, a simple, integrated
algorithm would only indicate the presence of such an error without providing
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information about its possible origin. Identifying such an error using similarity
measures in CBR, on the other hand, identifies cases that provide information
about the source of the error and thus contain a certain explanation in them-
selves [45]. This process can also include suggested solutions from past cases that
improve the decision-making process and provide insight into possible actions for
event log repair [10]. Another advantage of using CBR is its interactive character
that enables that humans remain in the loop [51] and stay responsible for the
decision, which is based on the results of the CBR application.

Due to the described limitations of traditional similarity measures, it is nec-
essary to investigate suitable similarity measures for the DQI type of missing
sensor values. This paper’s contribution lies in introducing a weight-based en-
hancement to current similarity measures for time series, aimed at effectively
detecting this specified DQI. These similarity measures are developed based on
the requirements of the DQI domain and evaluated based on these. However,
the area of application of the extension of the traditional measures is not lim-
ited to this use case, but can also be relevant for other domains such as speech
recognition, financial data or medical diagnoses.

The further structure of the paper is as follows: In Sect. 2, the theoretical
foundations and related work are presented. The use case of the DQI is then
presented in Sect. 3. On this basis, the problem of why traditional similarity
measures are not suitable is explained, and other possible fields of application
that benefit from an extended measure are named. In Sect. 4, the approach for
integrating weights into established similarity measures is presented and illus-
trated using selected measures. Sect. 5 deals with an evaluation of these similarity
measures based on DQI data. Finally, a conclusion is drawn in Sect. 6 and an
outlook on future work is given.

2 Foundations and Related Work

The application of CBR methods to time series falls within the sub-research area
of Temporal Case-Based Reasoning (TCBR) [16,23]. This deals with how tempo-
ral relationships can be expressed in cases. A case expressing temporal relation-
ships is a sequence of certain attributes related to the time dimension. The most
common form of representation for such attributes is a time series [29], which is
introduced in Sect. 2.1 and illustrated using an example from the DQI domain.
Subsequently, similarity measures are presented and categorized in Sect. 2.2 that
are used in CBR to address time series.

2.1 Representation of Time Series Data

For modeling similarity measures, it is necessary to fill the knowledge contain-
ers [35] of the vocabulary and, on this basis, of the case base [29]. While there
are also rarely used representation forms such as episodes, graphs, and event
sequences, time series are an established and most basic representation for a
temporal case. A time series stands for a measured real value over a time course,
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Fig. 1: An Exemplary Object-Oriented Data Stream Case From the DQI Domain
Containing Time Series at a Lower Level, with an Exemplary Concrete Instance
of a Lower Class.

where concrete time points are referred to. For the IoT domain, present in the
DQI use case, such time points are contained in sensor data [12]. To represent the
time series, we use a symbolic representation, which can vary depending on the
use case, and which represents the real values. These values are summarized and
mirrored as a feature vector [29]. There are simplified representation types, such
as temporal abstractions [38,43] or Allen intervals [2,16], which are intended to
reduce the complexity of the time series and thus that of the subsequent similar-
ity calculation. However, such a change to the time series is not suitable for the
DQI use case of missing sensor values, as abstraction results in a loss of infor-
mation. So, the explicit consideration of the individual time points is no longer
possible. Therefore, unchanged feature vectors are used, which can be embedded
in other objects at higher levels if necessary. The individual values within the
sequence are also objects that contain, on the one hand, the timestamp and, on
the other hand, the symbolically represented value at this time.

Fig. 1 shows an example of a vocabulary that originates from the DQI do-
main. An object-oriented case is shown here, which is an instance of the Data
Stream Log class. This aggregates several attributes that describe information
on the global level of the event (class Event Information), which in turn con-
tains a specific instance to describe the DQI (class Failure Description). This
specific object forms the solution part of the case. The data stream log case also
contains several data stream points (class Stream Point), which represent a
sensor with its attributes and the specific time series. Fig. 1 shows an example
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Table 1: The Three Categories of Similarity Measures for Time Series (according
to Malburg et al. [29]).

Cat. 1 Cat. 2 Cat. 3

Similarity measures that
can only be applied to time
series of the same length.
These compare only the
values at the corresponding
times.

Similarity measures that
can be applied to time se-
ries of different lengths and
consider not only the val-
ues, but the time points
themselves.

Similarity measures, like
those in Cat. 2, but that
can detect stretching and
compression in addition.

instance of such a stream point. This is a sensor that measures the breaking of a
light barrier and accordingly contains a time series of Boolean values. This time
series consists of attribute-value pairs, each of which contains a time point (here,
the time in milliseconds since the start of the process) and the corresponding
value. In addition to Boolean values, other time series from other sensors may
contain, for example, coordinate values, weight measurements, speeds, or other
sensor values. In this specific case representation from the DQI domain, the time
series are at the lowest, local level of the vocabulary.

2.2 Similarity Measures for Time Series Data

The calculation of similarity between time series is an area of research that
is investigated in CBR [29, 37] as well as in other research areas [13, 22]. In
preliminary work [29], we divide the syntactic similarity measures already used in
research into three categories that are shown in Tab. 1. For all of these categories,
the similarity calculation is based on the local-global principle [4, pp. 106–107].
In this context, similarities are calculated at the level of individual attributes
and then aggregated globally for the complete case. Semantic similarity measures
can be integrated at the local level to determine the similarities of the individual
attribute values and the time points. However, the time series measures do not
consider any further semantic information, such as dependencies (cf. [21]) of
the time series attributes within cases. In addition, no domain knowledge is
included in the measures themselves so that these are knowledge-poor similarity
measures [46, pp. 59–62]. In domains such as DQI, in which an anomaly is to
be recognized and classified based on semantic information stored elsewhere in
the cases, such syntactic similarity measures for time series are sufficient. At the
overall case level, the global similarity measure is knowledge-intensively enriched
by taking this domain information into account. In preliminary work [29, 37],
common similarity measures are identified for each of the categories. These are
shown in Tab. 2. For each of these similarity measures, a suitable similarity
measure can be used at the local level.
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Table 2: Established Algorithms From the Literature [29,37] for the Three Cat-
egories of Similarity Measures for Time Series.
Cat. 1: List Mapping Cat. 2: Smith-Waterman-

Algorithm (SWA)
Cat. 3: Dynamic Time
Warping (DTW)

To compare two sequences
of equal length, a direct
mapping of the time series
elements is conducted [29],
disregarding time points.
This method can also as-
sess time series of dif-
fering lengths by treating
the shorter sequence as a
subset of the longer one
and finding a correspond-
ing subsequence of equal
length.

An algorithm to deter-
mine the sequence match-
ing based on required in-
sertion or deletion opera-
tors is SWA [37, 44]. This
is done based on a scor-
ing matrix in which opera-
tions are penalized so that
the best possible similar-
ity value can be determined
from the matrix.

An algorithm that can also
deal with the stretching
and compression of time se-
ries common in many do-
mains is DTW [36, 37].
Analogous to SWA, scoring
matrices are created that
determine the steps from
one sequence to another.
The maximum value is the
best possible similarity.

3 Use Case and Requirement For Extended Measures

To understand the limitations of traditional similarity measures and the asso-
ciated need to extend them, the use case of the DQI domain is first presented
in Sect. 3.1. On this basis, the problem of identifying missing sensor values us-
ing CBR is introduced in Sect. 3.2 and the necessity for the weight integration
is explained. Sect. 3.3 describes further use cases in which the application of
weighted time series measures can also be worthwhile.

3.1 Data Quality Issues

Addressing data quality in the IoT domain is a research area that ranges from
detecting such data quality issues to addressing them through cleaning meth-
ods [6, 17, 48]. In particular, low-cost sensors with limited battery and process-
ing power used in harsh environments can lead to sensor problems [48]. These
include failures such as low sensing accuracy, calibration loss, sensor failures,
incorrect device placement, range limitation and data packet loss. Such sen-
sor failures in turn cause various types of errors in the generated data, which
complicates further analysis. For example, these errors are reflected in the data
often as outliers, missing values, bias, drift, noise, constant value, uncertainty
or stuck-at-zero. Bose et al. [7] list missing, incorrect, imprecise and irrelevant
data as superordinate categories for such DQIs. Verhulst [50] examines other
dimensions of DQIs in a taxonomy, such as the completeness or correctness of
the time series in event logs. Leaving these errors untreated leads to incorrect
data, and the subsequent analysis may provide unreliable results that ultimately
could cause incorrect decisions [6]. To avoid wrong decisions, it is important to
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evaluate the underlying data quality. For this purpose, measures of quality such
as completeness, timeliness, plausibility, and concordance are addressed [20].

The DQI failure of missing sensor values occurs if one or more values that
should have been observed are not contained in the time series. Therefore, it falls
into the category of missing data [7] and addresses a completeness issue [50].
This error can originate from the sensor itself or occur due to a loss in data
transmission. Depending on the cause, the failure must be rectified in different
ways, for example by manual recalibration or data imputation. The error can
become apparent in the final time series in two ways: In the first way, the time
series logs the data at fixed intervals and one or more values are missing. In the
second way, only value changes are logged, so that missing values can only be
noticed if a state transition or value change has not been logged.

3.2 Identification Problem of Missing Sensor Values

Missing values can also occur intentionally due to sensor calibrations or similar,
so that it does not necessarily have to be an error that can be determined by
a pattern. To identify a suitable, similar error case, similarities to the currently
available sensor time series must be calculated. Since a syntactic similarity of the
time series is sufficient and semantic information can be taken from the attribute
values of the case (see Fig. 1), the similarity measures presented in Sect. 2.2 are
suitable in general.
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Fig. 2: Mapping of a Time Series With the Missing Sensor Failure to Another,
Error-Free Time Series.

Fig. 2 shows two time series, for which a similarity is calculated. A sensor
value is missing in the query time series, but not in the one from the case. Here,
there would be different mapping methods applied depending on the similarity
measure used. With the list mapping from Cat. 1, a similarity comparison of
the time series with unequal lengths would not be possible. Due to the different
intervals the values are recorded in this example, the application would not be
possible even with two error-free time series if both had run for the same length
of time. To calculate the similarity of one time series as a subsequence of the
other, would not be suited as well, as the different time points would result in
an unrealistic similarity value. When using SWA as a Cat. 2 measure, penalties
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could be applied for insertions or deletions that occur when one time series is to
be transferred to the other. Using these, missing values would have a significant
impact on global similarity. However, if the penalties were too high, the algo-
rithm would prefer to accept very low local similarities during mapping instead
of maximizing the local similarities, as this would nevertheless increase the global
similarity. In addition, SWA cannot deal with stretching and compression, which
occurs in the example in Fig. 2. DTW as a Cat. 3 measure, on the other hand,
would be suitable for mapping the stretched upper time series to the compressed
lower time series. Depending on the local similarity measure, the different time
points would hardly matter, and the two time series would be identified as sim-
ilar. However, the missing value would also go unnoticed, as DTW would map
several elements of the query to one element of the case and achieve similarity
values minimally below 1.0. Even with a selective local similarity measure for
the time points and an equal weighting with the actual attribute value there,
the resulting relatively low local similarity value would hardly carry any weight
in the global time series measure.

As described, none of the time series measures presented is therefore suitable
for the use case of the DQI type of missing sensor value. To identify such an error
using a time series measure, a further factor is therefore required in addition to
a selective local measure enabling a significant influence on the global similarity.
The integration of weights into the presented similarity measures is a possibility
to achieve the desired selectivity. In the case of missing sensor values, DTW is
a suitable similarity measure. However, this is not the only possible use case for
this nor the other categories. Since CBR has not yet been used as an anomaly
detection method for a use case such as the DQI, there is no time series similarity
measure that is suitable for this purpose. As described, this must penalize a small
deviation from the good case to such an extent that this deviation manifests itself
in the global time series similarity.

3.3 Further Use Cases

In addition to the described missing sensor failure from the DQI domain, pos-
sible use cases can be derived for weighted similarity measures of the various
categories to detect anomalies. A weighted list mapping as a Cat. 1 measure is
suitable for use cases in which time series of the same length are available, but
where individual, local differences can be serious. In an industrial context, if two
sensors log their time series at the same interval, individual outliers can indicate
incorrectly calibrated sensors or other errors. These can be clearly highlighted
using weights so that abnormal cases can be better distinguished from error-free
cases. Furthermore, in medical monitoring, where time series are already being
analyzed using CBR [47], individual outlier values can indicate poor health con-
ditions that would hardly be noticed when using classic measurements. For Cat. 2
with SWA, for example, weights in text syntax checking would make it possible
to emphasize errors caused by individual letters or characters when detecting
spelling errors. CBR is already used for spell and grammar checking with SWA
as one of the measures [3]. In addition, mutations in biology, analogous to the
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original purpose of SWA [44], could be better distinguished from healthy genes
and thus identified. DTW as a measure of Cat. 3 could also be used for the areas
of application already covered by the TCBR of speech recognition [26] or motion
detection [14], for example, to identify individual errors caused by background
noise. Conversely, in the already investigated area of financial data [9, 15], mar-
ket volatility or seasonal trends, for example, could be intercepted using weights
so that these would be less significant in terms of global similarity. Another area
in which TCBR is already being used is the home monitoring of elderly people
in a smart home [25]. Here, too, short-term anomalies can be highlighted much
better using weights. In an industrial environment, this weighted measure may
be of interest in the context of predictive maintenance where in the CBR context
expert knowledge is already used [19, 29] to detect anomalies and identify their
causes based on case knowledge.

The suitability of the measures for the respective domains must be exam-
ined and evaluated. This list merely serves as an example to show that this
contribution is not limited to the DQI domain and reaches beyond this.

4 Approach of Weighted Time Series Similarity Measures

The similarity measures for time series presented in Sect. 2.2 all have in common
that an unweighted mean value is used when aggregating the local similarity val-
ues. For longer time series, low local similarity values due to individual deviations
have a minimal influence on the global similarity value at the time series level
and thus also on possible object levels above it. The SWA approach also prefers
to accept poor local similarity values instead of a penalty to maximize similar-
ity, so that higher penalty values have no influence in many domains. Therefore,
we introduce weights for the individual local similarities in this contribution,
which we present in the following. Thereby, we describe how these weights can
be integrated into the respective global time series measures.

Some definitions that are essential for understanding the approach are intro-
duced in the following. The definitions are partly based on the CBR definitions
by Bergmann [4, pp. 48–60].

Definition 1 (case) Let c be a time series case, represented as a tuple (d, l),
where d denotes the problem description and l as corresponding solution. For
both hold that they are represented by the vocabulary container: (d, l) ∈ V OC.
Each element in the time series at a position h is referred to with cj for which
holds qj ∈ c.

In the DQI use case, the description contains the measured time series and
the meta information, while the solution is the failure classification, such as a
missing sensor value (see Fig. 2).

Definition 2 (query) Let q be the time series query for which a retrieval is
executed. Like every case c, q is also represented using the same vocabulary, but
contains no solution part, i.e., q = (d) ∈ V OC. Each element in the time series
at a position i is referred to with qi for which holds qi ∈ q.
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The following definitions are specific to the proposed approach and build
on the above definitions. The relationship of an element from the query to a
corresponding element of the case is described using a mapping.

Definition 3 (mapping) Let m be a mapping function ∀qi ∈ q ∃cj ∈ c m(qi) :
qi → cj that maps an element of the query q to a corresponding element from
the case c. The function is injective, there is only one mapping partner for each
element qi ∈ q. In turn, several elements from the query can point to cj ∈ c.

For time series, such a mapping is always calculated based on the query. Each
mapping pair has a local similarity. The aggregation of the local similarities leads
to the global similarity value.

Definition 4 (similarity) Let the similarity between query q and case c be
denoted by sim(q, c) ∈ [0, 1]. The function simlocal(qi, m(qi)) ∈ [0, 1] is defined
as the local similarity of two values for the value qi ∈ q with its corresponding
mapping partner m(qi) ∈ c. These local similarities are aggregated in a global
time series similarity measure. The value range of each similarity function is
bound to the interval [0, 1].

The local and global similarities are calculated based on functions that assign
a similarity value to two elements. At a global level, this is based on the aggre-
gation of the local similarities. For the integration of the weights, the original
mappings are calculated by the similarity measures to be extended. For each of
the similarity measures presented in Sect. 2.2, the integration is performed in the
same way. Therefore, the weights are integrated into the local similarities for the
already computed mappings. This is because the mappings would be different if
the weights had been applied beforehand, since new local similarities exist. This
would contradict the idea of weighted time series measures, that outliers have
a greater influence on the global time series similarity due to penalties. There-
fore, the mappings and similarities are first calculated based on the traditional
measures, only the global aggregation is not carried out.

Definition 5 (traditional similarity measure) Let simtrad(q, c) be the func-
tion for traditional time series similarity measure. For the weighted approach,
this similarity measure returns a set containing each mapping with a local simi-
larity value instead of the aggregated global similarity value. Therefore, it holds:

simtrad(q, c) = {((q1, m(q1)), simlocal(q1, m(q1))), ..., ((qn, m(qn)), simlocal(qn, m(qn)))}

The mapping partners calculated here can be accessed with the function m(qi).
The local similarity values are also accessed with simlocal(qi, m(qi)).

To apply weights depending on local similarity values, weights must be set
for intervals of similarity values. These can be defined manually or, depending
on the domain, learned by ML methods. Therefore, the following definition is
introduced.
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Definition 6 (weighted local similarity, maximum weight) Let w : [0, 1] →
R+

0 be a function. Then w maps from the closed interval 0 to 1 to the set of pos-
itive real numbers R+

0 . maxw denotes the maximum weight for a given weight
function w, such that for all x ∈ [0, 1], it holds that w(x) ≤ maxw.

The sum of the weights does not have to be 1.0 at this point. To implement
penalties for low similarity values, high weights are suitable for low similarities
and low weights for high similarities. For example, the similarity value interval
[0.0, 0.2] can be weighted with a factor of 10, the interval (0.2, 0.5] with a factor
of 5, and the interval (0.5, 1.0] with a factor of 1.

Overall, the entire interval range of possible similarity values of [0.0, 1.0] must
be covered. A weighting of 0.0 should be assumed for all interval ranges that are
not defined. The weights for the individual intervals are normalized using the
highest possible weight value so that they are contained in the interval [0, 1].
Therefore, the following definition is introduced.

Definition 7 (normalized weights) The normalized weight for each local sim-
ilarity value is referred to as wnorm(simlocal(qi, m(qi)) ∈ [0, 1]. This is calculated
by the following formula:

wnorm(simlocal(qi, m(qi))) = w(simlocal(qi, ci))
maxw

Each normalized weight wnorm(simlocal(qi, ci)) is bound after normalization to
the interval [0, 1].

For the example, all weights are normalized using the highest weight, in
this case 10. The normalized weights are therefore 1.0 for the similarity values in
interval range [0.0, 0.2], 0.5 for the range (0.2, 0.5], and 0.1 for the range (0.5, 1.0].

To calculate the global weighted similarity, the local similarity values are re-
calculated based on the normalized weights, and aggregated to a global similarity
value. Therefore, the following similarity function is defined.

Definition 8 (weighted global similarity) Let the global weighted similarity
be referred to as simweighted(q, c) ∈ [0, 1]. For this, it holds:

simweighted(q, c) =

∑
qi∈q,m(qi)∈c

simlocal(qi, m(qi)) ∗ wnorm(simlocal(qi, m(qi)))∑
qi∈q,m(qi)∈c

wnorm(simlocal(qi, m(qi)))

The application of the formula and the difference it makes is illustrated in
the following example. If we have one case with a similarity of 0.1 and five others
with 1.0, the traditional average similarity value would be 0.85. The similarity
value would be high and would cushion the one outlier. If the weights introduced
as examples are used, the similarity value would be reduced. If the weights
introduced as examples are used, the similarity value would be reduced. The
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local similarity for the case with the output similarity 0.1 is still 0.1 as the weight
for this interval range is 1.0. For the cases with local similarities 1.0, the local
similarity decreases to 0.1 by multiplication with the weight of 1.0 in each case.
Thus, the global similarity for the weighted DTW measure is simweighted(q, c) =
0.4. By applying the weights, in this case, to the interval with low similarity
values, the penalty ultimately has an impact and allows individual outliers to
have a significant influence on the global similarity of two time series.

5 Evaluation

The presented extension of the similarity measures for time series using weights
was evaluated using the DQI domain. The hypothesis to be investigated is that
the integration of weights enables a better classification of the DQI type of
missing sensor values. For this purpose, the underlying data and the methodology
of the evaluation are presented in Sect. 5.1. The results of the evaluation are then
presented in Sect. 5.2 and discussed in Sect. 5.3.

5.1 Experimental Setup

The presented extensions of the time series similarity measures are implemented
in the CBR framework ProCAKE [5], which already contains the traditional
measures [42] and is already used for time series applications [24, 29, 37]. The
evaluation of these measures takes place in the DQI domain and is therefore
limited to the extended version of DTW. The suitability of the other measures
must be checked separately. For the evaluation, we used the Fischertechnik Smart
Factory from the IoT Lab Trier1 [30] as application. The error-free data used is
publicly available [27] and is represented in the DataStream format [31]. In ad-
dition, data was generated containing three different DQI types: Missing sensor
value, as well as time shift and missing sensors. A reduced case base was used
for the evaluation, which contains 425 error-free cases and 25 cases of each re-
spective DQI type, all randomly chosen. This means that a total of 500 cases are
available, 25 of which are cases containing a missing sensor failure. To show the
generalizability of this method, a cross validation is performed. A 10-fold is used
as a setup which is performed separately for both, the DTW measure and the
weighted DTW measure (in the configuration listed as an example in Sect. 4).
Based on the five most similar cases and an additional threshold value of 0.9,
which ensures that only sufficiently similar cases are considered, a majority vote
is carried out to determine whether the failure type is present or not.

5.2 Experiment Results

The evaluation has been carried out on a server with 34 processors, a clock
frequency of 2850 MHz, and 400 gigabytes of RAM. As some cases contained

1 https://iot.uni-trier.de/

https://iot.uni-trier.de/
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several long time series and due to the quadratic runtime of the DTW mea-
sure [37], some calculations took a long time. Consequently, a ten-minute time
limit per retrieval has been imposed, resulting in the termination of some queries
that exceeded this duration. This resulted in 288 retrieval runs of the 500 being
carried out. The average time per run has been 8 minutes and 40 seconds. The
further 212 cases are therefore not considered in the evaluation.

Based on the most similar cases, a majority vote has been carried out af-
ter the retrieval. The resulted classification determined by the CBR system was
then compared with the actual presence of the missing sensor failure. The tradi-
tional approach has been able to classify two of the 13 DQI error cases correctly
and two false-positive misclassifications. The weighted approach, on the other
hand, has been able to identify five of the error cases correctly and three false
positives under the above conditions. On this basis, accuracy, precision, recall,
specificity and F1 score are calculated as performance measures. In terms of
accuracy, precision, recall and thus the F1 score, the weighted DTW measure
is minimally better, while the specificity for the traditional measure is higher.
The comparison shows that while the weighted DTW measure performs better
on the correct failure classification measures, it lags the traditional measure on
other performance measures. Due to the sample size of 288 requests, of which
only 13 are failure cases, the relative numbers are susceptible to small absolute
number changes. Overall, the classifications only change in three cases when the
different measures are applied.

5.3 Discussion

As explained before, the weighted time series measure improves the classifica-
tion of missing sensor values compared to the traditional measure. However, it
also does not make it possible to find the majority of failure cases. While the
traditional DTW measure classifies only two out of 13 failure cases, the weighted
measure detects five of them. Thus, eight failure cases are still incorrectly not
found, while the risk of false positive classification also increases. Due to these
results, which fall short of expectations, the error cases set as queries in the
evaluation and their retrieval results were examined more closely. It is noticed
that two types can occur:

a) There are one or more error cases that have a missing sensor value at a similar
point. The weighted DTW measure can provide discriminatory power by
penalizing small deviations from good cases and enable correct classification.

b) There are only fault cases that have missing sensor values in other places.
The application of the similarity measure reduces the similarities to all cases,
so that the ranking of the most similar cases does not change and at most
cases are taken outside by the threshold value.

As the evaluation data set was selected at random, it is not possible to ensure
that there were enough cases with similar faults. However, this corresponds to
the real conditions in production plants, where faults occur infrequently and
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have to be recorded manually. Type b) is therefore the one that occurs much
more frequently. For this case, the weighted similarity measures are only suitable
to a limited extent. It can also happen that the similarity values to actually
similar cases also fall due to the high penalties. If it can be ensured that type
a) is present, the similarity measure presented is suitable for the application. In
general, however, it cannot be shown that the weighted similarity measures are
appropriate for the specific use case of missing sensor failures. Therefore, the
hypothesis cannot be entirely confirmed, but neither can it be refuted. Further
research may need to investigate a hybrid approach [11, 39] combining CBR
and ML techniques to investigate how the performance of the measure can be
optimized for the DQI domain. At the very least, the weighted DTW measure
can be used for DQI to identify a suitable case to explain a failure that has
already been identified based on the case [32]. Furthermore, it should also be
investigated how the relatively high runtime of the calculations can be reduced
to be able to use the procedures for real-time diagnostics. An evaluation of the
suitability for other domains, as described in Sect. 3.3, can also be carried out.

6 Conclusion and Future Work

In this paper, the DQI problem of missing sensor values is presented, and it is
explained why addressing by CBR is appropriate. Therefore, an approach for the
integration of weights into similarity measures for time series is provided. For
each category of similarity measures from the TCBR domain, the integration is
presented conceptually as well as prototypically implemented and evaluated in
ProCAKE. For the DQI use case, it is shown that these adapted similarity mea-
sures enable a more accurate identification of anomalies due to missing values,
as well as classification. However, this improvement is not sufficient to reliably
detect such failures in time series, if there are not enough suitable error cases.
As this is not the case in most use cases, further optimizations of this approach
or research into other methods are necessary.

From the evaluation of this measure, the runtime optimization of the time
series measures is derived as further research potential. For other case repre-
sentations, GPU methods are used for retrieval in preliminary work [28], which
significantly accelerated the retrieval phase. It can be investigated how these
can be adapted to time series and what influence they have on the retrieval for
this case representation. Distributed CBR approaches [33] can also be used to
shorten the computing time. Such distributed computing in edge-cloud archi-
tectures is particularly suitable for production environments [40]. Alternatively,
case-based maintenance methods [8] can also be used for runtime optimization,
which can be investigated for the DQI domain or TCBR in general. Another pos-
sibility would be to research a hybrid CBR approach [39]. This could integrate
embeddings as ML methods that are trained based on the weighted DTW mea-
sure, thereby significantly accelerating retrieval. Similar approaches are already
applied to complex similarity measures for other case representations [18].
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Additional to this, we want to extend the DQI investigation by designing a
CBR framework that provides to analyze sensor data for different failure types,
such as additional time shifts and complete missing sensor time series. This CBR
construct is expected to further elaborate the already presented advantages of
CBR over ML methods due to the small amount of data. Within this framework,
the similarity measures presented in this paper or an extended version may be
applied to identify the one type. In addition, an explanatory component can
be investigated, analogous to approaches for other representations [41]. Further-
more, it can be researched whether the extended weighted similarity measures
presented in this work can also be used for other types of anomaly detection, as
presented in this contribution. Hybrid AI approaches are also named as possible
extensions to be investigated. As an alternative to the presented weighted mea-
sure, embeddings for the detection of missing sensor values can be investigated
by training them to recognize this type of DQI and then be included as a simi-
larity measure in CBR.
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