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Abstract—Cell-free massive multi-input multi-output (MIMO)
has recently attracted much attention, attributed to its potential
to deliver uniform service quality. However, the adoption of a cell-
free architecture raises concerns about the high implementation
costs associated with deploying numerous distributed access
points (APs) and the need for fronthaul network installation. To
ensure the sustainability of next-generation wireless networks,
it is crucial to improve cost-effectiveness, alongside achieving
high performance. To address this, we conduct a cost analysis of
cell-free massive MIMO and build a unified model with varying
numbers of antennas per AP. Our objective is to explore whether
employing multi-antenna APs could reduce system costs while
maintaining performance. The analysis and evaluation result in
the identification of a cost-effective design for cell-free massive
MIMO, providing valuable insights for practical implementation.

I. INTRODUCTION

In a cellular network, a base station (BS) is positioned at

the center of a cell within a network of cells. High quality of

service (QoS) is delivered to users at the cell center, close

to the BS. However, the users at the cell edge experience

worse QoS due to considerable distance-dependent path loss,

strong inter-cell interference, and inherent handover issues

within the cellular architecture. The performance gap between

the cell center and edge is not merely a minor concern;

it is substantial [1]. Recently, cell-free massive multi-input

multi-output (MIMO) [2] has garnered much attention in both

academia and industry due to its high potential for the upcom-

ing sixth-generation (6G) systems [3]. There are no cells or

cell boundaries. Instead, a multitude of distributed low-power,

low-cost access points (APs) simultaneously serve users over

the same time-frequency resource [4]. It perfectly matches

some 6G scenarios, such as private or campus networks, with

dedicated coverage areas like factories, stadiums, shopping

malls, airports, railway stations, and exhibition halls. The cell-

free architecture ensures uniform QoS for all users, effectively

addressing the issue of under-served areas commonly encoun-

tered at the edges of conventional cellular networks [5].

Despite its considerable potential, the adoption of a cell-free

architecture poses challenges related to high implementation
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costs associated with deploying numerous distributed APs

and the necessity of installing a large-scale fronthaul network

[6]. Deploying a traditional wireless network is already time-

consuming and costly mainly due to acquiring and maintaining

base station sites. In the cell-free system, this challenge

intensifies as hundreds of suitable sites must be identified

within a small area for wireless AP installations. Moreover, the

installation of a large-scale fiber-cable network to interconnect

these APs raises the expenditure and energy consumption

[7]. To ensure the sustainability of next-generation wireless

networks, improving the cost-effectiveness of cell-free systems

is crucial, alongside achieving high performance.

To tackle this issue, we perform a cost analysis on cell-free

massive MIMO, acknowledging that the overall cost includ-

ing capital expenditure (CaPEX) and operational expenditure

(OPEX) depends on the number of distributed wireless sites.

Notably, the utilization of additional antennas at each AP does

not induce extra site acquisition, and fiber connections, or in-

cur supplementary maintenance costs. Consequently, reducing

the number of APs by mounting multiple antennas on each

AP can reduce implementation costs. However, a reduction

in AP density compromises per-user spectral efficiency and

sum capacity. This prompts us to seek a balance between

performance and cost by determining the optimal number of

antennas per AP. To provide a quantitative assessment for

designing a cost-efficient architecture, a unified model encom-

passing cell-free architectures with varying antenna numbers

per AP is built. We analyze and evaluate the spectral efficiency

and cost-effectiveness in both downlink and uplink scenarios

with maximal-ratio or zero-forcing schemes.

The structure of this paper is as follows: In Section II, the

system and channel models are introduced. Sections III and

IV focus on the analysis of uplink and downlink transmission,

respectively. Section V presents the numerical results, and,

lastly, Section VI draws the conclusions.

II. CELL-FREE MASSIVE MIMO SYSTEM

In this paper, we argue that the cost-effectiveness of a cell-

free massive MIMO system is proportionally related to the

number of distributed AP sites. This is due to the fact that

acquiring and maintaining AP sites incurs significant costs,

and the installation of a large-scale fiber-cable network to



interconnect these APs amplifies the expenses. However, the

fees associated with adding extra antennas to each AP are

marginal since a unique advantage for massive MIMO systems

is the use of low-cost antennas and RF components [8].

1) System Model: To offer a quantitative analysis for de-

signing a cost-effective architecture, we formulate a general

model for cell-free massive MIMO, allowing for the flexibility

to set the number of antennas per AP. A total number of

M service antennas are distributed across NAP sites, where

1 < NAP 6 M . Each AP is equipped with Nt antennas,

adhering to Nt ×NAP = M . These APs serve a few single-

antenna user equipments (UEs) within a designated coverage

area and the number of users K ≪ M . In contrast to previous

studies, our model accommodates a variable number of anten-

nas per AP, covering conventional cell-free massive MIMO

scenarios with M distributed single-antenna APs (Nt = 1),

like [2], [4], [9] and multi-antenna APs (Nt > 1) [10]. As

depicted in Fig.1, a central processing unit (CPU) coordinates

all APs through a fronthaul network to simultaneously serve

all users over the same time-frequency resource.

AP

CPU

UE

Fig. 1. A unified model for cell-free massive MIMO with a varying number
of antennas per AP, where a total of M antennas are distributed over NAP

sites. If NAP = M , it stands for typical cell-free massive MIMO with single-
antenna APs, whereas we are interested in applying multi-antenna APs to
improve cost-effectiveness by reducing the number of AP sites.

2) Channel Model: The channel coefficient connecting

antenna m (for all m = 1, . . . ,M ) to UE k (for all k =
1, . . . ,K) is represented as a circularly symmetric complex

Gaussian random variable, denoted as gmk ∈ CN (0, βmk).
Here, βmk denotes large-scale fading, including path loss

and shadowing. To alleviate the considerable downlink pilot

overhead scaling with the number of service antennas, time-

division duplex (TDD) is employed to separate the downlink

and uplink signal transmission with the assumption of perfect

channel reciprocity. Hence, each coherent interval is divided

into three phases: uplink training, uplink data transmission,

and downlink data transmission [4]. During the uplink training

phase, UEs transmit orthogonal pilot sequences to acquire

instantaneous channel state information (CSI). Using min-

imum mean-square error (MMSE) estimation [2], the net-

work obtains channel estimates ĝmk, following a complex

normal distribution CN (0, αmk) with αmk =
puβ

2
mk

puβmk+σ2
n

,

where pu represents the power of the UE transmitter, and

σ2
n is the variance of noise [11]. The estimation error is

defined as g̃mk = gmk − ĝmk, following the distribution

of CN (0, βmk − αmk). In the case of multi-antenna APs,

the large-scale fading between user k and any antenna of

the same AP q (for q = 1, . . . , NAP ) is identical. This

assumption leads to βmk = βqk and αmk = αqk, where

m ∈ {(q − 1)Nt+1, (q − 1)Nt+2, . . . , qNt}.

III. SPECTRAL-EFFICIENCY AND COST-EFFECTIVENESS

ANALYSIS IN UPLINK TRANSMISSION

During uplink data transmission, each of the UEs aims

to deliver its unit-variance, independent information-bearing

symbol xk simultaneously to the APs, with UE k transmit-

ting
√
ηkxk. The covariance matrix of the transmit vector

x = [x1, . . . , xK ]T adheres to E[xxH ] = IK , where IK is the

identity matrix of size K. The power coefficient is constrained

by 0 6 ηk 6 1. The received signals at AP q can be expressed

as an Nt × 1 vector:

yq =
√
pu

K∑

k=1

gqk

√
ηkxk + nq, (1)

where gqk denotes an Nt×1 channel signature between user k
and AP q and the receiver noise nq = [n1, . . . , nNt

]T follows

a complex normal distribution CN (0, σ2
nINt

).

In contrast to maximum likelihood, linear detection stands

out for its lower complexity while still achieving commendable

performance. Maximum-ratio combining (MRC), also known

as matched filtering, is commonly employed for uplink de-

tection in massive MIMO [12]. The underlying principle is to

maximize the strength of the desired signal while disregarding

inter-user interference (IUI) [13]. To detect the symbols, AP q
multiplies the received signals with the conjugate of its locally

obtained channel estimates represented by ĝqk, consisting of

ĝmk, ∀m ∈ {(q− 1)Nt+1, (q− 1)Nt+2, . . . , qNt}. Then, the

result ĝ
∗
qk ⊗ yq , where ⊗ marks the Hadamard (element-wise)

product, is delivered to the CPU via the fronthaual network.

As a result, the CPU observes

y = Ĝ
H
(
√
puGDηx + n)

= Ĝ
H

(

√
pu

K∑

k=1

gk
√
ηkxk + n

)

. (2)

Here, G stands for an M×K channel matrix with the (m, k)th

entry of gmk, namely [G]mk = gmk, Ĝ is the matrix of channel

estimates, i.e., [Ĝ]mk = ĝmk, gk represents the channel

signature for user k or the kth column of G, and ĝk denotes

the kth column of Ĝ. Additionally, Dη is a diagonal matrix

given by Dη = diag([η1, . . . , ηK ]), and the receiver noise

n = [n1, . . . , nM ]T follows a complex normal distribution



CN (0, σ2
nIM ). Decomposing (2) yields the received signal for

detecting xk as

yk = ĝ
H
k

(

√
pu

K∑

k=1

gk
√
ηkxk+n

)

=
√
puηkĝ

H
k gkxk +

√
pu

K∑

i=1,i 6=k

ĝ
H
k gi

√
ηixi + ĝ

H
k n. (3)

Considering the vector of channel estimate errors denoted as

g̃k = gk − ĝk, (3) is further derived as

yk =
√
puηkĝ

H
k (ĝk + g̃k)xk +

√
pu

K∑

i=1,i 6=k

ĝ
H
k gi

√
ηixi + ĝ

H
k n

=
√
puηk‖ĝk‖2xk +

√
puηkĝ

H
k g̃kxk

+
√
pu

K∑

i=1,i 6=k

ĝ
H
k gi

√
ηixi + ĝ

H
k n. (4)

The CPU gets the full CSI exclusively when the CSI ob-

tained from all APs is transmitted via the fronthaul network, or

if the CPU conducts centralized estimation using observations

also provided by the APs. Given the high signaling overhead,

it is sensible to assume that the CPU is only equipped with

knowledge of the channel statistics [2], [4]. That is to say, the

CPU detects the received signals based on αmk, rather than

ĝmk, ∀m, k. Thus, (4) is rewritten as

yk =
√
puηkE

[

‖ĝk‖2
]

xk

︸ ︷︷ ︸

S0: desired signal

+
√
puηk

(
‖ĝk‖2−E

[
‖ĝk‖2

])
xk

︸ ︷︷ ︸

I4: channel uncertainty error

+
√
puηkĝ

H
k g̃kxk

︸ ︷︷ ︸

I1: channel estimation error

+
√
pu

K∑

i=1,i 6=k

ĝ
H
k gi

√
ηixi

︸ ︷︷ ︸

I2: inter−user interference

+ ĝ
H
k n
︸︷︷︸

I3: noise

. (5)

a) Spectral-Efficiency Analysis: The terms S0, I1, I2,

I3, and I4 as defined in (5) exhibit mutual uncorrelation. As

stated in [14], the worst-case noise for mutual information

corresponds to Gaussian additive noise with a variance equal

to the sum of the variances of I1, I2, I3, and I4. Thus, the

uplink achievable rate for user k is lower bounded by Rk =
log(1 + γul

k ), where

γul
k =

E
[
|S0|2

]

E [|I1 + I2 + I3 + I4|2]

=
E
[
|S0|2

]

E [|I1|2] + E [|I2|2] + E [|I3|2] + E [|I4|2]
(6)

with

E
[
|S0|2

]
= puηkN

2
t

(
NAP∑

q=1

αqk

)2

(7)

E
[
|I1|2

]
= puηkNt

NAP∑

q=1

(βqk − αqk)αqk (8)

E
[
|I2|2

]
= puNt

K∑

i=1,i 6=k

ηi

NAP∑

q=1

βqiαqk (9)

E
[
|I3|2

]
= σ2

nNt

NAP∑

q=1

αqk (10)

E
[
|I4|2

]
= Nt

NAP∑

q=1

α2
qk. (11)

Substituting the above terms into (6), yields

γul
k =

puηkN
2
t

(
∑NAP

q=1
αqk

)2

puNt

∑K
i=1

ηi
∑NAP

q=1
αqkβqi + σ2

nNt

∑NAP

q=1
αqk

.

(12)

By now, we get the closed-form expression of uplink per-user

spectral efficiency for a generalized system with 1 < NAP 6

M single- or multi-antenna APs.

b) Cost Analysis: In evaluating the cost-effectiveness of

the system, the overall cost of a cell-free massive MIMO

system is formulated as

C = cls + ccpu + cmo

+NAP

[

csc + cps + cfb + cbb +Nt(cant + crf )
]

. (13)

This comprehensive cost includes various components such

as cls representing fees associated with acquiring spectrum

licenses from regulatory authorities, ccpu denoting the expense

of constructing the CPU, and cmo covering the costs of

electricity consumption, routine maintenance, network man-

agement, monitoring, and insurance. Furthermore, csc ac-

counts for the expenses related to obtaining or leasing space

for a wireless site and site construction, cfb addresses the

establishment cost of a fiber optic connection to the CPU,

cps encompasses the installation cost of power supply infras-

tructure, cbb represents the cost of a baseband unit, while cant
and crf correspond to the cost per antenna and the cost of the

RF chain, respectively.

To investigate the influence of the number of antennas per

AP on cost-effectiveness, we redefine (13) in a new form as:

C = NAP

[

Cf +NtCv

]

. (14)

Here, the combined costs of cls + ccpu + cmo are equally

allocated to each AP by dividing by NAP , Cf denotes the

fixed cost independent of the number of AP antennas

Cf =
cls + ccpu + cmo

NAP

+ csc + cps + cfb + cbb, (15)



and the fees associated with the number of AP antennas are

represented by Cv = cant + crf . Consequently, the cost-

effectiveness of the system in the uplink can be assessed

through the ratio between the sum rate and the overall cost,

i.e.,

Γul =

∑K
k=1

log(1 + γul
k )

NAP (Cf +NtCv)
. (16)

IV. SPECTRAL-EFFICIENCY AND COST-EFFECTIVENESS

ANALYSIS IN DOWNLINK TRANSMISSION

In contrast to theoretically optimal but impractical ap-

proaches like dirty-paper coding, linear precoding stands out

for its appealing combination of low complexity and effective

performance. In cell-free massive MIMO systems, the spatial

multiplexing of information symbols is commonly realized

using two linear precoding techniques: conjugate beamforming

(CBF) [2] and zero-forcing precoding (ZFP) [15]. The symbols

intended for K users is denoted by u = [u1, . . . , uK ]T , where

E[uuH ] = IK . Let B represent the M ×K precoding matrix

with elements [B]mk =
√
ηmkbmk, where ηmk denotes the

power coefficient for the kth user at antenna m, and bmk is

the precoding coefficient. Adhering to the per-antenna power

constraint pd and a noise vector w = [w1, . . . , wK ]T ∈
CN (0, σ2

nIK), the collective representation of received sym-

bols for all users, namely r = [r1, . . . , rK ]T , is given by:

r =
√
pdG

TBu+w. (17)

Equivalently, the kth user has the observation of

rk =
√
pdg

T
k Bu+ wk

=
√
pdg

T
k

K∑

i=1

biui + wk (18)

=
√
pdgTk bkuk +

√
pd

K∑

i=1,i 6=k

gTk biui + wk,

where bk ∈ C
M×1 is the kth column of B.

1) Conjugate Beamforming: Similar to the MRC technique

employed in the uplink, CBF is designed to optimize the

reception of the desired signal [2], aiming to maximize its

strength. Its precoding matrix is given by [B]mk =
√
ηmkĝ

∗
mk.

Applying CBF, (18) can be rewritten into an element-wise

form as

rk =
√
pd

M∑

m=1

√
ηmkgmkĝ

∗
mkuk

+
√
pd

K∑

i=1,i 6=k

M∑

m=1

√
ηmigmkĝ

∗
miui + wk. (19)

Each user only knows channel statistics E

[

|ĝmk|2
]

= αmk

rather than channel estimate ĝmk since there are no downlink

pilots. As a result, each user detects the signals based on

channel statistics. Like (5), (19) is transformed to

rk =
√
pd

M∑

m=1

√
ηmkE[|ĝmk|2]uk

+
√
pd

M∑

m=1

√
ηmk

(
|ĝmk|2 − E[|ĝmk|2]

)
uk

+
√
pd

M∑

m=1

√
ηmkg̃mkĝ

∗
mkuk

+
√
pd

K∑

i=1,i 6=k

M∑

m=1

√
ηmigmkĝ

∗
miui + wk. (20)

The power control is generally decided by site-specific

large-scale fading coefficient βqk, we have ηmk = ηqk for

all m ∈ {(q − 1)Nt+1, (q − 1)Nt+2, . . . , qNt}. Applying

analogous manipulations to the derivation of (12), we obtain

the effective SINR as

γcbf
k =

pdN
2
t

(
∑NAP

q=1

√
ηqkαqk

)2

σ2
n + pdNt

∑NAP

q=1
βqk

∑K
i=1

ηqiαqi

. (21)

Let NAP = M and Nt = 1, (21) reverts to equation (27)

in [2], illustrating the performance of conventional cell-free

massive MIMO with single-antenna APs. Nevertheless, we

progress beyond by covering the scenario of multi-antenna

APs when Nt > 1. Like (16), the cost-effectiveness of

CBF-based cell-free massive MIMO in the downlink can be

evaluated by

Γcbf
dl =

∑K
k=1

log(1 + γcbf
k )

NAP (Cf +NtCv)
. (22)

2) Zero-Forcing Precoding: Instead of maximizing the

strength of the desired signal, ZFP aims to cancel IUI at the UE

receiver [16]. Its precoding matrix is the pseudo inverse of the

channel matrix, i.e., B = Ĝ
∗
(Ĝ

T
Ĝ

∗
)−1 ⊗ E, where [E]mk =√

ηmk. As proved by [4], it is necessary to have η1k = η2k =

· · · = ηMk, ∀k to keep Ĝ
T

B orthogonal such that the IUI

is eliminated. Hence, we have ηmk = ηk, ∀m and therefore

B = Ĝ
∗
(Ĝ

T
Ĝ

∗
)−1D, where D = diag([η1, . . . , ηK ]). The

IUI term in (18) is zero-forced, namely
∑K

i=1,i 6=k gT
k biui = 0,

yielding rk =
√
pdgTk bkuk + wk, which is further derived to

rk =
√
pdĝ

T
k bkuk +

√
pdg̃

T
k bkuk + wk

=
√
pdηkuk +

√
pdg̃

T
k bkuk + wk. (23)

The effective SINR for user k can be expressed as follows:

γzfp
k =

pdηk

σ2
n + pd

∑K
i=1

ηiχk
i

. (24)

where χk
i represents the ith diagonal element of the K ×K

matrix dedicated to user k [15]:

E

[(

ĜĜH
)−1

ĜE

[

g̃
H
k g̃k

]

ĜH
(

ĜĜH
)−1

]

, (25)
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Fig. 2. Performance of cell-free massive MIMO systems in terms of the number of antennas at each AP (i.e., Nt), where a total of M = 300 antennas
serve K = 16 (default) or K = 32 users (marked by -32 in the legend), including (a) the sum capacity; (b) the 5-percentile spectral efficiency; and (b) the
50-percentile spectral efficiency.

and E

[

g̃
H
k g̃k

]

is a diagonal matrix with the kth diagonal

element equaling to βmk − αmk. The cost-effectiveness of

ZFP-based cell-free massive MIMO can be assessed through

Γzfp
dl =

∑K
k=1

log(1 + γzfp
k )

NAP (Cf +NtCv)
. (26)

V. NUMERICAL RESULTS

The spectral efficiency and cost-effectiveness of a cell-free

massive MIMO system are numerically evaluated in terms

of the number of antennas per AP. Consider a configuration

where a total of M = 300 antennas serve users across a

square area of 1 × 1km2. The large-scale fading is figured

out by the formula βmk = 10
Lmk+Xmk

10 . The shadowing Xmk,

commonly modeled as a log-normal distribution N (0, σ2
sd),

where σsd = 8dB. The path loss, determined by the COST-

Hata model [2], is expressed as

Lmk =







−L0 − 35 log10(dmk), dmk > d1

−L0 − 10 log10(d
1.5
1 d2mk), d0 < dmk ≤ d1

−L0 − 10 log10(d
1.5
1 d20), dmk ≤ d0

,

(27)

where dmk is the distance between user k and antenna m, the

three-slope breakpoints are set as d0 = 10m and d1 = 50m,

and L0 = 140.72dB is defined by

L0 = 46.3+33.9 log10 (fc)− 13.82 log10 (hAP ) (28)

− [1.1 log10(fc)− 0.7]hUE + 1.56 log10 (fc)− 0.8

Here, the carrier frequency is fc = 1.9GHz, the height of

the AP antenna is hAP = 15m, and the height of the UE is

hUE = 1.65m.

The per-antenna and UE power constraints are pd = pu =
200mW. The white noise power density is −174dBm/Hz
with a noise figure of 9dB, and the signal bandwidth is

set at 5MHz. In the uplink, performed in a distributed

manner, it is reasonable for each UE to adopt a full-power

strategy with ηk = 1. Regrettably, the optimal max-min

power-control schemes in the downlink, employing both

CBF and ZFP, are too computationally complex for prac-

tical implementation. In line with the recommendation by

[4], we opt for sub-optimal schemes characterized by lower

complexity. To elaborate, within the ZFP approach, we set

η1 = . . . = ηK =
(

maxm
∑K

k=1
δkm

)−1

, where δm =

[δ1m, . . . , δKm]T = diag(E[(ĜĜH)−1ĝmĝH
mĜĜH)−1]) and

ĝm represents the mth column of Ĝ. In the case of CBF, the

APs employ a full-power strategy, mathematically denoted as

ηm = (
∑K

k=1
αmk)

−1, ∀m.

During the simulations, the number of AP antennas

varies as Nt ∈ {1, 2, 4, 10, 12, 15, 20, 25, 30, 50}. Correspond-

ingly, a total of 300 antennas were distributed to NAP ∈
{300, 150, 75, 30, 25, 20, 15, 10, 6} APs. Two groups of simu-

lations were performed with the number of users set to K = 16
and K = 32, respectively. Fig.2a illustrates the sum rate for

three scenarios: uplink, downlink with ZFP, and downlink with

CBF. As expected, in the downlink, ZFP outperforms CBF

significantly due to ZFP’s utilization of global CSI to eliminate

inter-user interference for all users. In contrast, CBF relies on

only local CSI for precoding. The superiority of ZFP comes

at the cost of high signaling overhead, as the CSI must be

delivered via the fronthaul network. While both CBF in the

downlink and MRC in the uplink share the approach of max-

imizing the desired signal, CBF’s performance surpasses that

of MRC. This is attributed to the higher power consumption

in the downlink, amounting to M × pt = 60W, compared

to the uplink’s K × pu = 3.2W or 6.4W. To provide a

clear illustration, we omit the ZFP curve with 32 users as

it deviates significantly from the curves of CBF and MRC.

As observed, the sum rate of ZFP monotonically decreases

with the increasing number of AP antennas. However, in the

case of CBF and MRC, optimal performance is achieved using

multi-antenna APs at Nt = 4.

The concept of user-experienced data rate, as defined by

3GPP, is rooted in the 5th percentile point (5%) of the cu-

mulative distribution function of user throughput. This metric

provides a meaningful measurement of perceived performance,

particularly at the cell edge. Fig.2b presents the 5th percentile

per-user spectral efficiency, offering a glimpse into how the
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Fig. 3. Cost-effectiveness results of cell-free massive MIMO systems in terms of the number of antennas at each AP (i.e., Nt), where a total of M = 300

antennas serve K = 16. The ratio between the Nt-dependent and Nt-independent costs takes four values, i.e., Cv/Cf = 0.05, 0.1, 0.25 and 0.5.

cell-edge performance varies with Nt. Simultaneously, Fig.2c

displays the 50th percentile, or median, per-user spectral effi-

ciency. Observing Fig.2b, it becomes evident that the cell-edge

performance is sensitive to reductions in AP density. However,

a crucial insight emerges: the majority of performance levels

can be maintained when the number of AP antennas remains

moderate, specifically when Nt < 5. In contrast, the median

spectral efficiency demonstrates greater adaptability to multi-

antenna AP scenarios. The peak performance for CBF and

MRC occurs when there are approximately Nt = 10 anten-

nas. While the performance of ZFP exhibits a monotonically

decreasing trend with the increasing number of AP antennas,

it performs still well when Nt is high.

We evaluated cost-effectiveness based on the achievable

spectral efficiency of each AP per cost unit, varying the

number of antennas at each AP, where a total of M = 300
antennas serve K = 16. To maintain generality, we set the

costs independent of Nt to a fixed value of one cost unit

during all simulations (Cf = 1). Across specific deployment

scenarios, the fee for adding an extra antenna and its associated

RF chain varies from 5% to 50% of the fixed cost. In particular,

the ratio between Nt-dependent and Nt-independent costs

takes four values: Cv/Cf = 0.05, 0.1, 0.25, and 0.5. The

results, as depicted in the Fig.3, show a decrease as the cost of

Cv increases, reflecting an elevation in the total deployment

cost without necessarily indicating a decline in performance.

It is crucial to note that, regardless of downlink or uplink, and

whether using ZFP or CBF, their cost-effectiveness monoton-

ically grows with the increasing number of AP antennas.

VI. CONCLUSIONS

This paper investigated the cost-effectiveness aspect of cell-

free massive MIMO through comprehensive cost and perfor-

mance analysis. Our unified model, accommodating varying

numbers of antennas in both uplink and downlink scenarios,

shed light on the impact of multi-antenna APs on economic

viability. Factors like site acquisition, fiber connection, main-

tenance, and hardware costs were examined. The findings

underscored the efficacy of multi-antenna APs in enhancing

cost-effectiveness, albeit with a trade-off: reducing AP density

may compromise per-user spectral efficiency and sum capacity.

However, we demonstrated that the majority of performance

levels can be maintained by determining the suitable number

of antennas per AP. The analysis and evaluation result in the

identification of a cost-effective design for cell-free massive

MIMO, providing valuable insights for practical implementa-

tion.
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