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Abstract

This study presents a comprehensive investigation into stress detection
among students, focusing on multiple levels of stress assessment. This re-
search aims to shed light on the complexities of stress experienced in
educational settings by utilizing a physiological sensing wristband to cap-
ture the multifaceted nature of stress responses. A user study was con-
ducted to calculate the cognitive stress levels of a group of 25 participants
by recording physiological signals on an Empatica E4 wristband. Along
with the relaxed or non-stressed condition, the study employed a range
of simple to complex arithmetic tasks designed to elicit three levels of
response: 1) slightly stressed or easy level, 2) stressed or medium level,
and 3) highly stressed or hard level. Upon the implementation of multi-
ple deep learning models, FCN, ResNet, and LSTM models demonstrated
promising outcomes in accurately categorizing the three different stress
levels (easy, medium and hard). The models were trained using KFold
and Leave-One-Participant-Out (LOPO) cross-validation techniques. To
improve the prediction accuracy of LOPO, a fine-tuning or user-specific
data calibration approach was utilized. This approach resulted in signifi-
cant improvements in accuracy for LOPO, with the FCN model achieving
a spike to 60% (F1=0.578), the ResNet model reaching 85% (F1=0.846),
and the LSTM model achieving an impressive 91% (F1=0.911) accuracy
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for three-class classification. Leveraging the insights gained from the pre-
diction outcomes, a prototype application was developed that effectively
portrays the dynamic fluctuations in stress levels. This application incor-
porates a stress meter, allowing users to visually comprehend their stress
levels, and it delivers customized alert messages to individuals based on
their respective stress levels, ensuring timely support and intervention.

1 Introduction

Stress is commonly linked to a predominantly negative perception of in-
dividuals and is regarded as a subjective experience that can impact both
emotional and physical well-being. Psychological stress has become a ma-
jor and detrimental issue among young individuals, especially students, in
the current society [2]. In the modern digital era, students are confronted
with the necessity of attending multiple online classes and lectures, man-
aging a considerable workload of assignments, and facing demanding ex-
ams. The cumulative effect of these responsibilities can lead to heightened
levels of stress among students, significantly impacting their overall men-
tal and physical well-being. Recognizing and addressing stress promptly
is crucial for ensuring the student’s welfare.

Historically, various physiological features such as electroencephalogra-
phy (EEG), galvanic skin response (GSR), and electrocardiogram (ECG)
have been extensively employed in the detection and assessment of emo-
tions, mental workload, and stress [33][12][34][25][5][7]. These measures
have proven to be valuable tools for evaluating the physiological responses
associated with stress over the years [16]. By monitoring and analyzing
these signals, researchers have been able to gain insights into the emo-
tional and cognitive states of individuals, providing valuable information
for stress detection. In the context of student’s well-being, the utilization
of these physiological features holds promise in identifying the presence
and magnitude of stress experienced by students. By leveraging technolo-
gies that capture and interpret EEG, GSR, and ECG data, researchers
can objectively assess the stress levels of students. This objective mea-
surement can aid in early identification and intervention, enabling timely
support systems to be put in place.

By incorporating these physiological measures into stress detection
methodologies, educators and institutions can gain a more profound un-
derstanding of the stressors faced by students and tailor their educational
environments accordingly. Additionally, this knowledge can inform the
development of personalized interventions and coping strategies, promot-
ing the overall mental health and academic success of students in the
digital age. WESAD, a widely recognized dataset, played a significant
role in exploring different affective states using two prominent sensing
devices, namely Empatica E4 and RespiBAN. The dataset aimed to cap-
ture a comprehensive range of emotional experiences and physiological
responses. Despite encompassing a broad spectrum of affective states, the
evaluation process focused specifically on three distinct states: baseline,
stress, and amusement [32].

In our study, we employed the Empatica E4 wristband as a data col-
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Figure 1: The raw physiological signals separated by different sessions of stress
for a single participant.

lection tool to investigate and quantify the stress levels experienced by
students. The primary objective of our research was to assess and ana-
lyze stress in students while they performed a series of tasks at different
difficulty levels. Our focus was on understanding how students responded
to varying levels of stress and whether there were discernible differences
in their physiological reactions to different stress levels. To achieve this,
we designed and conducted an experiment involving 25 participants and
subjected them to three distinct stress conditions: ‘easy’, ‘medium’, and
‘hard’. Figure 1 illustrates the variations in the raw sensor signals during
different sessions in the study. To induce stress during the experiment,
we utilized mental arithmetic tasks as stressors [22][37][26][27]. By asking
the participants to solve arithmetic problems within specific time con-
straints, we aimed to create a stress-inducing scenario at various levels.
Our research sought to contribute to the understanding of how students
experience and respond to stress during task performance. By investigat-
ing their physiological responses under different levels of stress, we aimed
to uncover patterns and variations that could shed light on the impact of
stress on student’s well-being and performance. The utilization of the E4
wristband and the collection of physiological data enabled us to capture
objective measures of stress, complementing self-report measures and en-
riching our understanding of the participant’s experiences. This approach
allowed for a more comprehensive assessment of stress levels and provided
valuable insights into the physiological manifestations of stress in students
during task-based activities.

The key contributions of this study are:

• A comprehensive and well-designed experimental protocol with a
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well-established stressor, utilizing a range of tasks and stimuli that
effectively induce varying degrees of stress in participants. This al-
lows for controlled and consistent manipulation of stress levels during
the experiment.

• An extensive analysis and comparison of multiple deep learning mod-
els for predicting stress levels and demonstrating that these models
can be trained effectively to accurately predict stress levels based on
physiological data.

• A comparative analysis of a general classification model to a user-
adaptive model, implemented by fine-tuning or calibrating user-
specific information.

• An application prototype interpreting the dynamic variations of stress
levels in users, utilizing a stress meter, customized alert messages and
serving as a tool for aiding in their understanding and monitoring
of stress levels, ensuring timely support.

In a nutshell, our research emphasizes the significance of comprehend-
ing and monitoring stress levels in students. By employing a robust exper-
imental protocol, analyzing physiological data with deep learning models,
and developing an application for visualization and providing potential
interventions, we contribute to the advancement of stress detection meth-
ods and their practical implementation.

2 Background and Related Work

Stress detection has a decade-long history in computer science. Detection
and analysis of stress can range from uncomfortable sensors to comfort-
able wearable sensors, and from difficult situations to simple conditions
and experiments. According to [3], human stress can be detected in two
ways: 1) subjective questionnaires created by psychologists and 2) objec-
tive measurements that include physiological signals from wearable and
non-wearable sensors. Some commonly used questionnaires are Perceived
Stress Scale (PSS) [9], Daily stress inventory (DSI) [6] and Brief symptom
inventory (BSI) [10]. Ideally, subjective measurements are less convincing
without objective measurements, as objective measurements or physiolog-
ical sensors help to detect human emotion using wearable devices placed
on the participant’s body without physical contact with them.

Cognitive stress has a strong connection to brain activity [11]. EEG
is a non-invasive method of recording brain electrical activities. Medi-
cal advancements have resulted in the release of wearable EEG devices,
which are easy to wear, head mounted, comfortable, and user-friendly.
The dry, tiny and non-contact electrodes detect electrical charges due to
brain activities. Similar to brain activities, the correlation between the
human central system and the heart is used to measure human stress [1].
ECG is a non-invasive modality used to measure and monitor heart func-
tions. RR intervals (rhythm to rhythm) and HR (heart rate) can also be
extracted from ECG signals. ECG signals are observed as R-waves and
ECG intervals are measured between them. Heart rate is its reciprocal.
A study by Ahn et al. [1], demonstrates detection of stress based on time
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and frequency features of EEG and ECG. The study involved two stress
conditions while performing two different tasks, Stroop color word and
mental arithmetic tests, with 14 subjects. A traditional machine learn-
ing model, SVM, classified the two conditions with an accuracy rate of
87.50%.

Electrodermal activity (EDA), also known as the GSR, helps to read
human skin variations through the sweat glands. There is a lot of infor-
mation about the human state of mind that can be derived from these
variations [40]. The spike in EDA can be due to physical activities like
running, sleeping, standing or emotional activities like excitement, stress,
fear, anger. Blood volume pulse (BVP) is another physiological feature
that detects emotions [30]. In photoplethysmography (PPG), infrared
light is transmitted through tissue and the absorption of this light by
blood flowing through the vessels is measured [28]. It is also used to mea-
sure BVP, which is controlled by the heartbeat. In a stressful situation, the
human body releases a lot of stress hormones that increase blood pressure.
Gjoreski et al. [18] presented a multimodal stress classification framework
incorporating EDA, BVP, HR, RR, and skin temperature (TEMP) col-
lected from an Empatica E4 wristband from 26 participants. This con-
tinuous stress detection model used data from two scenarios, laboratory
and real life. Stress detection in the laboratory was performed in two and
three-level classifications, resulting in an accuracy rate of 83% and 72%.
Real-life data achieved 76% and 92% accuracy respectively in no-context
and context scenarios. Cho et al. [8] combined PPG and thermal imaging
data to build a mobile stress monitoring system. This smartphone-based
system recognizes stress instantly using neural networks.

Other physiological signals that contribute to detecting stress in hu-
mans are EMG (Electromyography) [23] and acceleration (ACC) data [14]
[17]. EMG is a technique used to measure the health of muscles and nerve
cells called motor nerves. EMG is controlled by the nervous system and
depends on the physiological and anatomical characteristics of the hu-
man skeletal system, making it a complicated modality. A wide range
of studies have proven the relationship between EMG and human stress.
In a study presented by Ghaderi et al. [15], a multimodal stress detec-
tion method to understand driver’s emotions is implemented using EMG,
EDA and ECG. Using SVMs and kNNs, the three-level classification data
has been generalized with 98% accuracy. An accelerometer measures the
acceleration of the body using wearable devices or smartphones. It is
used to detect stress in the course of daily activities by tracking body
movements. Additionally, a gyroscope is a sensor that senses the angular
velocity in x, y and z axis for detecting stress. In a study by Sysoev et
al. [35], behavioral and contextual data collected in real-life scenarios was
used to determine stress in a non-invasive way using smartphones. The
data is collected from gyroscope, accelerometer, current stress level self-
assessment and current activity type. Using only accelerometer data, an
accuracy rate of 82.5% and 90.32% was achieved for daily activities and
standing activity, respectively.

Tracking eye movement helps to measure where a person looks, which
is called the point of gaze. These eye movements are converted to a stream
of data that includes gaze point, gaze vector and pupil position. Human
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eye behavior is affected by different emotional situations [19]. A stress
detection framework called StressClick, developed by Huang et al. [21],
uses human gaze with mouse clicks of participants while performing men-
tal arithmetic tasks. The system classified two stress scenarios using a
Random Forest classifier with 60% accuracy.

One of the major challenges while dealing with time series data like
physiological signals is extracting meaningful information from them, also
known as feature engineering. Most machine learning models fail when
faced with large amounts of physiological data without feature extraction.
Yan et al. [39], proposed baseline models for time series data using deep
learning approaches. In this paper, the Multilayer Perceptron (MLP),
Fully Connected Networks (FCN), and Residual Networks (ResNet) are
implemented without any pre-processing or feature engineering involved.
Similarly, in a paper by Dziezyc et al. [13], ten end-to-end multimodal deep
learning architectures are presented that detect stress and other emotions
without extracting features from raw physiological data. The study uses
sensory information from four different datasets at a standard sampling
frequency without pre-processing, to preserve all the information in the
signals. In a recent study, Behinaein et al. [4] presented an end-to-end
deep learning model for emotion recognition based on two publicly avail-
able datasets, WESAD [32] and SWELL-KW [24]. The research includes
developing a neural network based on convolutional layers and multi-head
transformers that are applied to ECG signals.

3 Methodology

We conducted an experiment involving 25 participants, 11 female and 14
male, all pursuing masters at the university and aged between 21 and
31. Our system recorded physiological signals of the participants while
performing a series of tasks at different levels, as shown in Figures 2a
and 2b.

3.1 Experimental Design

Before the start of the experiment, the experimental procedure and all
the apparatus were described in detail to all participants. Students who
agreed and signed the consent form could participate. We asked the par-
ticipants to wear the Empatica E4 wristband on their non-dominant hand.
Additionally, we requested all participants to keep their hand movements
minimal, as we did not want hand gestures to add extra stress and in-
crease variations. Subsequently, participants had to be engaged with the
tasks coming one after the other for 20 to 25 min. The participants were
mainly divided into 2 groups depending upon the order of relax and stress
sessions; 1) relax followed by stress, 2) stress followed by relax. These two
groups were further divided into 3 groups depending upon the stress lev-
els; 1) easy-medium-hard, 2) medium-easy-hard, 3) hard-medium-easy as
shown in Figure 2b. At the beginning and end of the relax and stress
session, the participants were asked to tag/press the button on the E4
wristband. A red blink indicates each press. At the start of each session,
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(a)

(b)

Figure 2: (a) An overview of the experimental setup. The participant is
looking at numbers appearing on the screen in a series of mental arithmetic

tasks. (b) The various sessions involved in the experimental setup

clear instructions about the upcoming session appeared on the screen. In
this way, all the dos and don’ts of the experiment were explained to the
participants.

Sessions:

1. Relax: In the relax session, the participants just sat in front of the
monitor with a pleasant image on the screen and listened to soothing
music for 90 sec.

2. Stress: The stress session included 3 levels of arithmetic tasks. All
levels were 5 minutes each. A series of numbers were shown on the
screen. Participants were asked to memorize the series and mentally
“Add/Subtract/Multiply” a given number to each number in the
series. For example, if the series shown is (5, 3, 1) and if asked to
add 1, then the correct answer will be (6, 4, 2). In the following
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Figure 3: Screenshots of experimental sessions. Easy level, Medium level, Hard
level, ‘timeout’ message (left-top to bottom). Input field for participants to

answer easy level, ‘correct’ message (right-top to bottom)

fields, they were required to input the revised series. If the input
answer series is correct, an alert message “Correct” is popped on the
screen and if not, an alert message “Incorrect” is popped. If they
fail to input an answer, a “timeout” message appears on the screen
as shown in Figure 3.

(a) In the easy level, participants solved addition problems. They
had to memorize 3 numbers in series and input 3 answers in the
same order.

(b) In the medium level, participants solved subtraction tasks. They
had to memorize 4 numbers in series and input 4 revised answers
in the same order. In addition to alert messages, participants
heard a buzzer sound for correct, incorrect and timeout results.

(c) In the hard level, participants solved multiplication tasks. The
total numbers in the series were increased to 5. In addition
to alert messages and buzzer sounds for correct, incorrect and
timeout results, participants heard a ticking clock sound when
this session started.

3. Auxiliary session: Before the stress session began, participants had
to pass through an additional task, in which a few circles appeared
on the screen one after another. They were asked to catch these
circles by clicking anywhere inside the circle. As we considered this
session a complementary session which would allow the participants
to concentrate on the upcoming arithmetic tasks, we did not use the
wristband. This session lasted for 30 seconds.
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Figure 4: ResNet Architecture

In between each session, participants took a few seconds break. Besides
the alert messages, the buzzer, and ticking sounds were used to induce
stress or anxiety. Additionally, a questionnaire form was also administered
at the start and end of the experiment, asking participants to answer a
couple of questions about themselves and the experiment. The pre- and
post-questionnaire forms had a Likert scale from 1 to 7 (where 1 being
the least and 7 being the highest) and a drop-down menu to select their
options.

3.2 Data Pre-processing

The physiological signals like EDA, BVP, TEMP, HR and 3-axis ACC
data were collected from Empatica E4 with sampling frequencies of 4Hz,
64Hz, 4Hz, 1Hz and 32Hz respectively. The recorded EDA, BVP, TEMP
and ACC signals were pre-processed and segmented using a sliding window
of the length of 30 seconds without overlap. The input signals provided
to Transformers and LSTM were resampled to a frequency of 4Hz, en-
suring uniform frequency across all signals, while FCN and ResNet were
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Figure 5: FCN Architecture

fed with signals at their original sampling frequencies. The signals were
then standardized to have zero mean and unit variance before being fed
into the networks. Our methodology employs an end-to-end approach,
allowing us to extract valuable insights directly from the raw sensor data
without the need for manual feature extraction. By bypassing the manual
feature engineering step, our method enables a streamlined process that
leverages the inherent information contained within the sensor data itself.
This approach eliminates potential biases and limitations introduced by
human-designed features, allowing for a more comprehensive and unbi-
ased analysis of the data.

3.3 Model Architecture

Deep neural networks alleviate the necessity for feature engineering by
acquiring high-level features within their hidden layers. This leads to a
reduction in the complexity of the workflow and the amount of manual ef-
fort required, while simultaneously enhancing the likelihood of capturing
relevant information.The collected data was analyzed using various mod-
els, including FCN, ResNet, Transformers and Long Short-Term Memory
(LSTM). The diagram in Figure 4 shows the architecture of ResNet [39].
The network is highly dense, with multiple residual blocks and shortcut
connections within each block. Our model contains three residual blocks
where in each block, there are three successive convolutional layers with
64, 128 and 128 filters, respectively. The kernel size of convolutional layers
also varies for each block. A global average pooling layer is incorporated
to downsample the feature maps and capture the most relevant informa-
tion. Towards the end of the architecture, fully connected layers are used
to map the learned features to the desired output and the output layer
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provides the final prediction based on the processed physiological data.
Figure 5 shows the architecture of the FCN model [39]. The FCN model
consists of three convolutional blocks for each signal, followed by a global
average pooling layer. The branches are concatenated and fed to one or
more fully connected dense layers. Each convolutional layer applies a set
of filters to the input time series, and the output of each layer is passed
through a non-linear activation function such as the ReLU function. The
convolutional layers output is processed by the fully connected layers to
complete the final classification.

A Transformers model is applied to the preprocessed signals [36] [38].
These signals were first passed through the transformer block twice. The
transformer block consists of a multi-head attention layer, a dropout layer,
and two 1D convolutional layers. The transformer block is coupled with
a pooling layer and dense layers with ReLu and Softmax as shown in the
Figure 6a. Figure 6b illustrates the architecture of an LSTM model. Sim-
ilar to Transformers, the inputs for LSTM [20] are sampled at a consistent
frequency of 4Hz. The LSTM model comprises a 1D convolutional layer
with a filter size of 64 and a kernel size of 7. This is followed by an LSTM
layer and two dense layers, swish [31] and ReLu. Subsequently, the output
is passed through a dropout layer and dense layer for further processing.

(a) (b)

Figure 6: (a) Transformers Architecture (b) LSTM Architecture
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3.4 Cross Validation

We employed two different cross-validation methods to ensure the robust-
ness and generalizability of our findings. The first method was KFold
cross-validation, which involves randomly splitting the dataset into K
(= 5) subsets while ensuring that the distribution of stress levels was
balanced across each subset. The second cross-validation method was
the Leave-One-Participant-Out (LOPO) approach, which involves train-
ing the model on data from all participants except one and evaluating
its performance on the held-out subject. Given the participant’s division
into numerous groups and the presence of unique characteristics in each
individual’s response to the given stimuli, deploying a generalized model
on unseen test subjects presented a significant challenge. To address this
hurdle, we adopted a fine-tuning (ft) or calibration approach [4][17], in-
corporating a small portion of the unseen test data to train the model
and tailor it to become more personalized or user-centric. This strategy
allowed us to capture the peculiarities and individual traits of the test sub-
jects, enhancing the model’s ability to generalize and perform effectively
on previously unseen data. The approach involves utilizing fractions of
the unseen test data, specifically 5%, 10%, and 20%, to train the model in
conjunction with the data from other participants. Conversely, for test-
ing purposes, 95%, 90%, and 80% of the unseen participant’s data are
employed. For example, if p01 is the participant’s data to be tested on,
then 10% of its data is merged with the other participant’s data as train-
ing data. The remaining 90% is used as testing data. This methodology
allows for a controlled evaluation of the model’s performance by system-
atically varying the proportions of training and test data from the unseen
participants.

4 Results

The evaluation results of the two validation methods, KFold and LOPO
with and without fine-tuning, using FCN, ResNet, Transformers, and
LSTM models are presented in Table 1. It provides an overview of the
performance comparison among the different models and the impact of
incorporating the fine-tuning step to LOPO. The models were specifically
trained to classify stress into three distinct classes: ‘easy’, ‘medium’, and
‘hard’. Due to the differing durations of the relax session (90 seconds)
and the arithmetic sessions (easy, medium, hard) (5 minutes each), there
is a disparity in the time intervals, leading the models to become biased
towards predicting lesser outcomes for the relax session. Moreover, sev-
eral participants concluded their experiment with the relax session, and
a considerable portion of them failed to stop the E4 recording following
the session. Consequently, the relax session was not accurately labeled,
leading to its exclusion during the model training phase.

Using the KFold cross-validation, we evaluated the performance of four
different models, namely FCN, ResNet, Transformers, and LSTM, in pre-
dicting the three stress levels. The outcomes revealed accuracy rates of
85.05%, 95.05%, 59.12%, and 78.21%, respectively, indicating their vary-
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ing levels of effectiveness. However, when utilizing the LOPO approach
without fine-tuning, the FCN and ResNet models achieved lower accuracy
rates of 41.16% and 35.52%, respectively, in classifying the stress levels.
These results highlighted the limitations of the models when faced with
the challenge of generalizing to unseen test subjects without the fine-
tuning process. After incorporating the fine-tuning process to LOPO,
notable improvements were observed. The FCN model’s accuracy signif-
icantly increased to 47.63%, 53.81%, and 60.17% when fine-tuned with
5%, 10%, and 20% of the test data, respectively. Similarly, the ResNet
model’s accuracy soared from 35.5% to 60% after calibrating it with only
5% of the testing data from each participant. Furthermore, the accuracy
improved to 80 and 85 percent when fine-tuning was performed with 10%
and 20% of the data, as shown in the Table 1. These findings highlight
the substantial impact of fine-tuning or calibrating on the performance
of the models, resulting in more accurate and reliable stress classification
outcomes.
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Figure 7: Results of LSTM using LOPO with and without fine-tuning (ft) for
all participants.

Additionally, without fine-tuning, the LSTM model achieved an accu-
racy of 35.86% in classifying the stress levels. However, after fine-tuning
the model with only 5% of the test data, the performance improved sig-
nificantly to 71.09%. Eventually, as the fine-tuning percentage increased
to 10% and 20%, the model’s accuracy gradually increased to 84.12% and
91.17%, respectively. On the other hand, the Transformer model achieved
an accuracy of 40.38% without any fine-tuning. However, the model did
not experience a substantial change in performance with the application
of the fine-tuning method.

Despite the initial accuracy achieved by Transformers, the fine-tuning
process did not yield a notable improvement in its classification capabili-
ties. The Figure 7 presents the distribution of predicted stress accuracies
for each participant, showcasing the comparison between the model’s per-
formance with and without the fine-tuning process. By examining the
bar chart, one can assess the impact of fine-tuning on the model’s ability
to accurately classify and distribute the stress instances in a generalized
as well as a user-centric way. The confusion matrices for LSTM are dis-
played in Figure 8, which illustrate the changes in classification perfor-
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Table 1: Summary of classification results for three class stress detection using
KFold and LOPO approach.

Model Validation method Acc F1

KFold 85.05 0.848

No ft 41.16 0.483

FCN 5% ft 47.63 0.433

10% ft 53.81 0.542

20% ft 60.17 0.578

KFold 95.05 0.950

No ft 35.52 0.244

ResNet 5% ft 60.10 0.555

10% ft 80.04 0.786

20% ft 85.12 0.846

KFold 59.12 0.572

No ft 40.38 0.375

Transformers 5% ft 43.85 0.427

10% ft 44.09 0.403

20% ft 44.29 0.408

KFold 78.21 0.781

No ft 35.86 0.344

LSTM 5% ft 71.09 0.709

10% ft 84.12 0.839

20% ft 91.17 0.911

mance when fine-tuning is applied compared to when it is not. These
matrices provide a visual representation of how well the model performs
in accurately predicting the three distinct stress classes: easy, medium,
and hard. By examining the confusion matrices in Figure 8, we can ob-
serve the distribution of predicted and actual stress classes and identify
how the fine-tuning process enhanced the classification performance even
with a small percentage of data.

5 Discussion

As part of our research, we investigated whether a student’s physiologi-
cal reactions differed when they faced varying levels of stress. We aimed
to learn more about how stress affects student’s well-being and perfor-
mance. To substantiate these patterns, we designed an experiment to
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Figure 8: Confusion matrix of LSTM (a) without fine-tuning (b) with 5%
fine-tuning and (c) 10% fine-tuning.

analyze stress levels in students that involved a prominent stressor, men-
tal arithmetic tasks. In addition to the regular arithmetic tasks, we used
feedback, buzzers, and timers with clock-ticking sounds to induce extra
stress in participants and to obtain distinct variations. The primary moti-
vation behind designing this controlled system with specific ground truths
was to eliminate reliance on participant’s responses to questionnaires, as
these can potentially impact the accuracy and integrity of the analysis.
By employing a system with predefined ground truths, the study aimed to
minimize potential biases and ensure a more objective assessment of the
data. By implementing this multilevel approach, our models offer a more
nuanced and comprehensive classification system, enabling a finer-grained
understanding of different levels of stress experienced by individuals. This
advancement allows for a more nuanced and detailed analysis of stress re-
sponses, leading to a richer understanding of the complex nature of stress
and its varying intensities.

The deep learning models employed in this study have the advantage of
eliminating the need for pre-processing or feature extraction from raw sig-
nals. However, accurately classifying the three stress levels from the time
series data collected using the E4 wristband posed a significant challenge.
The E4 wristband collects five different sensory data, and it was crucial to
understand and effectively utilize this data to enable the models to distin-
guish between stress levels. One important consideration was the heart
rate (HR) data, which can be derived from blood volume pulse (BVP)
data sampled at 64Hz [29]. Given this relationship, we decided to exclude
HR data from our analysis. To ensure compatibility with the Transformer
and LSTM models, which expect inputs of multiple features with the same
shape before passing through dense layers, the raw data provided to these
models was downsampled to 4Hz. Unfortunately, downsampling resulted
in a loss of data from the BVP and ACC sensors. On the other hand,
the fully convolutional network (FCN) and ResNet implementations uti-
lized all the raw data with their actual sampling frequencies. Despite these
technical considerations, all the models demonstrated decent performance
in accurately classifying the three stress levels, especially with fine-tuning.
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(a) (b)

Figure 9: (a) Stress-meter (b) Customized message with EDA and BVP signals

This showcases the efficacy of the chosen approaches in leveraging deep
learning models to tackle the complex task of stress level classification
using the E4 wristband data.

The initial results obtained using a participant-independent approach
did not yield satisfactory outcomes. This observation strongly suggests
that the induced stress is highly dependent on the individual participants
and their mental state during the study. To address these inter-participant
variations, the models were calibrated using a small percentage of the test
data through a fine-tuning process. Remarkably, this fine-tuning pro-
cedure had a substantial impact on the classification performance. By
incorporating just 5% of person-specific data for training purposes, a sig-
nificant improvement in performance was observed. This improvement
underscores the importance of fine-tuning the models with unseen data to
enhance their generalization capabilities. Furthermore, it highlights the
participant-specific nature of stress, indicating that stress responses vary
across individuals. Consequently, the calibration of the models using per-
sonalized data enables them to capture and accommodate these individual
differences, leading to more accurate and reliable stress classification.

The experimental design consisted of four sessions, which included
three stress levels and a ‘relax’ session. The purpose of incorporating the
‘relax’ session was to divide the participants into two groups: one group
experiencing this session at the beginning of the experiment and the other
group at the end. This approach aimed to investigate whether the timing
of the ‘relax’ session influenced the levels of stress experienced by the two
participant groups. Upon analyzing the results, no significant differences
in stress levels between the two groups were observed. During the ex-
periment, a notable number of participants completed their sessions with
the ‘relax’ session. However, a considerable portion of these participants
encountered difficulties in properly concluding the E4 recording following
the conclusion of the ‘relax’ session. Consequently, inaccuracies arose in
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labeling the ‘relax’ session data, resulting in its exclusion from the model
training phase.

In addition to implementing the models, we developed a prototype ap-
plication using Python Dash to visualize and represent the stress predic-
tion results obtained from each participant. The application interface, as
illustrated in Figures 9a and 9b, was designed to provide a comprehensive
overview of the stress levels over time. To assess and depict stress levels
within the application, we opted for a distinct approach from the cross-
validation techniques employed for evaluation in the study. We utilized a
person-specific training method, wherein the data of the same participant
was divided into training and testing sets using the KFold approach. By
doing so, we ensured that the stress visualizing application could grasp
and represent the individual differences and distinctiveness exhibited by
each participant. The utilization of this person-specific training methodol-
ogy aims to enhance the personalization and uniqueness of the application
for every individual, as a general model may not be able to capture the
individual differences.

Within the application, users had the flexibility to select participants
from a list for analysis. Once a participant was chosen, the application
displayed the dynamic changes in the stress meter and customized alert
messages for each session, categorized as ‘easy’, ‘medium’, and ‘hard’. At
the end of the process, the stress meter provided an overall indication of
the participant’s stress level, while a feedback message was displayed on
the screen to provide additional insights. The application also provided
the option to view the EDA and BVP signals of the participants on the
dashboard, allowing users to examine the physiological signals alongside
the stress levels, providing a more comprehensive understanding of the re-
lationship between stress and physiological responses. The development
of this application prototype aimed to serve as a potential intervention
mechanism for students in educational settings. Providing real-time in-
sights into their mental state while performing various tasks, the students
have an opportunity to understand, manage, and address their stress levels
effectively. The power of this tool could be immense in aiding student’s
well-being and enhancing their academic achievements by encouraging
self-awareness and proactive stress control.

6 Conclusion

The presented paper focuses on a study that utilizes physiological sig-
nals obtained from an Empatica E4 wristband to analyze stress levels
during mental arithmetic tasks. To predict these stress levels, end-to-
end deep learning-based approaches were employed. The research in-
volved a user study consisting of 25 university students, with the ob-
jective of inducing different stress levels categorized as ‘easy’, ‘medium’,
and ‘hard’. Among the stress detection models proposed in the paper,
both ResNet and LSTM exhibited remarkable predictive outcomes when
utilizing the KFold, Leave-One-Participant-Out (LOPO) cross-validation
technique and applying a fine-tuning or calibration approach with 5%,
10% and 20% of the test data to make the prediction more personalized.
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Using KFold, ResNet and LSTM classified three classes with 95.05% and
78.21% accuracy, respectively. Additionally, ResNet achieved an accuracy
rate of 85.12% and an F1-score of 0.846, while LSTM achieved an even
higher accuracy rate of 91.17% and F1-score of 0.911 with 20% fine-tuning
of the models. Across all four implemented models, utilizing fine-tuning
with the LOPO cross-validation technique and employing 5%, 10%, and
20% of the test data consistently outperformed the baseline methods.
Overall, the findings of the study demonstrate the effectiveness of the
deep learning-based approach in predicting stress levels using physiologi-
cal signals. The results highlight the superiority of the ResNet and LSTM
models, along with the benefits of employing the fine-tuning or calibra-
tion technique in enhancing the accuracy of stress level classification in
a generalized prediction approach. The paper’s contributions shed light
on the potential of deep learning models in stress analysis and provide
valuable insights for further research in this domain.

Expanding the scope of this study to encompass a real-time stress de-
tection system could have transformative implications in the realms of
education and healthcare. Such a system has the potential to bring about
substantial advancements in understanding and addressing stress-related
issues. By integrating deep learning models into a real-time stress detec-
tion framework, the accuracy, and effectiveness of stress analysis could be
greatly enhanced. To achieve this, it would be valuable to gather data
from a diverse range of subjects across various stress-inducing scenarios.
By continuously refining and expanding the dataset and incorporating
advanced deep learning techniques, researchers can continuously enhance
the accuracy and performance of stress detection models. The potential
impact of a robust real-time stress detection system is far-reaching, with
the potential to revolutionize how stress is understood, managed, and ad-
dressed in various domains, ultimately leading to improved well-being and
quality of life.
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