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Segment Anything for Microscopy
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Accurate segmentation of objects in microscopy images remains a 
bottleneck for many researchers despite the number of tools developed for 
this purpose. Here, we present Segment Anything for Microscopy (μSAM), 
a tool for segmentation and tracking in multidimensional microscopy 
data. It is based on Segment Anything, a vision foundation model for image 
segmentation. We extend it by fine-tuning generalist models for light and 
electron microscopy that clearly improve segmentation quality for a wide 
range of imaging conditions. We also implement interactive and automatic 
segmentation in a napari plugin that can speed up diverse segmentation 
tasks and provides a unified solution for microscopy annotation across 
different microscopy modalities. Our work constitutes the application 
of vision foundation models in microscopy, laying the groundwork for 
solving image analysis tasks in this domain with a small set of powerful deep 
learning models.

Identifying objects in microscopy images, such as cells and nuclei in 
light microscopy (LM) or cells and organelles in electron microscopy 
(EM) is one of the key tasks in image analysis for biology. The large vari-
ety of modalities and different dimensionalities (two or three dimen-
sions, time) make these identification tasks challenging and so far 
require different approaches. The state-of-the-art methods are deep 
learning based and have in the past years dramatically improved cell and 
nucleus segmentation in LM1–3, cell, neuron and organelle segmenta-
tion in EM4–7 and cell tracking in LM8,9. Most of these methods provide 
pretrained models and yield high-quality results for new data similar to 
their training data. However, due to limited generalization capabilities 
of the underlying deep learning approaches, quality degrades for data 
dissimilar to the original training data and they can only be improved by 
retraining. Generating annotations for retraining relies on manual work 
and is time consuming. Some approaches for semiautomatic annota-
tion based on manual correction of initial segmentation results exist1. 
These are still time consuming if the initial results are of low quality. 
Furthermore, a unified method that addresses diverse segmentation 
tasks in different modalities like LM and EM is missing.

Vision foundation models have recently been introduced for image 
analysis tasks in natural images, echoing developments in natural lan-
guage processing10–12. These models are based on vision transformers13 
and are trained on very large datasets. They can be used as a flexible 
backbone for different analysis tasks. Among the first successful vision 
foundation models was CLIP10, which combines images and language, 
and underlies many generative image models14. More recently, founda-
tion models targeting segmentation have been introduced11,12. Among 
them Segment Anything Model11 (SAM), which was trained on a large 
labeled dataset and achieves impressive interactive segmentation 
performance for a wide range of image domains. The application of 
such foundation models in microscopy has so far been limited, but 
their potential in this domain has already been identified15.

Here, we introduce Segment Anything for Microscopy, called 
μSAM in the following, that improves and extends SAM for microscopy 
data. Our main contributions are:

• A training procedure to fine-tune SAM, including a new decoder 
that provides improved instance segmentation results.
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relies on manual pixel-level correction. In summary, our tool’s main 
distinguishing features are its applicability to diverse segmentation 
tasks across different modalities and dimensionalities and its fast 
annotation speed thanks to its interactive segmentation capability. 
We demonstrate these aspects in three user studies where we find 
competitive performance with CellPose23 for cell segmentation, clearly 
improved performance compared to ilastik carving24 for volumetric 
segmentation and compare to TrackMate9 for tracking. Overall, our 
contribution shows the promise of vision foundation models to unify 
image analysis solutions in bioimaging. Our tool is available at https://
github.com/computational-cell-analytics/micro-sam/.

Results
We compare the default SAM with models that we fine-tune for differ-
ent microscopy segmentation tasks. First, we study interactive and 
automatic segmentation on the LIVECell25 dataset. Then, we train and 
evaluate generalist models, encompassing training on multiple data-
sets, for cell and nucleus segmentation in LM as well as for mitochon-
drion and nucleus segmentation in EM. In the following, we refer to the 
original models provided by Kirilov et al.11 as ‘default’ models, models 
that we have fine-tuned on a single dataset as ‘specialist’ models, and 
models we have fine-tuned on multiple datasets as ‘generalist’ models. 
Note that training a single model that consistently improves across 
different microscopy modalities is not feasible given the current SAM 
architecture (see ‘EM’ sections and ‘Discussion’ for details). Hence, we 
train separate generalist models for LM and EM. We further investigate 
fine-tuning SAM in resource-constrained settings. Then, we introduce 
our user-friendly tool, implemented as a napari16 plugin, for interac-
tive and automatic data annotation for (volumetric) segmentation 
and tracking. We compare it to established tools in three user studies 

• Improved models for LM and EM segmentation that perform 
considerably better than the default SAM models in their respec-
tive domains.

• A tool for interactive and automatic data annotation, provided as 
a napari16 plugin. This tool can use the default SAM models, our LM 
and EM models or custom models fine-tuned by users.

Figure 1 shows a high-level overview of μSAM and examples for 
improved segmentation results. Prior work has already investigated 
SAM for biomedical applications, for example, in medical imaging17, 
histopathology18 and neuroimaging19. However, these studies were 
limited to the default SAM and did not implement retraining for 
their respective domains, which is crucial according to our findings. 
Retraining SAM for other domains has been investigated for a nar-
row interactive segmentation task in medical image data20. Using 
SAM as the basis for automatic segmentation has been investigated 
for histopathology21 and using it for cell segmentations has been 
investigated based on prior object detection22. None of this prior 
work combines retraining of the full interactive segmentation capa-
bilities with improved automatic segmentation in a single model as 
in our contribution.

Compared to established segmentation and tracking tools, 
μSAM is more versatile because its pretrained models cover both LM 
and EM, covering a wide range of segmentation tasks. It supports 
two-dimensional (2D) and volumetric segmentation as well as tracking 
in the same tool. It combines interactive and automatic segmentation 
using the same underlying model. As a result, both aspects of the model 
are improved during fine-tuning, which can massively speed up data 
annotation. In contrast, the in-the-loop training mode of CellPose 2 
(ref. 23), which has pioneered integrated data annotation and training, 
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Fig. 1 | Overview of μSAM. a, We provide a napari plugin for segmenting 
multidimensional microscopy data. This tool uses SAM, including our 
improved models for LM and EM (see b). It supports automatic and interactive 
segmentation as well as model retraining on user data. The drawing sketches 
a complete workflow based on automatic segmentation, correction of the 
segmentation masks through interactive segmentation and model retraining 

based on the obtained annotations. Individual parts of this workflow can also 
be used on their own, for example, only interactive segmentation can be used as 
indicated by the dashed line. b, Improvement of segmentation quality due to our 
improved models for LM (top) and EM (bottom). Blue boxes or blue points show 
the user input, yellow outlines show the true object and red overlay depicts the 
model prediction.
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for cell segmentation in LM, nucleus segmentation in EM and nucleus 
tracking in LM.

Fine-tuning SAM improves cell segmentation
In ref. 11, SAM is introduced as a model for interactive segmentation: 
it predicts an object mask based on point, box or mask annotations. 
The point annotations can be positive (part of the object) or negative 
(not part of the object). The model was trained on a very large dataset 
of natural images with object annotations. The authors also introduce 
a method for automatic instance segmentation called automatic mask 
generation (AMG) based on covering an image with a grid of points, 
using all of them as point annotations for SAM and filtering out unlikely 
or overlapping masks. They evaluate interactive and automatic seg-
mentation on a wide range of tasks, including an LM dataset26. See 
the Methods for an overview of the SAM functionality. The original 
microscopy experiment and our evaluation of default SAM show a 
remarkable generalization to microscopy, despite the fact that the 
original training set contains predominantly natural images. However, 
we noticed several shortcomings of the models for microscopy. For 
example, SAM segments clusters of cells as a single object as seen in 
Fig. 1b. To improve SAM for application to our domain, we implement 
an iterative training scheme to enable fine-tuning on new datasets. This 
approach reimplements the original training method, which has so far 
not been made open source. Furthermore, we add a new decoder to the 
model that predicts foreground as well as distances to object centers 
and boundaries to then obtain an automatic instance segmentation 
via post-processing. We refer to this approach as AIS. The additional 
decoder can be trained in conjunction with the rest of SAM. Both AIS and 
the training methodology are explained in more detail in the Methods 
(‘AIS’ and ‘Training’).

We investigate our fine-tuning method on LIVECell25, one of the 
largest publicly available datasets for cell segmentation. Figure 2a 
shows the mean segmentation accuracy27 (higher is better; see the 
Methods for details) for the default and LIVECell specialist model, 
using a separate test set for evaluation. Here, we evaluate interactive 
segmentation by simulating user annotations based on segmentation 
ground truth. We derive either a box annotation (red bars) or a positive 
point annotation (green bars) from the ground truth, correspond-
ing to iteration 0 in the figure. Then we sample both a positive and 
a negative point from incorrect areas in the prediction, the positive 
point where the prediction is missing and the negative point where it 
should not be, and then rerun the model with the additional annota-
tions. This process is repeated seven times (iterations 1–7) and in each 
iteration the newly sampled points are used as additional point inputs. 
We also compare automated segmentation via AMG and AIS (only avail-
able after fine-tuning) and provide the results from a CellPose model 
trained on LIVECell for reference. We use SAM based on a large vision 
transformer (ViT-L) and train it for 250,000 iterations on the train-
ing split of LIVECell. We found that ViT-L provides the best trade-off 
between runtime and quality; see Fig. 5a for a comparison of runtimes 
with different model sizes and Extended Data Fig. 1 for an evaluation 
of segmentation results. The results show a clear improvement due 
to fine-tuning across all settings. Interactive segmentation with the 

specialist models is clearly better than any of the automated segmenta-
tion results, whereas it only reaches the performance of CellPose after 
several correction iterations for the default model.

The specialist models also achieve a consistent improvement 
when provided with more annotations, which is not the case for the 
default model. This is partly because we do not use the mask predic-
tion as additional model inputs; see Supplementary Fig. 1 for details. 
Instance segmentation with AMG drastically improves, and segmenta-
tion with AIS, which is only available after fine-tuning, is on par with 
CellPose.

We investigate different fine-tuning strategies in Fig. 2b, where 
we fine-tune only parts of the SAM architecture, freezing all other 
weights. Here, we perform the same evaluation experiments as in 
Fig. 2a. For a more concise presentation, we only report the interactive 
segmentation results for a single point prompt (‘point’), for a single box 
prompt (‘box’), for the last iteration when starting from a point prompt  
(‘IP’, corresponding to the green bar at iteration 7 in Fig. 2a) and for the last 
iteration when starting from a box prompt (‘IB’, corresponding to the red 
bar at iteration 7 in Fig. 2a). The results show that fine-tuning the image 
encoder has the biggest impact, and fine-tuning the complete model 
shows the best overall performance. In Fig. 1c, we fine-tune the model 
with only a subset of the available training data, using the data splits 
defined in the LIVECell publication. The results show that the majority 
of improvement is achieved with training data fractions of 2%, 4% and 5%. 
Overall, the results on LIVECell offer the following conclusions:

 1. Fine-tuning SAM clearly improves the segmentation quality for 
a given dataset.

 2. Fine-tuning all parts of the model yields the best results. Conse-
quently, we train the full model in all further experiments.

 3. Most of the improvements for a given dataset can be achieved 
with a rather small fraction of the training set. We investigate 
this in more detail in Fig. 5b.

An LM generalist model improves across diverse conditions
Our next goal is to train a generalist model for LM that improves 
segmentation performance for this modality and can thus serve as a 
replacement to the default SAM. While the previous experiments have 
shown that fine-tuning on data from a given image setting improves 
performance, we have not yet shown that it leads to improved generali-
zation. To train the generalist, we assemble a large and diverse training 
set based on published datasets, including LIVECell25, DeepBacs28,  
TissueNet2, NeurIPS CellSeg29, PlantSeg (Root)30 and Nucleus DSB26, 
using a version of this dataset excluding histopathology images pro-
vided by StarDist3, and eight datasets from the Cell Tracking Challenge31. 
We also train specialist models on five of these individual datasets. 
Figure 3a compares the segmentation performance for default, special-
ist and generalist models. In all cases, the evaluation is done on a test 
split that is not used for training. We see clear improvements of both 
specialist and generalist models compared to the default model. The 
generalist model overall performs similar or better than the specialist, 
except for AIS on LIVECell. We include automatic segmentation results 
for CellPose as a reference, using specialist models for LiveCell and 

Fig. 2 | Results on LIVECell. a, Comparison of the default SAM with our fine-tuned 
model. The bar plot shows the mean segmentation accuracy for interactive 
segmentation, starting from a single annotation, either a single positive point 
(green) or a box (red). We then iteratively add a pair of point annotations, one 
positive, one negative, derived from prediction errors to simulate interactive 
annotation. The lines indicate the performance for automated instance 
segmentation methods—AMG (yellow), AIS (dark green) and CellPose (red)—
using a CellPose model trained on LIVECell. Evaluation is performed on the 
test set defined in the LIVECell publication25. b, Comparison of partial model 
fine-tuning. The x axis indicates which part(s) of the model are updated during 
training: the image encoder, the mask decoder and/or the prompt encoder.  

We evaluate AIS (dark green, striped), AMG (yellow), segmentation from a single 
point annotation (light green, corresponding to the green bar at iteration 0 in 
a), from iterative point annotations IP (green, corresponding to the green bar 
at iteration 7 in a), from a box annotation (magenta, corresponding to the red 
bar at iteration 0 in a) and from a box annotation followed by correction with 
iterative point annotations IB (red, corresponding to the red bar at iteration 
7 in a). Training the image encoder has the biggest impact and fine-tuning all 
model parts yields the best overall results. c, Evolution of segmentation quality 
for increasing size of the training dataset, using the same evaluation and color 
coding as in b. All results in this figure use a model based on ViT-L. Extended Data 
Fig. 1 explains the model parts and shows results for models of different sizes.

http://www.nature.com/naturemethods
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TissueNet and the ‘cyto2’ model otherwise. Automatic segmentation 
via AIS performs on par or better than CellPose except for TissueNet. 
We believe that this difference is partly due to the fact that TissueNet 
contains two channels, which do not map well to the RGB inputs of SAM 

(Methods). Please note that the comparisons on DeepBacs, PlantSeg 
(Root) and NeurIPS CellSeg are heavily biased in our favor, because 
our model was trained on the training splits of the respective datasets, 
unlike the CellPose cyto2 model.
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To study whether the generalist model improves generalization to 
other microscopy settings, we apply it to datasets that are not directly 
represented in the training set. We choose the datasets COVID IF32 

containing immunofluorescence data, PlantSeg (ovules)30 containing 
plant cells imaged with confocal fluorescence microscopy, Lizard33 
containing histopathology images and Mouse Embryo34 containing 
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Fig. 3 | Generalist LM model. a, Comparison of the default SAM with our 
generalist and specialist models. We use the same evaluation procedure as in  
Fig. 2b,c. The red line indicates the performance of CellPose (specialist models 
for LIVECell and TissueNet, cyto2 model otherwise). Datasets LIVECell, 
DeepBacs, TissueNet, PlantSeg (root) and NeurIPS CellSeg are part of the training 

set (evaluated on a separate test split) and datasets COVID IF, PlantSeg (ovules), 
Lizard and Mouse Embryo contain image settings not directly represented in 
training. b, Qualitative segmentation results with the default SAM and our LM 
generalist model. The cyan dot indicates the point annotation, the yellow outline 
highlights the true object and the red overlay represents the model prediction.
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mammalian cells imaged with confocal fluorescence microscopy. 
Results for the default SAM and our generalist model as well as the 
model cyto2 in CellPose are also shown in Fig. 3a. The improvement 
of our generalist over the default model is clear for all datasets. AIS is 
better than AMG in almost all cases and CellPose and AIS show overall 
comparable segmentation accuracy. For Lizard, which contains a dif-
ferent modality compared to the training data and Mouse Embryo, 
which represents a particularly difficult problem due to small cell 
sizes, none of the automated segmentation approaches work well, 
but interactive segmentation yields good results and is improved by 
the generalist. Figure 3b shows example comparisons of segmentation 
with the default model and generalist model. We report the results for 
ViT-L, trained for 250,000 iterations for our models. Extended Data 
Fig. 2 shows results for SAM models of different sizes, including results 
on additional datasets, Extended Data Figs. 3 and 4 show qualitative 
examples and Supplementary Fig. 2b shows examples for the auto-
matic segmentation results. An overview of the LM datasets is given 
in Supplementary Table 1.

Overall, these experiments demonstrate that a generalist model 
for a given domain clearly improves segmentation quality. We provide 
such a generalist model for LM. It supports both interactive and auto-
matic segmentation, achieving comparable automatic segmentation 
quality to CellPose, the state-of-the-art for automatic cell segmenta-
tion. Note that we do not claim that our model is better than CellPose 
for automatic segmentation, but that it provides similar quality for 
most practical settings, while also enabling interactive segmentation.

Improved mitochondria segmentation in EM
We further investigate training a generalist model for EM. This is 
more challenging compared to LM, because in EM membrane-bound 
structures are labeled unspecifically rather than having a specific 
stain for a cellular component. Consequently, the segmentation tasks 
in EM are more diverse and structures can have a hierarchical com-
position, for example, an organelle inside a cellular compartment. 
This makes training a model for generic EM segmentation more chal-
lenging. Hence, we focus on training a model for the segmentation 
of mitochondria and nuclei, for which large public datasets exist. We 
make use of the MitoLab5 and MitoEM35 datasets for mitochondria 
and PlatyEM4 for nuclei. We refer to this model as EM generalist in 
the following, but want to make clear that it reliably improves EM 
segmentation only for mitochondria, nuclei and other roundish 
organelles. Due to the limitation of not being able to provide a uni-
fied model for EM, we also refrain from exploring a unified generalist 
model for both EM and LM.

We compare the default SAM and our EM generalist model on test 
splits of the training datasets and on additional test datasets: Lucchi36 
containing mitochondria imaged in FIBSEM, two MitoLab5 test data-
sets containing mitochondria in volume EM (Fly Brain) and transmis-
sion electron microscopy (TEM), UroCell37 containing mitochondria 
in FIBSEM and VNC containing mitochondria in serial-section TEM. 
We also include NucMM (Mouse)38, which contains nuclei imaged in 
high-energy X-ray, an imaging modality that shares similarity with 
EM. See Fig. 4 for quantitative and qualitative results. We see a clear 
improvement for interactive segmentation due to fine-tuning for all 
datasets. For automatic mitochondrion segmentation, we also compare 
to MitoNet5 and find that its performance is overall comparable to AIS 
and AMG, with results varying across datasets. The advantage of AIS 
over AMG is not as clear as for LM. This is likely because AMG works 
better for well-separated objects, like mitochondria in EM, compared 
to densely packed objects, like cells in LM. In practice, AIS is preferable 
in most cases due to its lower runtime (Fig. 5a). Note that we don’t claim 
that our method is superior to MitoNet for automatic mitochondrion 
segmentation, but rather that it provides comparable quality while also 
enabling interactive segmentation. Extended Data Fig. 5 shows results 
for additional datasets and for different model sizes. Extended Data 

Figs. 6 and 7 show additional qualitative results, and Supplementary 
Table 2 lists an overview of the EM datasets.

We also perform experiments for other organelles and structures 
in EM. We segment cilia and microvilli with our model (see the results for 
Sponge EM and Platynereis (Cilia) in Extended Data Figs. 5–7) and find 
that our EM generalist model overall performs better compared to the 
default SAM. We also study segmentation for endoplasmic reticulum 
(ER) and neurites (Extended Data Fig. 8). We find that our EM generalist 
only provides marginal benefits or is detrimental in these cases, which 
is due to the different morphology of ER compared to mitochondria/
nuclei and the fact that the model prefers to segment organelles over 
the surrounding cellular compartment. We train specialist models 
for both cases, which clearly improve the performance for the given 
segmentation task.

Overall, we find that training a model for improved organelle 
segmentation in EM is feasible, and we provide a generalist model for 
mitochondrion and nucleus segmentation, which can also improve 
results for other organelles of similar morphology. Training an even 
more general EM model should be possible given a suitable dataset, 
but for training a true generalist model that improves segmentation 
for both cellular compartments and organelles, a semantically aware 
model and training procedure is required. However, our fine-tuning 
methodology can be used to train specialist models for a given EM 
segmentation task and our annotation tools (see below) can be used 
for fast data annotation to provide the required training data, making 
our contribution also valuable for EM segmentation tasks where our 
EM generalist model does not offer benefits.

Resource-constrained settings for inference and fine-tuning
One of our main goals is to build a user-friendly tool for interactive and 
automatic microscopy segmentation. As a preparation, we investigate 
how SAM can be used in resource-constrained settings, for example, on 
a user laptop or a regular workstation, for inference and fine-tuning. 
First, we compare the inference times for all relevant operations: 
computing image embeddings, inference for one object with a box or 
point annotation and automatic segmentation via AMG and AIS, for 
CPU and GPU (Fig. 5a). For Point, Box, AMG and AIS, we measure the 
runtime excluding the embedding computation. Runtimes are much 
smaller on the GPU, but interactive segmentation with points or boxes 
is feasible on the CPU in around 30 ms per object, given precomputed 
embeddings. We also see a big speedup of AIS compared to AMG. The 
main advantage of a GPU is strongly decreased runtime for embed-
ding computation and faster automatic segmentation, especially for 
multidimensional data (see below). We also compare the runtimes 
for different sizes of the image encoder, including ViT Tiny (ViT-T)39. 
Given the trade-off between runtimes and segmentation accuracy 
(see Extended Data Figs. 1, 2 and 5 for an extensive comparison of the 
segmentation quality across model size), we recommend using ViT 
Base (ViT-B) or ViT-L models. Using ViT Huge (ViT-H) does generally not 
yield better results but incurs a higher computational cost. If runtime 
is an issue, ViT-B can be used with only a small penalty on segmenta-
tion quality. ViT-T is much faster and yields good results for simple 
segmentation tasks but has severely degraded quality for others. To 
provide a comparison to established tools, we have also measured the 
runtime of CellPose with the same hardware. It takes circa 0.3 s to seg-
ment an image with the GPU and 1.5 s with the CPU. Compared to this, 
the runtime of embedding computation and AIS, which is the relevant 
measure for automatic segmentation, takes 0.2–1.2 s on the GPU and 
1.5–7.5 s on the CPU, depending on the model size.

We further investigate model fine-tuning in resource-constrained 
settings. While our LM or EM generalist models improve quality in 
many settings, they may not be sufficient for the user’s needs or may 
not match the modality of their data. To enable further improvement 
for a specific task, we investigate fine-tuning on the COVID IF data (also 
used in Fig. 3). We study how it behaves for a small number of annotated 

http://www.nature.com/naturemethods
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images and fine-tuning on the CPU (Fig. 5b) and for other hardware 
 configurations (Supplementary Fig. 3), starting from either the default 
or the LM generalist model. To enable training with limited resources, 

we use early stopping and find the best hyperparameters that  
enable training for the given hardware configuration (Extended Data 
Fig. 10b,c). We also study parameter-efficient training using LoRA40, 
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Fig. 4 | EM model. a, Comparison of the default SAM and our EM generalist that 
was trained to improve mitochondrion and nucleus segmentation. Of the nine 
datasets, MitoEM (rat), MitoEM (human) and Platynereis (nuclei) are part of the 
training set (evaluation is done on separate test splits), while the others are not. 

We follow the same evaluation procedure as before. We provide the results of 
MitoNet (red line) as a reference for automatic mitochondrion segmentation. All 
experiments are done in 2D. b, Qualitative comparisons of segmentation results 
with default SAM and our EM generalist, using the same color coding as in Fig. 3b.
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which holds the promise of faster training (see dashed result lines in 
previously mentioned figures and Supplementary Fig. 4c for an exten-
sive evaluation of training with LoRA). We find that training on only a 
few images with a CPU is feasible and that it improves the model clearly 
for a given task. Training with LoRA results in longer training times 
in most cases because the model needs more iterations to converge. 
Training on the CPU in this setting took 5.3 h, while training on the GPU 
took 30 min. The overview of training times for different hardware 
configurations is given in Extended Data Fig. 10d.

Overall, we find that applying and training SAM in resource- 
constrained settings is feasible. However, the runtimes for computing 
image embeddings and training are larger compared to architectures 
based on convolutional neural networks, especially when using the 
CPU. We also find that fine-tuning on a few annotated images, which can 
be quickly generated with our annotation tools (next section), clearly 
improves results. Starting fine-tuning from our models can provide 
clear benefits. In cases where our models are worse than default SAM, 
for example, for neurite segmentation in EM, it will likely be better 
to start from a default model, so users should choose the model that 
performs best for their task as the starting point.

μSAM enables fast data annotation for microscopy
We provide a tool for interactive and automatic data annotation, making 
use of the models and knowledge described in the previous sections. 
To make the tool easily available to biologists, we implemented it as a 
napari16 plugin. Napari is a Python-based viewer for multidimensional 
image data that is popular for microscopy image analysis. We provide 
five different functionalities within our tool: (i) for 2D image segmenta-
tion, (ii) for volumetric segmentation, (iii) for tracking in time-series 
data, (iv) for high-throughput segmentation of multiple images and 
(v) for fine-tuning. They are implemented as separate plugin widgets. 
The annotation widgets (i–iv) support interactive segmentation based 
on user-provided point or box annotations and automatic segmen-
tation based on AIS or AMG (except for the tracking widget (iii)). To 
enable interactive usage, we implement precomputation and caching 
of image embeddings, tiled interactive and automatic segmentation 
and efficient recomputation of the automatic segmentation given 
parameter changes. We also support interactive segmentation for 
volumetric data and interactive tracking for time series by projecting 
masks to adjacent slices or frames and rerunning SAM with the derived 
annotations. For volumetric data, we implement automated segmen-
tation by running AIS or AMG per slice and merging the results across 
slices in a post-processing step (Extended Data Fig. 9). The fine-tuning 
widget (v) allows users to choose the model and training parameters 
that best fit their hardware and then fine-tune a model on their own 
data. We also provide the underlying functionality as a Python library 
so that users with computational knowledge can implement training 
scripts and so that developers can build upon our extensions to the 
original SAM functionality. See the Methods for the details. The Supple-
mentary Videos explain the tool usage and it is documented at https://
computational-cell-analytics.github.io/micro-sam/micro_sam.html.

We study our tool for three representative annotation tasks: orga-
noid segmentation in brightfield microscopy, nucleus segmentation 

in EM and nucleus tracking in fluorescence microscopy and compare 
them to established software for the respective annotation tasks. 
Further details about the experimental setup for the user studies can 
be found in the Methods and Supplementary Information.

User study 1: Brightfield organoid segmentation
For 2D annotation, we study organoid segmentation in brightfield 
images. Growing organoids is a common experimental technique for 
studying tissues, for example, in cancer research. Organoid segmenta-
tion enables studying growth and morphology. Here, we use an inter-
nal dataset to compare different annotation approaches, comparing 
our tool with CellPose and manual annotation. The results of the study 
are summarized in Fig. 6a. In our tool, we compare using the default 
SAM (‘μSAM (default)’), our LM generalist (‘μSAM (LM generalist)’) 
and a model fine-tuned on user annotations (‘μSAM (fine-tuned)’). 
For all these models, we first run automatic segmentation, which 
we then correct using interactive segmentation. We use ViT-B as the 
image encoder for all models. For CellPose we use the cyto2 model 
(‘CellPose (default)’), in-the-loop training starting from cyto2 (‘Cell-
Pose (HIL)’) and annotation with the model obtained after in-the-loop 
training (‘CellPose (fine-tuned)’). Here, we also first run automatic 
segmentation and then correct it using manual annotation. These 
experiments are performed with the CellPose GUI. For each method, 
we report the average annotation time per object, the quality of the 
annotations compared against consensus annotations (‘mSA Ann.’) 
and the segmentation quality measured on a separate test split of the 
organoid dataset (‘mSA test’). The latter measure evaluates model 
generalization after fine-tuning. All experiments are done by five 
different annotators and, we use standard deviations over annotators 
to compute errors. The image in Fig. 6a shows an automatic segmenta-
tion result from the default SAM model and a fine-tuned model. We 
can derive several observations from the results in Fig. 6a: the default 
SAM model provides better interactive segmentation results than the 
LM generalist for this data. This is because interactive segmentation 
with the generalist yields masks that are too big. This bias was likely 
introduced by the generalist’s training data, which did not include 
organoid-like data. We plan to address this by extending the general-
ist’s training data in the future. Note that annotation times with the 
generalist are faster, because it yields a better automatic segmenta-
tion. However, due to its better annotation quality, we continue with 
the default SAM model for the rest of the user study. When compar-
ing the pretrained SAM models with CellPose, we find slightly faster 
annotation times, but also decreased annotation quality compared 
to the consensus. Annotation is much faster than manual in all cases. 
After fine-tuning, annotation time and quality is better with both 
μSAM and CellPose and is similar for both tools. Finally, a clear dif-
ference can be seen in the results for generalization to the test split: 
the μSAM models improve consistently, whereas the CellPose models 
deteriorate, although starting from a better initial result. We are not 
sure what causes this effect, but we have qualitatively observed that 
it’s because the fine-tuned CellPose models find fewer organoids 
in the test set. Overall, we find that there is no clearly better tool 
for this dataset: CellPose has a better initial segmentation quality, 

Fig. 5 | Inference and training in resource-constrained settings. a, Runtimes for 
computing embeddings, running AIS and AMG (per image) and segmenting an 
object via point or box annotation (per object) on a CPU (Intel Xeon, 16 cores) and 
GPU (Nvidia RTX5000, 16 GB VRAM). We run AIS, AMG, point and box annotation 
with precomputed embeddings. We report the average runtime for 10 different 
images for Embeddings, AIS and AMG, measuring the runtime for each image five 
times and taking the minimum. For Point and Box, we report the average runtime 
per object, averaged over the objects in 10 different images. b, Improvements 
due to fine-tuning a ViT-B model when training on 1, 2, 5 or 10 images of the COVID 
IF dataset on the CPU (same CPU as in a). We compare using the default SAM and 
our LM generalist model as starting points and evaluate the segmentation results 

on 36 test images (not part of any of the training sets). We use early stopping. 
Dotted lines indicate results obtained with LoRA40 using a rank of 4. Otherwise 
all model parameters are updated, as in previous experiments; we refer to this 
as full fine-tuning (FFT) in the caption. See Extended Data Fig. 10d for training 
times of different hardware setups. Note that we use the segmentation accuracy 
evaluated at an intersection over union (IOU) threshold of 50%, as the metric 
here, because we found that mean segmentation accuracy was too stringent 
for the small objects to meaningfully compare improvements. c, Qualitative 
automatic segmentation results before and after fine-tuning on 10 images for 
the default SAM (comparing AMG before and AIS after fine-tuning) and our LM 
generalist (comparing AIS before and after fine-tuning).
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provides similar annotation speed and quality after fine-tuning, but 
generalizes worse to similar data. We also want to stress that results 
are data dependent and will differ for other datasets depending on 
performance of the initial models.

User study 2: volume EM nucleus segmentation
For the three-dimensional (3D) annotation tool, we study nucleus 
segmentation in volume EM, using an internal dataset from the fruit 
fly larva brain, for which we also have ground-truth annotations for 
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Fig. 6 | User studies of the μSAM annotation tools. a, Segmentation of organoids 
imaged in brightfield microscopy with μSAM, CellPose and manual annotation. 
We compare different models for μSAM and CellPose; see the text and Methods for 
details. We report the average annotation time per object, quality of annotations 
when compared to consensus annotations and segmentation quality evaluated 
on a separate test dataset. All experiments are done by five annotators and errors 
correspond to standard deviations over annotator results. The entries ‘μSAM 
(LM generalist)’ and ‘CellPose (default)’ in the ‘mSA (test)’ column are obtained 
from evaluating the initial models; the other results in this column are obtained 
from evaluating models trained on user annotations. The two images on the right 
compare the automated segmentation result (without correction) obtained from 
‘μSAM (default)’ and ‘μSAM (fine-tuned)’. b, Segmentation of nuclei in volume 

EM. The table compares the average annotation time per object for μSAM, using 
a default model and a model fine-tuned for this data, with ilastik carving. For the 
fine-tuned model, we start annotation from an initial 3D segmentation provided 
by the model; otherwise, we annotate each object interactively. The image below 
shows the result after correction for the fine-tuned model. c, Tracking of nuclei in 
fluorescence microscopy. The table lists the average annotation time per track for 
μSAM, using three different models, and TrackMate, as well as the tracking quality, 
measured by the tracking accuracy score (TRA). For μSAM, each lineage is tracked 
interactively; ‘fine-tuned’ is trained specifically for this data. TrackMate provides 
an automatic tracking result, based on nucleus segmentation from StarDist, which 
is then corrected. The image below illustrates the tracking annotation obtained 
with μSAM (fine-tuned).

http://www.nature.com/naturemethods


Nature Methods | Volume 22 | March 2025 | 579–591 589

Article https://doi.org/10.1038/s41592-024-02580-4

several small blocks. Segmentation of nuclei or other large organelles 
in volume EM is an important task for analyzing cellular morphology 
and differentiating cell types based on phenotypic criteria4. Here, we 
compare interactive nucleus segmentation with μSAM and with ilastik 
carving24. Carving uses a seeded graph watershed to segment objects in 
3D from user annotations. This method is not based on deep learning, 
but is still one of the most commonly used approaches for interactive 3D 
segmentation, for example, Gallusser et al.41 use it to generate training 
annotations. In μSAM, we first annotate the data with the default ViT-B 
model, which worked slightly better than the EM generalist model, likely 
due to differences in resolution to our training data. In this case, we did 
not use automatic segmentation since it did not yield good results. We 
also fine-tune a model on another small block with ground-truth data. 
For this model, automatic 3D segmentation (based on AIS) yields good 
results. Figure 6b shows the annotation time per object and an illustra-
tion of an annotated block. Annotation with μSAM is faster than ilastik 
when using the default model and much faster when using a fine-tuned 
model, for which we can correct automatic segmentation results rather 
than interactively segmenting every object.

User study 3: fluorescence microscopy nuclei tracking
We study the tracking annotation tool on a dataset of nuclei imaged in 
fluorescence microscopy from Schwartz et al.42, using every third frame 
to make the task more challenging. We compare annotation via μSAM 
with the most recent version of TrackMate9, which has integrated sup-
port for deep learning-based segmentation tools, including StarDist3. 
Figure 6c shows the results for four different approaches: interactive 
segmentation with our tool, using the default SAM, the LM generalist 
model and a model fine-tuned for this data, as well as TrackMate with 
StarDist. We report annotation times and quality of the annotations 
compared to ground truth. Note that our tool and TrackMate work 
quite differently for tracking: in our tool, each lineage has to be tracked 
interactively, whereas TrackMate automatically tracks the nuclei based 
on the segmentation from StarDist, followed by manual correction. 
Here, we see a clear advantage of the LM generalist model over the 
default SAM; it tracks the nuclei better during interactive annotation. 
Fine-tuning of this model on a separate time series does not speed up 
tracking further. Compared to TrackMate, our method is a bit slower, 
which is because we currently do not automatically track objects, but 
yields annotations of higher quality. We aim to implement automatic 
tracking that can be used as a starting point for correction, based on 
initial frame-by-frame segmentations from AIS, and expect a major 
speedup from this extension.

Discussion
We have introduced a method to fine-tune SAM for microscopy data, 
used it to provide generalist models for LM and EM and extensively 
compared these to the default SAM and reference methods for auto-
matic segmentation. We have also implemented a napari plugin for 
interactive and automatic segmentation. Our quantitative experiments 
and user studies show that our contribution can speed up data annota-
tion and automatic segmentation for a diverse set of applications. Our 
contribution also marks the application of vision foundation models 
in microscopy. We expect future work to build on it and extend the 
application of such models to further improve object identification 
tasks and address other image analysis problems.

We compare our method to established tools for segmentation and 
tracking and show competitive or improved performance. However, we 
expect that further improvements toward usability and performance 
can be made by integrating parts of our methods with other tools. For 
example, our models and interactive segmentation functionality could 
be integrated with CellPose, MitoNet or other methods for automatic 
instance segmentation that enable users to fine-tune, combining faster 
data annotation with more efficient architectures for processing large 
datasets. To enable such integration, we have developed our annotation 

tool as a napari plugin so that they can be used in combination with 
other napari-based software, published our models on BioImage.IO43 
to offer them in a standard format and also provided a well-documented 
Python library. Our models can already be used within Deep MIB44 and 
QuPath45,46, which offer preliminary support for SAM. Integration with 
other tools that support interactive annotation, such as ilastik24 or 
TrackMate9, is also desirable.

We also plan to improve and extend μSAM across several dimen-
sions. In the near future, we plan to train further models for biomedi-
cal applications, in particular a generalist EM model for organelle 
segmentation leveraging the data provided by Open Organelle7 and 
models for other modalities such as histopathology data. We also want 
to implement automated tracking to speed up annotation with the 
tracking tool. To enable more efficient fine-tuning, we plan to extend 
the investigations into parameter-efficient training approaches to 
more recent methods than LoRA40, which may provide faster training 
times in our setting. In addition, more efficient architectures47 could 
replace the transformer-based encoder to reduce the computational 
cost for inference and training. To move toward a universal model for 
microscopy instance segmentation, we plan to also investigate how 
SAM (or similar models) can be made semantically aware, to enable 
ambiguous segmentation cases as in EM, how it can be extended to 
full 3D segmentation and how a unified model for several domains 
(LM, EM) can be trained.

While our contribution provides versatile and powerful function-
ality for interactive and automatic microscopy segmentation, it has 
some limitations compared to established approaches, mainly due 
to the larger computational footprint of vision transformers. While 
interactive data annotation is possible due to the modular design of 
SAM (enabling precomputation of image embeddings), automated 
processing of large datasets is not as efficient compared to CNN-based 
approaches such as CellPose or MitoNet. Furthermore, fine-tuning the 
SAM models on new data takes longer, especially on the CPU, so we do 
not provide ‘human-in-the loop’ fine-tuning as in CellPose, where the 
model is updated after each annotated image, but rather enable users 
to fine-tune through a separate user interface or scripts. The computa-
tional cost also prevents us from building a 3D segmentation approach 
that operates on orthogonal slices, as is done by CellPose and MitoNet; 
we process volumetric or time-series data slice by slice instead and use 
post-processing to avoid the resulting artifacts. Some artifacts due to 
2D inference can still occur.

Our comparisons to CellPose and MitoNet are meant to provide a 
reference for automatic segmentation tools as they are available to a 
user. While we have done our best to compare to these methods fairly, 
we did not retrain them on our model’s training data (which would be 
very challenging for the large dataset SAM is initially trained on). We do 
not claim superior performance compared to them; rather, we provide 
similar automatic segmentation quality for most practical purposes 
with the added benefit of interactive segmentation and support for 
more data modalities. Similarly, the user studies we conduct have many 
degrees of freedom, so depending on user experience and use case, the 
conclusion about tool suitability will vary. Nevertheless, we believe that 
these studies provide important context for the application of our tool 
in practice, and we have designed them to provide as fair a comparison 
as possible. In addition, we do not yet provide a single model that works 
equally well for multiple microscopy domains, but rather provide three 
sets of models (LM generalist, EM generalist for mitochondria and 
nuclei, default SAM) with different strengths. We have added a section 
in our documentation to guide users through choosing the correct 
model for their application (https://computational-cell-analytics.
github.io/micro-sam/micro_sam.html#choosing-a-model). We believe 
that, despite these limitations, μSAM offers the most versatile solution 
to (interactive) microscopy segmentation currently available and we 
are optimistic that the developments outlined herein will eventually 
address its limitations.
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Methods
SAM
SAM is a vision foundation model for interactive segmentation. It 
was introduced by Kirilov et al.11. Here, we briefly summarize its main 
functionality. It solves interactive segmentation tasks by predicting 
an object mask for annotations describing a given object in the input 
image. The annotations can be a bounding box, points (positive and/
or negative) or a low-resolution mask. These annotations are called 
‘prompts’ in the SAM publication; we use the terms ‘prompt’ and ‘anno-
tation’ interchangeably. Kirilov et al. also describe segmentation based 
on text annotations, but the published version of the model does not 
include this feature. For a new image, the model predicts an embedding, 
which corresponds to a vector per pixel in a downscaled representation 
of the input, with the image encoder. The image encoder is a vision 
transformer13 and SAM comes in three variants with different sizes 
of the encoder, using the ViT-B, ViT-L or ViT-H architectures (ordered 
by increasing model size). We also include a version using the smaller 
ViT-T, which was introduced by MobileSAM39. The image encoder con-
tains the majority of the model’s parameters. It has to be applied only 
once per image, enabling fast recomputation of object masks if the 
annotations change in interactive segmentation. The other parts of 
the model are the prompt encoders that encode the user annotations 
and the mask decoder that predicts the object mask and IOU score 
based on the image embedding and the encoded annotations. The IOU 
score corresponds to an estimate for the mask quality. To deal with the 
ambiguity of a single point annotation, which could refer both to an 
object or a part thereof, SAM predicts three different masks for this 
case. See Extended Data Fig. 1a for an overview of the SAM architecture.

The model is trained on a large labeled dataset of natural images 
that is constructed iteratively by annotators who correct the outputs 
of SAM trained on a previous version of this dataset. The model is then 
evaluated on a broad range of segmentation tasks and shows remark-
able generalization performance to images from different domains. 
The authors also implement a method for AIS, termed AMG. It covers 
the input image with a grid of points and predicts masks for all points. 
The predicted masks are post-processed to retain only high-quality 
predictions. This involves filtering out masks with a low IOU predic-
tion, and masks with a low stability score, which is computed based 
on the change of the masks when thresholded at different logit values. 
Finally non-maximum suppression is applied to remove overlapping 
predictions.

SAM was trained on RGB images, so the image encoder expects 
image data with three channels as input. To process microscopy images, 
which mostly have a single channel, we duplicate this channel three 
times. We found that this approach works well and assume that SAM was 
also trained on grayscale images using the same approach. Applying 
the model to data with a different number of channels, for example, 
two for a nuclear and cytosol stain such as in TissueNet, was more 
challenging. We tried two approaches: (i) appending an empty chan-
nel and (ii) averaging the two channels to obtain a single channel that 
is then duplicated three times. Both approaches have disadvantages: 
in the first case, the image statistics are altered compared to training 
by adding an empty channel, while in the second case, information is 
lost by averaging. We found that the second approach worked better 
and applied it in the relevant experiments. Note that this approach 
is detrimental compared to using both channels independently and 
constitutes a limitation when applying the current SAM architecture 
to multichannel images. The image is resized to 1,024 × 1,024 pixels 
before being passed into the image encoder.

AIS
We extend the original SAM architecture with an additional decoder 
for predicting an AIS. This decoder is based on UNETR48. It consists of 
four blocks of two convolutional layers, each followed by a transposed 
convolution for upsampling. Each block receives the image encoder 

output as additional input. The output of the decoder has the same 
spatial dimensions as the input image. It predicts three output chan-
nels: the distance to the object center, the distance to the object bound-
ary and foreground probabilities. The distances are normalized per 
object; see Supplementary Fig. 2a for a depiction of the targets used for 
training. We compute an instance segmentation based on them using 
a seeded watershed, using the implementation from scikit-image49. 
Both distance channels are used to derive seeds by finding connected 
regions with the center distance below a threshold parameter and the 
boundary distance above a threshold parameter. In addition to these 
seeds, the watershed uses the distance predictions as a heightmap and 
the thresholded foreground predictions as a mask. We have chosen this 
approach to segment complex object morphology with a rather simple 
procedure: using the boundary distances prevents merging narrow 
adjacent objects that would be falsely joined if only the center distances 
were used. Conversely, using the center distances prevents falsely split-
ting non-convex objects that have multiple connected regions in the 
thresholded boundary distance predictions. We call this approach AIS. 
This segmentation procedure is inspired by other approaches that use 
distance predictions for instance segmentation, for example, StarDist3 
or CellPose1, but it uses a simpler post-processing logic.

We have validated our approach by comparing it to two other seg-
mentation methods: predicting boundaries and foreground followed 
by watershed and predicting affinities followed by Mutex Watershed50. 
We trained a UNETR model based on the SAM ViT-B encoder on LIVECell 
for all three approaches, using 10,000 training iterations and otherwise 
using the same hyperparameters as described in the next section. 
We found that the distance-based approach (mean segmentation 
accuracy of 0.39) performed better than predicting affinities (0.36) 
and boundaries (0.31). We have further compared how our segmenta-
tion method works when using different network architectures. For 
this, we compare the UNETR architecture with a UNet51 and a sim-
pler architecture based on SAM that reuses the SAM image encoder 
and mask decoder to predict the foreground and distance channels 
for instance segmentation. The results are shown in Supplementary 
Fig. 4a,b. In summary, we see that the SAM-based architectures provide 
a big advantage for small training datasets, as long as their weights are 
initialized with a pretrained model, and that the UNETR architecture 
with convolutional decoder has an advantage over using the SAM mask 
decoder for this task.

Note that our segmentation approach also shares some similari-
ties with CellVIT21, which uses a SAM encoder for AIS in histopathology. 
However, CellVIT does not preserve the interactive segmentation 
capabilities of SAM. We have also evaluated its instance segmentation 
approach, which is based on predicting distance gradients, but found 
that it does not work well for touching objects.

Training
To fine-tune SAM models, we implement and make available an 
iterative training scheme following the description in Kirilov et al.11. 
Note that the training algorithm by Kirilov et al. has so far not been 
released. Other tools that fine-tune SAM, for example, MedSAM20, rely 
on a simpler training heuristic that only fine-tunes SAM for a specific 
kind of prompt, for example, box prompts. We have found that such 
approaches improve the segmentation quality for the given prompt 
type, but that they hamper it for other prompts (see also below). To 
provide a model for interactive segmentation, it is thus crucial to follow 
a similar training procedure as that used for training the initial SAM.

The training algorithm requires image data and corresponding 
ground-truth segmentations for the objects of interest. During train-
ing, we iterate over the complete training set several times in so-called 
epochs. In a single iteration, we sample a minibatch, corresponding to 
multiple images and the corresponding ground truth, apply the image 
encoder, derive prompts from the ground truth that are then passed 
to the prompt encoder and predict objects with the mask decoder. 
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We then compute the loss between predictions and ground truth and 
update the network weights via backpropagation and gradient descent. 
Compared to regular training approaches for instance segmenta-
tion, a single iteration is more complex as it is made up of multiple 
sub-iterations to mimic interactive segmentation. In more detail, a 
training iteration follows these steps:

 1. Sample a minibatch containing input images and ground truth 
from the training set.

 2. Sample a fixed number of objects from the ground truth. Train-
ing with all objects in a given image would require too much 
memory.

 3. Predict the embeddings for the sampled image(s) with the 
encoder. Note that the encoder depends only on the image data 
and not on the prompts.

 4. Perform the following steps for all sampled objects in a batched 
fashion:
 a. Sample a random point from the object, which is used as a 

positive input point, or use the bounding box of the object as 
the prompt.

 b. Predict the mask and expected IOU value for the given input 
with SAM. If the model is presented with a single point anno-
tation, predict three output masks; otherwise, predict a sin-
gle output mask. See the previous section for the motivation 
of this approach.

 c. Compute the loss between the predicted and ground-truth 
object as well as the loss between the estimated and true IOU 
score. If three objects were predicted, only the loss of the ob-
ject with highest IOU prediction is taken into account.

 d. Sample two new points: a positive one where the model pre-
dicted background but where there should be foreground 
(according to the ground truth), and a negative one for the 
reverse case. If such points cannot be sampled because there 
is no region with missing foreground predictions or vice ver-
sa, we sample a random positive/negative point from within/
outside the object.

 e. Present the combined annotations from the previous steps, 
that is, all points sampled so far and the box annotation if 
used in the first step, to the model. We also use the mask pre-
diction from the previous step as an additional prompt with 
a probability of 50%; see next paragraph for more details on 
this step.

 f. Compute the mask and IOU loss for the current prediction.
 5. Steps 4d–f are repeated for a fixed number of times (we use 

eight sub-iterations), all losses are accumulated; backpropaga-
tion and gradient descent are performed based on the average 
loss over all sub-iterations and update all parts of the model 
(image encoder, prompt encoder, mask decoder).

The goal of this training procedure is for the model to iteratively 
improve segmentation masks and provide a valid mask output for any 
input annotation. We implement it as described in Kirilov et al. with the 
exception of the mask sampling in step 4e. Here, the original training 
scheme uses the previous model prediction as mask input for the next 
sub-iteration every time rather than sampling it. We found that this 
approach leads the model to ‘rely’ on the presence of a mask prompt 
when multiple point annotations are given, resulting in degraded 
performance if this mask prompt is not given. To enable both set-
tings, segmentation with multiple point prompts with or without a 
mask prompt, we introduce the aforementioned sampling procedure. 
See Supplementary Fig. 1 for a quantitative comparison of iterative 
segmentation with and without mask prompt using the default SAM 
and a model fine-tuned with our training implementation. We have 
also experimented with simpler training schemes that do not involve 
multiple sub-iterations and that instead only sample boxes and/or 
fixed numbers of point annotations from the ground truth. We found 

that this approach leads to worse results for iterative segmentation; 
the model does not work well for interactive correction of the model 
predictions. Even simpler training approaches, like only training to 
segment from a box prompt as is done in MedSAM15, lead to a further 
degradation of the model’s capacity for interactive segmentation.

To train the segmentation decoder (see previous section), we 
interleave a training iteration for interactive segmentation and an 
iteration for automatic segmentation. Here, we make use of the same 
image and ground truth as sampled for interactive segmentation. We 
derive the target channels for the decoder from the ground truth: 
center and boundary distances as well as foreground map (see previ-
ous section and Supplementary Fig. 2a). We then compute the loss 
between these targets and the decoder predictions and update the 
weights of the image encoder and segmentation decoder based on 
it. We have also explored two other training strategies where we first 
train the model for interactive segmentation and then for AIS, trying 
both updating the weights of the image encoder and keeping them 
frozen. We found that training interactive and AIS jointly leads to the 
best results; the other strategies lead to diminished results either for 
interactive segmentation (if the image encoder weights are updated) 
or for AIS (if the encoder weights are frozen).

For the validation steps during training, we rely on a simpler pro-
cedure for interactive segmentation where we sample a bounding box 
and a fixed number of points per object, using the average Dice score 
between ground-truth and predicted objects as a metric. For automatic 
segmentation, we use the same loss function as in training as a metric, 
and add up the metric values for interactive and automatic validation. All 
experiments reported in this paper rely on fine-tuning the weights pro-
vided by the SAM publication; in some experiments, we further fine-tune 
our models. Our training method could also be used to train a model 
from randomly initialized weights. However, we expect this approach 
to drastically increase training times and thus did not pursue it.

We use the following settings and hyperparameters for training:

• We use a batch size of two, that is, two images and the corre-
sponding ground truth are sampled per batch. In cases where 
we train with constrained resources (Fig. 5a and Extended Data 
Fig. 10) we use a batch size of 1. Further training hyperparam-
eters are documented in Extended Data Fig. 10c.

• We train all models with a patch shape of 512 × 512 pixels; some 
training datasets contain smaller images, which are zero padded 
to match this shape. The only exception is the LIVECell special-
ist, which we have trained with a patch shape of 520 × 704 (the 
full image shape).

• We use the Dice loss to compare ground-truth objects and mask 
predictions for interactive and automatic segmentation.

• We use the L2 loss to compare true and predicted IOU scores.
• We use the ADAM optimizer52 with an initial learning rate of 10−5. 

We also investigated the impact of learning rate and optimizer, 
trying the learning rates 5 × 10−4, 10−4, 5 × 10−5, 10−5 and 5 × 10−6 as 
well as using ADAMW53 instead of ADAM. We found that using 
higher learning rates than 10−5 led to worse results and did not 
find an effect of the other parameter choices.

• For training the decoder outputs for AIS, we use the average 
Dice loss over the three predicted channels, center and bound-
ary distances as well as foreground predictions, masking the 
loss in the background for the two distance channels. Somewhat 
counterintuitively, we found that using Dice as the loss function 
for the distance predictions works better than using the L2 loss. 
Note that the distance channels are normalized to the range  
[0, 1], so the Dice loss is well defined.

• We lower the learning rate when the validation metric plateaus 
(ReduceLROnPlateau).

• For most experiments, we train the models for 250,000 itera-
tions and use the epoch that achieves the best validation metric. 
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We found that the EM and LM generalist models, especially  
ViT-L and ViT-H, which are both trained on large and diverse  
datasets, kept improving late in training, and use this setup for 
all experiments where we train and compare to these models 
(Figs. 3a and 4a and Extended Data Figs. 1b, 2, 5 and 8).

∘ For investigating which model parts to fine-tune (Fig. 1b) and 
investigating lower training data fractions on LIVECell (Fig. 1c and 
Extended Data Fig. 1c), we train the models with early stopping 
for a maximum of 100,000 iterations. For resource-constrained 
settings (Fig. 5b and Extended Data Fig. 10a) and the user study 
(Fig. 6), we also use early stopping and train for a maximum of 
100 epochs.

• Unless stated otherwise, the models were trained on a A100 
GPU with 80 GB of VRAM, where training a model for 250,000 
iterations took about 6 days. We provide an overview of all 
hardware configurations used for our experiments in Extended 
Data Fig. 10c and list representative training times with early 
stopping in Extended Data Fig. 10d.

For the implementation, we reuse the code from Kirilov et al. 
wherever possible and implement the additional training logic with 
PyTorch54 and torch-em55, a PyTorch-based library for deep learning 
applied to microscopy also developed by us.

Inference and evaluation
To quantitatively evaluate SAM for interactive segmentation, we mimic 
user-based segmentation with the model, following a similar logic as 
described in the previous section.

We derive prompts from the ground-truth objects, run the model 
with the image and these prompts as input and evaluate the predicted 
masks. We do not compute any loss functions and don’t accumulate 
gradients. We implement two different evaluation approaches—one 
where the mask from the previous iteration is always used, one where it 
is not used (step 4e; see also the evaluation in Supplementary Fig. 1). We 
evaluate the results for each of the sub-iterations individually by com-
puting the mean segmentation accuracy compared to the ground-truth 
masks (see below). In Fig. 2a, Extended Data Fig. 1b and Supplementary 
Fig. 1, we report the mean segmentation accuracy for each individual 
sub-iteration, stopping after seven iterations. We distinguish the cases 
where we start from a box prompt (red bars) or from a single point 
prompt (green bars). For all other figures, we only report the mean 
segmentation accuracy for the zeroth sub-iteration (that is, segmenta-
tion based only on the initial box or point prompt) and the respective 
last sub-iteration. Note that the point prompts are sampled randomly 
(subject to prediction errors in previous sub-iterations); we investigate 
the influence of this randomness in Extended Data Fig. 1b.

We evaluate models for automatic segmentation by computing 
the mean segmentation accuracy (see below) between model predic-
tion and ground-truth masks. When evaluating AMG, we found that 
it was crucial to also optimize two of its hyperparameters: the IOU 
and stability thresholds that are used for filtering out low-quality 
predictions (see also the first Methods section). While the default 
settings work well for the original SAM models, they have to be low-
ered for the fine-tuned models. Presumably, this is because these 
models are better calibrated to the actual prediction quality for 
objects in microscopy, which is lower compared to natural images. 
To efficiently perform a grid search, we precompute the predicted 
object masks and then evaluate the hyperparameter ranges to be 
tested. The parameter search is performed on a separate validation 
set, and the best setting found is applied to the test set. For AIS, we 
determined the best parameters for the threshold applied to center 
and boundary distances similarly via grid search. In the annotation 
tool (next section), the best values for AIS and AMG parameters are 
automatically set for the selected model.

For comparisons with CellPose, we use the most suitable CellPose 
model for the given data (at the time of running the experiments), 
corresponding to the CellPose specialist models for LIVECell and  
TissueNet and the cyto2 model otherwise. We have used these mod-
els with default settings and ran prediction with the CellPose Python 
library. For MitoNet, we use the napari plugin for 2D segmentation with 
the MitoNet_v1 model with default parameters. Note that the MitoNet 
Python library was not available open source at the time of running the 
experiments, so we resorted to using the napari plugin (https://github.
com/volume-em/empanada-napari/) instead.

We evaluate segmentation results with the mean segmentation 
accuracy. The segmentation accuracy, SA(t), was introduced in  
Everingham et al.27 and is defined in terms of true positives, TP(t),  
false positives, FP(t), and false negatives, FN(t), at IOU threshold t as: 
SA(t) = TP(t)/(TP(t) + FP(t) + FN(t)).  TP(t), FP(t) and FN(t) are computed 
by matching segmentation and ground truth on a per-object level and 
counting matches with a higher IOU value than t as TP(t), unmatched 
objects in the prediction as FP(t) and unmatched objects in the ground 
truth as FN(t). The mean segmentation accuracy is then computed by 
averaging SA(t) over thresholds t in the range from 0.5 to 0.95 with 
increments of 0.05. We compute this score per image and then average 
it over all images of a given evaluation dataset. This metric has been 
popularized for microscopy by the DSB Nucleus Segmentation  
Challenge26 and has recently been studied in depth by Hirling et al.56 in 
the context of microscopy segmentation. The mean segmentation 
accuracy is a stringent evaluation criterion, because it includes the 
evaluation at high IOU thresholds, which penalize even small deviations 
from the ground-truth objects. For this reason, we use the less stringent 
SA (0.5) measure for some experiments where we found that it was too 
strict for a meaningful evaluation.

To evaluate the quality of tracking results in the user study, we 
use the tracking metric introduced by the Cell Tracking Challenge31. 
This metric matches the graph defined by the ground-truth tracking 
annotations and the graph defined by the predicted tracking result to 
each other and then counts errors in this matching. We use the imple-
mentation provided by the ‘traccuracy’ repository (https://github.
com/Janelia-Trackathon-2023/traccuracy/).

Interactive annotation tools and Python library
We extend the core functionality of SAM to support caching of precom-
puted image embeddings, tiled computation of image embeddings 
and multidimensional segmentation based on projecting prompts to 
adjacent slices/time frames. We implement this functionality in our 
μSAM Python library, using scipy57 and scikit-image49 to implement 
additional image processing logic. We also use the scientific Python 
libraries numpy58, pandas59 and matplotlib60 to implement our library 
and to perform additional data analysis and plotting for this paper. 
Our Python library also implements the training and evaluation func-
tionality described in the previous sections. It further contains the 
implementation of our napari plugin, which implements five different 
widgets: for 2D annotation, for 3D annotation, for high-throughput 
image annotation, for tracking and for model training. A more detailed 
description of our implementation for this functionality can be found 
in the Supplementary Information.

User study
We perform three different user studies to demonstrate the usefulness 
of our napari tool for 2D segmentation, 3D segmentation and tracking. 
The first user study is performed by five different annotators and we 
compare μSAM and CellPose for annotating organoids in brightfield 
images. We perform this user study with multiple annotators in order 
to study the difference of annotation performance between users and 
compare different annotation modes for both tools. In the second 
user study, a single annotator segments nuclei in 3D EM, comparing 
μSAM with ilastik carving. In the last user study, nuclei are tracked in 
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fluorescence microscopy by a single annotator, comparing interac-
tive tracking with μSAM and tracking and correction with TrackMate.  
A detailed description of the user studies can be found in the Supple-
mentary Information.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We use publicly available datasets for most experiments (Supple-
mentary Tables 1 and 2). We generate new datasets for the 2D and 3D 
user studies. The dataset for the 2D user study consists of brightfield 
microscopy images of organoids and is available on Zenodo via https://
doi.org/10.5281/zenodo.14036956 (ref. 61). The dataset for the 3D user 
study consists of volume EM blocks, in which we have annotated nuclei. 
We have deposited this dataset on Zenodo via https://doi.org/10.5281/
zenodo.14037020 (ref. 62).

Code availability
Our software is available on GitHub under a permissive open-source 
license at https://github.com/computational-cell-analytics/
micro-sam/. It is documented at https://computational-cell-analytics.
github.io/micro-sam/micro_sam.html. The version at submission of 
this manuscript is 1.1.1. Our LM and EM generalist models are avail-
able on BioImage.IO and Zenodo. Please refer to our model docu-
mentation for the DOIs of individual models. Additional models 
are deposited on Zenodo and the corresponding links are given at 
https://computational-cell-analytics.github.io/micro-sam/micro_sam.
html#finetuned-models. The tables and code for generating quanti-
tative plots are available on GitHub. Additional code for the analysis 
of the 2D annotation user study is available at https://github.com/
computational-cell-analytics/user-study-v3/.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | SAM Architecture and extended LIVECell results. SAM 
architecture and extended results on LIVECell. a. SAM takes the image and 
object annotations as input and predicts mask(s) and IOU score(s). The image 
encoder computes the embeddings, which are independent of the annotations, 
the prompt encoders encode the mask, point and/or box annotations and the 
mask decoder predicts the output mask(s) and score(s). In the case of annotation 
with a single point, the model predicts three potential output masks to deal 
with ambiguity; for example predicting the individual object highlighted by the 
point in the example or also predicting the objects touching it. The predicted 

score gives the confidence for the correctness of the mask. b. Results for SAM 
(default and fine-tuned) on LIVECell with different image encoder sizes (ViT-T, 
ViT-B, ViT-L, ViT-H). We use the same experimental set-up as in Fig. 2a. The 
black error bars indicate the standard deviation over five independent runs of 
the interactive segmentation evaluation procedure. Note that this procedure 
includes randomness because it samples prompts to correct the segmentation 
masks according to segmentation errors from previous iterations. c. Training on 
reduced LIVECell datasets for all image encoder sizes; same experimental set-up 
as Fig. 2c with different image encoder sizes.
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Extended Data Fig. 2 | Extended quantitative evaluation for light microscopy models. Comparison of default SAM, LM generalist, and specialist models as well as 
CellPose. Same experimental set-up as in Fig. 3a, but we compare on additional datasets and report the results for all image encoder sizes (a - d). See Supplementary 
Table 1 for dataset references.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Qualitative interactive segmentation results for light 
microscopy I. Qualitative comparison of interactive segmentation for the 
default SAM and our LM generalist. For both the model based on ViT-L is used. 
Cyan shows the input point or box annotation, yellow the correct object and 
red the model prediction. We select examples with the best improvement in 
IOU score of the generalist compared to the default model to highlight typical 

improvements. The most consistent improvement is that the generalist correctly 
segments individual cells in clusters, whereas the default model segments the 
whole cluster. This figure serves to give an impression of how the interactive 
segmentation is improved; the quantitative improvement can be seen in Fig. 3a 
and Sup. Figure 2.
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Extended Data Fig. 4 | Qualitative interactive segmentation results for light 
microscopy II. Qualitative comparison of interactive segmentation for the 
default SAM and our LM generalist (ViT-L). Opposite approach to Extended Data 
Fig. 3: we show the objects where the decrease in IOU is largest comparing the 
generalist and default model. Here, we see a few different effects: in some cases 
the generalist model segments several nearby cells (proving an exception to 
the general behavior observed previously) for point annotations, in other cases 

the segmentation quality is lower because the generalist segments smaller sub-
structures. This systematic effect can also be observed for Covid IF, where the 
generalist often segments only the nucleus, which is discernible from the rest of 
the cell, rather than the full cell. Note that the quantitative segmentation quality 
for all these datasets is clearly higher for the generalist model as shown in Fig. 3 
and Extended Data Fig. 2.
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Extended Data Fig. 5 | Extended quantitative evaluation for electron 
microscopy models. Comparison of the default SAM and our EM generalist, with 
MitoNet as reference for automatic mitochondrion segmentation. We use the 
same experimental set-up as in Fig. 3 but give results for all image encoder sizes 

(a - d) and additional datasets. Note that the datasets Sponge EM and Platynereis 
(Cilia) evaluate segmentation for cilia and microvilli, which the generalist models 
were not trained for. They still yield improved results (except for segmentation 
with a single point prompt). See Supplementary Table 2 for dataset references.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Qualitative interactive segmentation results for 
electron microscopy I. Qualitative comparison of interactive segmentation 
for the default SAM and our EM generalist (ViT-L). Cyan shows the input point 
or box annotation, yellow the correct object and red the model prediction. We 
select examples with the best improvement from the generalist model (see 
also Extended Data Fig. 3). The generalist model overall adheres better to the 

object boundaries and for single point annotations segments the selected 
organelle instead of the surrounding compartment. It also avoids segmenting 
touching objects. This figure serves to give an impression of how the interactive 
segmentation is improved; the quantitative improvement can be seen in Fig. 4a 
and Extended Data Fig. 5.
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Extended Data Fig. 7 | Qualitative interactive segmentation results for 
electron microscopy II. Qualitative comparison of interactive segmentation for 
the default SAM and our EM generalist (ViT-L). Opposite approach to Extended 
Data Fig. 6: we show the objects with the largest disadvantage for the generalist 

model (see also Extended Data Fig. 4). Note that the quantitative segmentation 
quality for all these datasets is better with the generalist as shown in Fig. 4 and 
Extended Data Fig. 5.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Segmentation results for neuron and other organelle 
segmentation in electron microscopy. Segmentation of other structures in EM. 
a. Segmentation of neurites in EM using the CREMI58 dataset. We compare the 
default SAM, our EM generalist and a specialist model. The specialist is fine-tuned 
starting from default SAM on a separate training split; the models are evaluated 
on the same test split; the evaluation is in 2D and follows the usual approach. 
The images below compare qualitative results for interactive segmentation 
with the three models. All models are based on ViT-L. We see that the generalist 
overall decreases the segmentation quality for this task because it was trained 
to segment organelles rather than membrane compartments like neurites. 
Only interactive segmentation after correction (IP and IB) is improved, which 
can be partly explained by the effect discussed in Supplementary Fig. 1. The 
specialist model clearly improves the segmentation results across all settings. 

b. Endoplasmic reticulum (ER) segmentation. We follow the same strategy as 
in a, but for segmenting ER instead of neurites, using the ASEM dataset from 
Gallusser et al.41. Here, we somewhat surprisingly observe that the two smaller 
models (ViT-T, ViT-B) perform better than the two larger models in some 
settings. Annotation quality with a single point and AMG quality decrease for the 
generalist compared to the default model, but annotation with a box improves 
or does not change much (depending on the model). Interactive segmentation 
(IP and IB) improves. In summary the generalist does not have a clear advantage 
over the default model. Training a specialist, with the default model as starting 
point, improves results in all settings compared to the default model and is better 
than or on par with the generalist in almost all settings, except for interactive 
segmentation with ViT-T and ViT-B.
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Extended Data Fig. 9 | Volumetric segmentation results. Interactive and 
automatic 3D segmentation. a. Quantitative evaluation for interactive and 
automatic segmentation with default SAM and the LM generalist for cell 
segmentation (left) / the default SAM and the EM generalist (right); using the 
ViT-B models. We use a confocal microscopy volume from PlantSeg (Ovules)30 
/ a FIBSEM volume from Lucchi et al.36 for the experiments. For interactive 
segmentation we derive a single prompt in the middle slice per object and then 
run our interactive volumetric segmentation approach based on projecting 

prompts to adjacent slices. For automatic segmentation we use the slice by slice 
segmentation approach, followed by merging of segments across slices. We 
report the result for AIS with our generalist models; 3D segmentation via AMG is 
too inefficient to run it here. We report the SA50 metrics (segmentation accuracy 
at an IOU of 50%) because we found that mean segmentation accuracy is too 
stringent for these 3D segmentation problems. b. 2D and 3D visualizations of the 
results for automatic segmentation for both datasets.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02580-4

CPU

CPU

GTX1080

RTX5000

V100

A100

No. of
Objects

10

15

10

10

35

30

CPU (32G) Default

CPU (32G) Default

CPU (32G) Generalist

CPU (32G) Generalist

CPU (64G) Default

CPU (64G) Default

CPU (64G) Generalist

CPU (64G) Generalist

GTX1080 Default

ViT Base

ViT Base

ViT Base

ViT Base

ViT Base

ViT Large

Model

all

all

MD, PE

all

all

all

Finetuned 
Parts

1

1

1

1

1

2

Batch
Size

32GB

64GB

8GB

16GB

32GB

80GB

Compute
CapacityResource Model Finetuning

Stategy
Train Time

(in hh:mm:ss)Resource Best
Epoch

Full FT 24 5:41:31

LoRA 13 2:57:08

Full FT 6 2:01:30

LoRA 7 1:58:57

Full FT 15 3:51:02

LoRA 19 5:20:02

Full FT 5 1:28:26

LoRA 15 5:42:34

MD, PE 40 1:18:05

GTX1080 Generalist

RTX5000 Default

RTX5000 Default

RTX5000 Generalist

RTX5000 Generalist

V100 Default

V100 Default

V100 Generalist

V100 Generalist

MD, PE 13 0:15:05

Full FT 43 0:46:55

LoRA 16 0:17:37

Full FT 3 0:04:22

LoRA 32 0:34:04

Full FT 20 0:26:24

LoRA 42 0:51:10

Full FT 2 0:03:48

LoRA 5 0:07:11

Extended Data Fig. 10 | Model finetuning in resource-constraint settings. 
Resource constrained finetuning. a. Improvement of different segmentation 
settings with training epochs for finetuning ViT-T,B,L,H on LIVECell. We train for 
100,000 iterations, otherwise using the same settings as in Fig. 2a. We see that 
the majority of improvements happen early, motivating the use of early stopping 
in resource constrained settings. b. Influence of the number of objects per image 
used during finetuning, which is the most important training hyperparameter 
and also determines the VRAM required for training. The experiments are for a 
ViT-B trained for 100,000 iterations on LIVECell with 1-45 objects per image and 
we show evaluations for the usual segmentation settings. We see that increasing 
the number of objects initially strongly improves results and then plateaus or 
improves results with a smaller slope. c. Best hyperparameter settings for the 

hardware configurations we have tested. For each configuration we first looked 
if training ViT-L is possible (only for A100), using ViT-B otherwise, then how many 
objects could fit. For A100 we use a batch size of 2 and for all other settings a 
batch size of 1. For the GTX 1080 it is not possible to fine-tune the full ViT-B model 
and it is only possible to fine-tune mask decoder (MD) and prompt encoder (PD), 
which limits the model improvements, see also Fig. 2b. d Training times in epochs 
and minutes for finetuning models on Covid IF (Supplementary Fig. 4) using 
the different hardware configurations and best settings according to c, when 
updating all weights (Full FT) or using parameter-efficient training (LoRA) We use 
early stopping after 10 epochs without improvement and start training either 
from the default model or LM generalist.
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