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Abstract
We present Segment Anything for Microscopy, a tool for interactive and automatic segmentation
and tracking of objects in multi-dimensional microscopy data. Our method is based on Segment
Anything, a vision foundation model for image segmentation. We extend it by training
specialized models for microscopy data that significantly improve segmentation quality for a
wide range of imaging conditions. We also implement annotation tools for interactive
(volumetric) segmentation and tracking, that speed up data annotation significantly compared to
established tools. Our work constitutes the first application of vision foundation models to
microscopy, laying the groundwork for solving image analysis problems in these domains with a
small set of powerful deep learning architectures.

Main
Identifying objects in microscopy images, such as cells and nuclei in light microscopy (LM) or
cells and organelles in electron microscopy (EM) is one of the key tasks in image analysis for
biology. The large variety of imaging modalities and different dimensionality (2d, 3d, time) make
these identification tasks challenging and so far require different approaches for different
applications. The relevant state-of-the-art methods are deep learning based and have in the
past years significantly improved cell and nucleus segmentation in LM1–3, cell, neuron and
organelle segmentation in EM4–7 and cell tracking in LM8,9. Most of these methods provide
pretrained models and yield high quality results for new data similar to the model training sets.
However, due to limited generalization capabilities of the underlying deep learning approaches,
quality degrades for data dissimilar to the original training sets, see also Ma et al.10, and they
can only be improved by retraining on new annotated data. Generating these annotations is
time consuming, as it relies on manual pixel-level annotations. CellPose 211 implements
in-the-loop annotation and retraining to speed up this process for 2D segmentation, but relies on
manual pixel-level correction and is thus very time consuming if the initial segmentation result is
of low quality.
Vision foundation models have recently been introduced for image analysis tasks in natural
images, echoing developments in language processing. These models are mostly based on
vision transformers12 and are trained on very large datasets. They can be used as a flexible
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Figure 1: Overview of the Segment Anything for Microscopy contributions. a.We provide models
that were customized for microscopy data by finetuning on large microscopy datasets. We
implement napari-based interactive annotation tools for multi-dimensional microscopy data
based on Segment Anything. These tools enable rapid data annotation for several applications
and can be used to generate data for downstream analysis or for finetuning a custom model to
further speed up annotation or to automatically process the data (not shown). b. Improvement of
segmentation quality due to finetuning on light (top) and electron (bottom) microscopy data.
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backbone for different downstream tasks. The first successful foundation model was CLIP13,
which combines images and language, and underlies many generative image models14. More
recently foundation models targeting segmentation have been introduced15,16. Among them
Segment Anything15 (SAM), which was trained on a large labeled dataset and achieves
impressive interactive segmentation performance for a wide range of image domains. Such
foundation models have so far not been applied in microscopy, but their potential in this domain
has already been identified17.

Here, we introduce Segment Anything for Microscopy, which we call micro_sam in the following.
It extends SAM to improve models for microscopy data and enable interactive data annotation
for multidimensional data. Our main contributions are:

● We implement a training method to finetune SAM on new datasets.
● We use this method to finetune SAM models on microscopy data and find an overall

significant improvement compared to the default models.
● We implement napari-based18 tools for interactive data annotation for (volumetric)

segmentation and tracking that also support in-the-loop finetuning.
Figure 1 shows a high-level overview of micro_sam and examples for improved segmentation
results. Prior work has already investigated SAM for biomedical applications, for example in
medical imaging19, histopathology20 and neuroimaging21. However, these studies were limited to
the default SAM models and did not implement customization for their respective domains,
which is crucial according to our findings.

Compared to established segmentation and tracking tools, micro_sam is more versatile
because its pretrained models work for both LM and EM. It also supports 2d and volumetric
segmentation as well as tracking in the same set of tools and significantly speeds up data
annotation due to the interactive segmentation capabilities of SAM. We demonstrate this in
three user studies where we find competitive performance with CellPose11 for cell segmentation
and significantly improved performance compared to ilastik carving22 for volumetric
segmentation and compared to Trackmate9 for tracking. Our contribution also shows the
promise of vision foundation models to unify image analysis solutions in bioimaging. Our tool is
available at https://github.com/computational-cell-analytics/micro-sam and documented at
https://computational-cell-analytics.github.io/micro-sam/micro_sam.html.

Results
We compare the default SAM models with our finetuned models on a variety of microscopy
segmentation tasks. First, we study the finetuning method and its variations on the LiveCELL23

dataset. Then we train and evaluate generalist models for LM and EM. Finally, we introduce
interactive annotation tools for (volumetric) segmentation and tracking based on napari18. We
compare them to established tools in three user studies.
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Figure 2: Results on LiveCELL23. a compares the default SAM model (left) with the finetuned
version (right). The box plot shows the performance with increasing number of point
annotations. We use different combinations of positive and negative points and report the total
number on the x-axis. The lines indicate the performance of box annotations (blue), automatic
instance segmentation (green) and CellPose (yellow). b compares different finetuning strategies
where only parts of the model are finetuned. Here the label on the x-axis indicates which part(s)
of the model are updated during training, IE stands for image encoder, MD for mask decoder
and PE for prompt encoder. We evaluate box annotations (blue) and three different
combinations of point annotations, where “p1-n0” means one positive and no negative point etc.
c shows the segmentation quality for increasing size of the training dataset. The results of a and
c are for the largest SAM model (ViT-H), b for the smallest one (ViT-B). Supp. Figure 1 shows
an explanation of the model parts and results for the Vit-B version of SAM.
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Finetuning Segment Anything significantly improves segmentation
performance on the LiveCELL dataset
In Kirilov et al.15, SAM is introduced as a model for interactive segmentation: it predicts an object
mask based on point or bounding box inputs, see also Fig. 1 a for an example.
The point annotations can be positive (part of the object) or negative (not part of the object). The
model was trained on a very large dataset of natural images with segmentation annotations.
The authors also introduce a method for automatic instance segmentation.
They evaluate interactive and automatic segmentation on a wide range of tasks, including a
microscopy dataset24. See Methods for an overview of the SAM functionality.
The original microscopy experiment and our evaluation of the default SAM models show a
remarkable generalization to microscopy, despite only natural images in the original training set.
However, we noticed several shortcomings of this model for microscopy. For example, it
segments clusters of cells as a single object as seen in Figure 1 b. To improve it for application
in our domain, we implement an iterative training scheme to enable finetuning on new datasets.
This approach is inspired by the training method described in the SAM publication15, which has
so far not been made open source. See Methods for details on the training scheme.
We first evaluate default and finetuned SAM models as well as different training strategies on
LiveCELL23, the largest publicly available dataset for cell segmentation. Figure 2 a shows the
performance with increasing number of point annotations (box plot), with box annotations (blue
line) and with the automated instance segmentation (green line) for the default (left) and
finetuned (right) model. The point and box annotations are derived from the ground-truth
segmentation provided by LiveCELL. We finetune the largest SAM model (ViT-H) on the training
split of LiveCELL and use the test split for the evaluation experiments. We evaluate the
segmentation results using the segmentation accuracy metric25. We also indicate the
performance of CellPose11 trained on LiveCELL (yellow line). See Methods for more details on
inference and evaluation. The results show a significant improvement due to finetuning across
all settings. After finetuning segmentation from point or box annotations performs better than
CellPose. The automated segmentation significantly improves but is not on par with CellPose.
We investigate different finetuning strategies in Figure 2 b, where we finetune only parts of the
SAM model and leave the rest of its weights frozen. Here, we use a smaller version of the model
(ViT-B), but otherwise follow the same experimental set-up as before. The results show that
finetuning the image encoder (IE) has the biggest impact, and finetuning the complete model
shows the best overall performance.
We also finetune the model with only a subset of the training data, using data splits defined in
the LiveCELL publication. We use the same experimental set-up as before with the largest
model. The results in Figure 1 c show that the majority of the quality improvement occurs
already with the small training data fractions of 2, 4 and 5 %.
The results on LiveCELL offer the following important conclusions for further experiments:

1. Finetuning SAM significantly improves the segmentation quality for a given dataset.
2. Finetuning the full model yields the best results.
3. Significant improvements can be achieved for small training datasets.

The points 1 and 2 prescribe a recipe for training new “generalist” SAM models for the
microscopy domain. Point 3 indicates that in-the-loop finetuning based on user annotations

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.554208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.554208
http://creativecommons.org/licenses/by/4.0/


should be feasible. Unless stated otherwise, all further experiments will follow the same set-up
for finetuning and evaluating models as in this section.

Light microscopy model trained on diverse data generalizes to
new experimental settings
Our next goal is to train a generalist model for LM. This model should improve segmentation
performance for a wide range of segmentation tasks, so that it can be used as a replacement to
the default SAM model for LM. While our previous experiments have shown that finetuning on
data from a given imaging setting significantly improves specific performance, we have not yet
shown improved generalization to other settings.
To train the generalist, we assemble a large and diverse training set based on published LM
datasets: LiveCELL23, TissueNet2, DeepBacs26, Neurips Cell Segmentation10, Nucleus DSB24

and PlantSeg27. We train the generalist model on the combined training set, and for LiveCELL,
TissueNet and DeepBacs also train specialist models. The top row in Figure 3 a shows the
segmentation performance on these three datasets and compares default, specialist and
generalist model. In all cases the evaluation is done on a test split that is not part of the training
set for specialists and generalist. We see significant improvements of both specialists and
generalist compared to the default model. The specialists overall show slightly better
performance compared to the generalist, especially for DeepBacs, the smallest of the three
datasets. However, this difference is negligible compared to the performance improvement
compared to the default model. We also indicate the performance of a CellPose model as a
baseline, using the cyto model, except for LiveCELL where the model trained on this dataset is
used. Overall, the results show that training a generalist model on a superset of datasets does
not lead to significant loss in performance for a given dataset.
To study whether the generalist model has improved generalization for different microscopy
imaging settings we apply it to five new datasets, which come from settings not represented in
the training set. We choose the datasets CovidIF28 containing immunofluorescence data, HPA29

containing fluorescence images of human cells, Lizard30 containing histopathology data,
mouse-embryo31 containing nuclei imaged in light-sheet and plantseg-ovules27 containing cells
imaged in confocal. The comparison of the default and generalist model as well as the CellPose
cyto model are shown in the middle and bottom row of Figure 3 a. The improvement of the
generalist over the default model is significant for all datasets. The comparison to CellPose
shows mixed results. In some cases only the box annotations, which contain the most
information about the object to be segmented, improve over CellPose, in other cases all SAM
settings including the automated instance segmentation outperform it. Figure 3 b shows some
qualitative comparisons of default and generalist model. Supp. Figures 2 and 3 show more
qualitative comparisons, Supp. Figure 5 shows the results based on the ViT-B model; the
experiments presented here are based on ViT-H. More details on the LM datasets can be found
in Supp. Table 1.
Overall, these experiments demonstrate that generalist SAM models for a given domain can
significantly improve performance and the generalist model we train improves interactive and
automatic segmentation performance for cell and nucleus segmentation in LM.
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Figure 3: Generalist light microscopy model. a compares the performance of the default SAM
model with our generalist and in some cases specialist models. Here, we use the same
experimental settings as in Figure 2 b and c; in addition “amg” (purple) indicates the
performance of automatic instance segmentation and the yellow line the performance of
CellPose using the cyto model (except for LiveCELL where we use a more specific model).
Datasets in italic are part of the training set (evaluated on a separate test split). b shows
interactive segmentation results with default and generalist model. The cyan dot corresponds to
the point annotation, the yellow outline to the object and the red overlay to the model prediction.
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Electron microscopy model improves segmentation performance
for cells and neurites
We further investigate if training a generalist model for EM is feasible. This is more challenging
compared to LM because in EM membrane bound structures are labeled unspecifically rather
than having a specific stain for a cellular component1. Since these structures have a hierarchical
composition, e.g. organelles inside of a cell or cellular compartment, training a generalist model
is more challenging. Nevertheless, we proceed similarly to the LM case and assemble a large
training set consisting of the publicly available datasets CREMI32, MitoEM33, AxonDeepSeg34

and PlatyEM4. This set contains annotations for cells, cilia, mitochondria, myelinated axons,
neurites and nuclei imaged with different EM techniques. Using separate test splits we compare
the performance of the generalist model trained to the default model for four datasets. The
results in the top row of Figure 4 a show significant improvements for cells, neurites and nuclei,
but a decrease in performance for mitochondria.
We also compare the generalist to the default model on four datasets with imaging conditions
not present in the training set: Lucchi35 containing mitochondria imaged in FIBSEM, NucMM-Z36

containing nuclei imaged in low resolution SEM, SNEMI37 containing neurites imaged in SEM
and SpongeEM38 containing cells and organelles imaged in FIBSEM. The results are shown in
the bottom row of Figure 4. We see a similar trend as before: the performance improves for
neurites, decreases for mitochondria and shows mixed results for other settings. Figure 4 b
shows qualitative comparisons between the default and generalist model and more
comparisons can be found in Supp. Figure 4. Supp. Figure 5 shows the result for ViT-B. Supp.
Table 2 gives more details on all datasets.
These results show that training a generalist model for any structure in EM is not feasible given
the current SAM architecture and training scheme. However, we see that an improved model
can be trained for specific structures; in our case the EM model significantly improves
performance for cells and neurites, which make up the largest part of the training set. Note that
in the current state micro_sam can speed up annotation tasks in EM significantly as
demonstrated in one of the user studies. However for structures other than cells, neurites or
cellular compartments the default model will likely perform better than our finetuned model. We
will provide dedicated EM models for mitochondria and other organelles soon.

Interactive annotation tools based on Segment Anything speed up
data annotation for diverse applications in microscopy
To make the interactive and automatic segmentation functionality offered by SAM available to
microscopists and image analysts we implement three tools: one for 2d segmentation, one for
volumetric segmentation and one for cell tracking. They are implemented using napari18, a
python-based viewer for multi-dimensional image data. The 2d annotation tool supports

1 Some LM label-free imaging techniques can also unspecifically label cellular components. The datasets
studied in LM however contain either imaging with specific resolution or are label-free but of low
resolution so that subcellular structures cannot be resolved.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.554208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.554208
http://creativecommons.org/licenses/by/4.0/


Figure 4: Electron microscopy models. a compares the performance of the default SAM model
to our EM model. Datasets in italic are part of the training set (evaluation is done on separate
test splits). We follow the same experimental set-up as before, but do not evaluate the
automatic instance segmentation, since this is ill-defined given segmentation tasks for specific
objects, and do not compare to a baseline method for similar reasons. b shows qualitative
comparisons, using the same color coding as in Figure 3 b.
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interactive segmentation based on user-provided point and/or box annotations. It also offers
automated instance segmentation functionality that can be used to generate an initial
segmentation. Alternatively initial segmentations from other methods can be loaded by the tool.
To enable smooth interactive annotation on a laptop without a GPU we extend the core SAM
functionality to support precomputation and caching of image embeddings, tiled computation of
embeddings and tiled interactive segmentation as well as efficient recomputation of the
automatic instance segmentation given parameter changes.
For convenience we also implement an annotation tool for a series of input images. This tool
can precompute the state for all images in a folder and then opens the segmentation annotator
consecutively for these images, after the user saves the segmentation result for an image.
The volumetric annotation tool extends the interactive segmentation functionality to 3d data by
projecting segmentation masks to adjacent slices and running SAM with annotations derived
from the projected mask as inputs. It supports the same features as the 2d annotation tool,
except for the automatic instance segmentation functionality.
The annotation tool for (cell) tracking works similarly by projecting masks to adjacent
timeframes. It uses a linear motion model for projection, to account for the fact that cells often
move in a given direction. This tool further supports annotation of division events, so that
lineages of cells can be annotated. Otherwise it supports the same functionality as the 2d
annotation tool, except for automatic segmentation.
The core functionality underlying these features can also be used programmatically from
python, so that other developers can build upon our SAM extensions. See Methods for the
implementation details of the extended functionality and the annotation tools. Supp. Figure 6
shows an overview of the user interface and Supp. Videos 1-3 show tutorials that explain the
tool usage. The full documentation of our software can be found at
https://computational-cell-analytics.github.io/micro-sam/micro_sam.html.

We study the annotation tools for three representative applications and compare them to
established tools for the respective annotation tasks. For 2d annotation we study organoid
segmentation in brightfield images. Growing organoids is a common experimental technique for
studying tissue, e.g. in cancer research, and analysis based on organoid segmentation enables
studying their growth and morphology, e.g. to compare the effect of different treatments. Here,
we make use of an internal dataset for which 20 images have ground-truth segmentation masks
and plenty more images without ground-truth exist. We compare different annotation
approaches on this dataset and report the annotation time per object in Figure 5 a (left). We use
manual annotation (“manual”), annotation and in-the-loop finetuning with CellPose 2 (“CellPose
(default)”, “CellPose (finetuned)”) as well as different annotation approaches with micro_sam:
interactive annotation without initial automated instance segmentation (“micro_sam (no amg)”),
interactive annotation with automated instance segmentation (“micro_sam (default)”) and the
same set-up with a model finetuned in-the-loop (“micro_sam (finetuned)”). We use the GUI
provided by CellPose for annotation and finetuning of this method, starting from the cyto model.
Here, we first annotate three images without updating the model and then finetune it twice on
the previous annotations. For simplicity we only report the annotation times for the default model
and the mean over annotation times after finetuning.
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Figure 5: Annotation tool user studies. a Segmentation of organoids imaged in brightfield. Table
on lists annotation times per object for variants of our tool, CellPose, and manual annotation.
Plot on the right compares performance of the default SAM model with the model finetuned on
user annotations. b Comparison of ilastik carving and 3d annotation with micro_sam. Images
show a slice of the EM data with segmentation results from both tools overlayed (results are
volumetric for both) and the annotation time per object is given. Plot on the right compares
performance of the default SAM model with the model finetuned on user annotations. c
comparison of Trackmate and micro_sam. Table lists annotation times and quality, the figure
shows an example of a cell lineage reconstructed with micro_sam, including annotations.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.554208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.554208
http://creativecommons.org/licenses/by/4.0/


For micro_sam we use the default SAM ViT-H model and first compare annotation times with
and without starting from automated instance segmentation, where we find a clear advantage
for the former. We then finetune the model on the segmentation results from interactive
segmentation and also report the annotation times (using automatic instance segmentation) for
this model. We see that all semi-automatic approaches perform significantly better than manual
annotation. When using the automated instance segmentation micro_sam has an advantage
over CellPose before finetuning due to its interactive segmentation capability. After finetuning,
both methods perform comparatively. In this setting most organoids are correctly segmented
automatically, and the advantage due to interactive segmentation becomes less relevant. We
found that all approaches yield comparably high segmentation quality and do not evaluate it
further. In addition we evaluate the quantitative performance of the default and finetuned SAM
model in Figure 5 a (right), using data with labels that were not part of the data we have
annotated on. We see a significant improvement in the performance for single point annotations
and moderate improvements for the other settings. This improvement translates into the
significant annotation speed up because the single point prompt setting is used by the automatic
instance segmentation method and thus significantly improves its results.
For the 3d annotation tool we study nucleus segmentation in volume EM data, using an internal
dataset of a fruitfly larva, for which we also have ground-truth annotations for several small
blocks. Segmentation of nuclei or other large organelles in volume EM is an important task for
analyzing cellular morphology and differentiating cell types based on phenotypic criteria4. Here,
we compare interactively segmenting the nuclei with micro_sam and with ilastik carving22.
Carving uses a seeded graph watershed to segment objects in 3d from user annotations. This
method is not based on deep learning, but is still one of the most commonly used approaches
for 3d segmentation and is used by recent deep learning approaches for volume EM to generate
training data39. In micro_sam we annotate the data with the default ViT-H model. Figure 5 b (left)
shows two example slices from the volumetric segmentations and gives the annotation times.
Annotation with micro_sam is almost twice as fast and yields results of higher quality; the masks
obtained from carving do not adhere well to the nuclei in some cases because of the
superpixels that underlie the graph watershed and that cannot be corrected by carving. We also
evaluate how finetuning on the user generated results improves the quantitative performance
(Figure 5 b, right), observing significant performance improvements in most settings. Hence
in-the-loop finetuning could speed up data annotation further as in the first use-case, but was
not further studied here.

Finally, we study the tracking annotation tool on a dataset of HeLA cells imaged with label-free
microscopy from the Cell Tracking Challenge40. We have extended this dataset to provide
ground-truth segmentation for all slices in addition to the tracking ground-truth provided by the
challenge. Cell tracking is a common analysis task for analyzing the dynamic behavior of cell
populations. Here, we compare annotations with micro_sam with the most recent version of
Trackmate9 that has integrated support for deep learning based segmentation tools, including
CellPose. Figure 5 c shows the results for three different approaches: using Trackmate with the
ground-truth segmentation as input, using it with the CellPose segmentation and using
micro_sam. We report the annotation time per track, corresponding to the time it takes to track a
cell between its start and end frame (it may end due to a cell division, because it goes out of
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frame, dies, or because the time series ends) and the tracking quality, measured by the metric
from the Cell Tracking Challenge40. Note that we reconstruct lineages (i.e. tracks and division of
mother into daughter cells) with all tools, but chose to report the time per track instead of
lineage for simplicity. Annotation with Trackmate is fast and accurate when starting from
ground-truth segmentation. However, without access to it and relying on the CellPose
segmentation the annotation time increases significantly and the tracking quality decreases. In
comparison data annotation with micro_sam is slightly faster and yields results of significantly
better quality.

Discussion
We have introduced methods for finetuning Segment Anything for microscopy and have built
tools for interactive data annotation and automatic instance segmentation based on it. Our
quantitative experiments and user studies show that our contributions significantly speed up
data annotation and automated processing for a diverse set of applications. Our contribution
also marks one of the first applications of vision foundation models in microscopy image
analysis. We expect future work to build on our contributions and extend the application of
foundation models in microscopy to further improve object identification tasks and address more
image analysis tasks.

We compare our method to established tools for segmentation and tracking and show
competitive or significantly improved performance. However, we expect that further
improvements towards usability and performance can be made by integrating parts of our
methods with them instead. For example, our finetuned models and interactive segmentation
could be integrated within the CellPose GUI. The interactive segmentation and tracking
functionality could also be integrated in Trackmate, where it could improve over the available
segmentation options and be used to interactively correct tracks that were wrongly identified by
automated tracking. Multiple ilastik workflows could also benefit from an integration, for example
by implementing an advanced object detection workflow that makes use of the segmentation
results from ilastik pixel classification. To support integration with other tools we have
implemented the extensions to SAM’s functionality in a modular fashion, so that they can be
used independently from our napari-based annotation tools.

We plan to improve and extend our methods and tools across several dimensions. In the near
future we plan to train further models for bioimaging applications, for example a model
specialized for mitochondria and other organelles in EM. We are also looking into recent
developments that claim similar performance to the original SAM models with smaller and faster
architectures41 that could speed up preprocessing times and interactive annotation in our tools.
Furthermore, our current finetuning methodology relies on updating the full model weights. This
has the disadvantage that it requires a GPU and can be quite time consuming, limiting
in-the-loop finetuning to users with a powerful enough machine or access to on-premise or
cloud GPUs. We envision that smaller models and advanced finetuning approaches like LoRA42

will make finetuning on consumer hardware feasible.
Finally, we think that the automatic instance segmentation functionality of SAM can be further

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.554208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.554208
http://creativecommons.org/licenses/by/4.0/


improved by incorporating ideas from embedding based segmentation43. Such developments
could also enable semantically aware instance segmentation, which would benefit domains like
EM where structures of many different types are visible in the image.

Methods

Segment Anything
SAM is a vision foundation model for interactive segmentation. It was introduced in Kirilov et
al.15. Here, we briefly summarize the main functionality of this method. It solves interactive
segmentation tasks by predicting object masks based on an input image and annotations for a
given object. The annotations can be either bounding boxes, points (positive and/or negative) or
low-resolution masks. The publication also describes segmentation based on text annotations,
but the available version of the model does not yet include this feature. For a new image, the
model predicts an image embedding, which corresponds to a vector per pixel in a downscaled
representation of the input, with the image encoder. The image encoder is a vision transformer12

and SAM comes in three variants with different sizes of this encoder, using the ViT-B, ViT-L or
ViT-H architectures (ordered by increasing model size). The image encoder contains the
majority of parameters of SAM and only gets the image data as input. It only has to be
computed once per image, enabling fast recomputation of the segmentation mask if the
annotations change and thus interactive segmentation. The other parts of the model are the
prompt encoders that encode the box, point and mask annotation inputs and the mask decoder
that predicts the object mask and intersection over union (IOU) score based on the image
embedding and the encoded annotations. The IOU score corresponds to an estimate for the
mask quality. To deal with the ambiguity of a single point annotation, which could refer both to
an object or a part thereof, SAM predicts three different masks for this case. See also Supp.
Figure 1 a for an overview of the SAM architecture.
The SAM model is trained on a large labeled dataset of natural images that is constructed
iteratively by annotators that correct the outputs of a SAM model trained on a previous version
of this dataset. The model is then evaluated on a broad range of segmentation tasks and shows
remarkable generalization performance to image data from different domains. SAM requires per
object annotations to predict segmentation masks. The authors also implement a method for
automatic instance segmentation. It covers the input image with a grid of points and predicts
masks for all points. The predicted masks are post-processed through several steps to retain
only high quality predictions. This involves filtering out masks with a low IOU prediction, and
masks with a low stability score, which is computed based on the change of the masks when
thresholded at different logit values. In addition non-maximum-suppression is applied to remove
overlapping predictions.

Training
To finetune SAM models on custom data we implement an iterative training scheme similar to
the training procedure described by Kirilov et al.15. Note that this part of their code has so far not
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been released. The training scheme requires image data and corresponding ground-truth
segmentations for the objects of interest as input.
As is common when training deep neural networks, we iterate over the complete training
dataset several times in so called epochs. In a single iteration we sample a minibatch,
corresponding to multiple images and corresponding ground-truth, present the images to the
network, compute the loss between predictions and ground-truth and update the network
weights via backpropagation and gradient descent. Compared to usual training approaches a
single iteration in our scheme is more complex and follows multiple steps:

1. Sample a minibatch containing input images and ground-truth from the training set.
2. Sample a fixed number of objects from the ground-truth. Training with all present objects

would be too memory intensive.
3. We then perform the following steps for all sampled objects in a batched fashion:

a. Sample either a random point from the object, which is used as a positive input
point, or use the bounding box of the object as input.

b. Predict the mask and expected IOU value for the given input with SAM. If the
model is presented with only a single point annotation, predict three output
masks, otherwise only predict a single output mask. See the discussion about
ambiguity above for the motivation of this approach.

c. Compute the loss between the predicted and ground-truth object as well as the
loss between the estimated and true IOU between predicted object and
ground-truth.

d. Sample two new points, a positive one where the model predicted background
but where there should be foreground (according to the ground-truth), and a
negative one where settings are reversed. In case such points cannot be
sampled because there is no region with missing foreground predictions or with
versa we just sample a random positive / negative point.

e. Present the combined annotations from the previous steps, i.e. all points sampled
so far and the box annotation if used in the first step, as well as the mask
prediction from the previous step as annotation inputs to the model.

f. Compute the mask and IOU loss for the current predictions.
g. Steps d, e and f are repeated for a fixed number of times, all losses are

accumulated; backpropagation and gradient descent are performed based on the
average loss over all steps

4. For efficiency reasons the image embeddings are computed once per image before step
3. Note that the image embeddings only depend on the image data, not on the input
annotations.

The goal of this training scheme is for the model to iteratively improve segmentation masks and
provide a valid mask output for any kind of input annotations. We have also experimented with
simpler training schemes that did not make use of multiple annotation steps and instead relied
on sampling box and and a fixed number of point annotations from the ground-truth. However,
we found that this approach leads to significantly worse results.
For validation we rely on this simpler approach to generate input annotations and use the Dice
score of prediction and ground-truth masks as metric. All experiments reported in this
manuscript rely on finetuning the default SAM weights provided by the SAM publication. Our
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training method could also be used to train a model from randomly initialized weights. However,
we expect this approach to significantly increase training times and thus did not pursue it.
We use the following settings and hyperparameter for training:

● We use a batch size of two. I.e. two input images and corresponding ground-truth are
sampled per batch.

● We use the Dice loss to compare ground-truth objects and mask predictions.
● We use the L2 loss to compare true and predicted IOU scores.
● We use the ADAM optimizer44 with an initial learning rate of 10-5.
● We lower the learning rate when the validation metric plateaus (ReduceLROnPlateau).
● We train the models for 100 thousand iterations, except for:

○ The models where only parts of the architecture are updated (Figure 1 b). Since
we trained SAM with the smaller ViT-b architecture in these cases we only
trained for 25 thousand iterations.

○ The finetuned models in the user-study, which were only trained for 10 thousand
iterations due to the limited training data and in-the-loop setting.

● All models were trained on a A100 GPU with 80 GB of VRAM. Training a model for 100
thousand iterations took about two days.

For the implementation we reuse the code from Kirilov et al. wherever possible and implement
the additional training logic with PyTorch and torch-em2, a PyTorch based library for deep
learning applied to microscopy also developed by us.

Inference and evaluation
To quantitatively evaluate the interactive segmentation performance of SAM models we derive
input annotations from ground-truth. Here, we don’t use an iterative approach, but either use
object bounding boxes or sample a fixed number of positive and negative points per object.
When sampling points we always use the eccentricity center of an object as the first point, to
mimic manual annotation, which usually places the first point near the center of an object. All
other points are randomly sampled from the object mask (positive points) or from outside of it
(negative points). For reproducibility we compute and store all point annotations for a given
dataset and then use the same annotations for all models that are evaluated on it.

When evaluating the automated instance segmentation we found that it was crucial to also
optimize two of the hyperparameters: the IOU and stability thresholds that are used for filtering
out low quality predictions, see also the first Methods section. While the default settings work
well for the original SAM models they have to be lowered for the finetuned models. Presumably
this is due to the fact that these models are better calibrated to the actual prediction quality for
objects in microscopy, which is lower compared to natural images. To efficiently perform a grid
search we precompute the predicted object masks and then evaluate the hyperparameter
ranges to be tested. See the next section for details. The parameter search is performed on a
separate validation set, and the best setting found is applied to the test set.

2 https://github.com/constantinpape/torch-em
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To evaluate instance segmentation results we make use of the mean segmentation accuracy
averaged over object matching thresholds in the range from 0.5 to 0.95 with increments of 0.05.
This metric was introduced in Everingham et al.25 and has been popularized for microscopy by
the DSB Nucleus Segmentation Challenge24. Confusingly it is sometimes referred to as mean
average precision in the context of microscopy, although this term refers to a different metric.
See Hirling et al.45 for an in-depth discussion of the interpretation of segmentation metrics and
their history in microscopy segmentation. To evaluate the quality of tracking results we make
use of the tracking metric introduced by the Cell Tracking Challenge40.

Interactive annotation tools & python library
In addition to training and inference logic, we extend the functionality of SAM in four major ways
to enable efficient interactive segmentation:

● We implement precomputation of the image embeddings. This step takes the bulk of
computation time and is independent of the user-provided annotations. It can thus be
precomputed for an image so that subsequent interactive annotation becomes possible.
Typical processing times on a laptop without GPU are about a minute for the embedding
computation (per image) and less than a second for interactive segmentation. We also
support caching the precomputed embeddings to file, so that they do not have to be
recomputed upon restarting the annotation tool for a given input. This is of particular
importance for volumetric or time series data. Image embeddings can also be
precomputed on a separate resource with a GPU (e.g. local workstation, on-premise
computer cluster or cloud) and then be copied to the laptop used for annotation.

● We implement tiled computation for embeddings and interactive segmentation. When
using this feature the embeddings are computed for overlapping tiles of the input image.
In interactive segmentation the tile that best matches the current annotations is chosen
and the segmentation is computed for it; the overlap ensures that objects that are part of
multiple tiles can be segmented and the overlap size has to be chosen accordingly. Tiled
embeddings are also precomputed and can be saved to file. Tiling enables interactive
annotation for large images that could not be processed with SAM “en block”. We also
extend automatic instance segmentation to support tiled embeddings.

● For automatic instance segmentation we separate the computationally expensive
process of predicting masks from the post-processing of the predicted masks. This
separation enables precomputation of the state for automatic instance segmentation,
which can be stored together with the embeddings. This way users can also interactively
change the most important post-processing hyperparameters, in particular the
confidence threshold for retaining predicted mask and minimal size of mask, to find the
best automatic segmentation settings for their images. This feature is also used to
efficiently perform the grid search mentioned in the previous section.

● We extend SAM’s segmentation functionality to multiple dimensions (volumetric or 2d +
time) by projecting input annotations derived from a given object to adjacent slices /
frames. We can derive (low-resolution) input masks, the bounding box and point
annotations and can present SAM with any combination of these input annotations. In
practice we found that the combination of box and mask annotation usually work best
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and choose it as the default. The projection can optionally be done based on a linear
motion model, which can be beneficial for tracking objects that follow a directed
movement. Objects are segmented / tracked through the volume / timeseries by
consecutive projection to adjacent slices / frames. The IOU between slices / frames can
be used as a stopping criterion to prevent following objects that are wrongly segmented
or not present anymore (e.g. because the structure being segmented has stopped or the
cell being tracked leaves the frame). This functionality also supports interactive
correction: after adding annotations in a slice / frame the whole object / track will be
recomputed accordingly.

The data annotation tools are implemented using napari and use existing napari functionality
whenever possible. We use the napari label layer to represent object masks from interactive and
automatic segmentation predictions. Hence all features of this layer type, such as importing
segmentations from file, manually editing objects in the layer or saving the layer to an image file,
are supported. We use the point layer to represent point annotations and the shape layer for box
annotations. All additional GUI elements of our tools are generated with magicgui46, which
generates the elements from type-annotated function signatures. All annotation tools support
interactive instance segmentation via point and box prompts. The interactive segmentation
functionality is implemented with four layers: the prompt and box prompt layers are used to
create the point and box annotations for interactive segmentation. The current_object layer
contains the objects that are currently being annotated, and the commited_objects layer
contains objects that have already been annotated. Once the user is done with the current
object(s) they press a button to move it (them) to commited_objects. In the case of the tracking
tool these two layers are called current_track and committed_tracks. All tools precompute the
image embeddings for the complete image data, so that only prompt encoder and mask
decoder have to be reapplied when the annotations change, enabling response times of below
one second on a consumer laptop. They also all support tiled embeddings to enable annotation
of large image data.
The 2d annotation tool further supports automatic instance segmentation. Its predictions are
stored in a separate layer and the state for automatic instance segmentation is precomputed to
enable interactively changing hyperparameters as described above. When using box
annotations the 2d annotation tool can segment multiple objects at a time, one per box. When
using point annotations or a mix of box and point annotations only a single object can be
segmented at a time. We also implement an annotation tool for a series of images, e.g. for
multiple images stored in a folder. This tool precomputes the state for all images, and then
enables the users to iteratively annotate them, automatically saving the segmentation results
per image to a predefined folder.
The 3d annotation tool uses the interactive multi-dimensional segmentation functionality
described above to implement volumetric segmentation. It does not use a motion model for
projection. It has similar features as the 2d annotator, but does not support automatic instance
segmentation and can only segment one object at a time regardless of the type of annotation
used.
The tracking annotation tool also uses the multidimensional segmentation functionality, with
optional motion model. It adds support for dividing objects by extending the point annotations by

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.554208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.21.554208
http://creativecommons.org/licenses/by/4.0/


properties to mark division events and to differentiate separate objects (mother and daughter
cells) within a lineage. Otherwise it supports similar features to the 2d annotator, without support
for automatic segmentation and restricted to tracking a single lineage at a time.

All our software is implemented within a single python library, also including the training and
inference functionality described in the previous two sections. To enable programmatic use we
implement this library in a modular fashion, in particular to enable using most of the functionality
without requiring importing napari and starting a GUI.

Code and Data Availability
Our software is available on github under a permissive open source license at
https://github.com/computational-cell-analytics/micro-sam. At the submission of this manuscript
the software version is 0.2.2. We make use of publicly available datasets for most experiments.
They are listed in Supp. Table 1 and 2. We use internal datasets for the 2d and 3d annotation
user studies. These datasets will be made available upon request.
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Supplementary Information
Supplementary Videos

Supplementary Video 1: Tutorial for the 2d annotation tool. The video is available at
https://youtu.be/ket7bDUP9tI.

Supplementary Video 2: Tutorial for the 3d annotation tool. The video is available at
https://youtu.be/PEy9-rTCdS4.

Supplementary Video 3: Tutorial for the tracking annotation tool. The video is available at
https://youtu.be/Xi5pRWMO6_w.

Supplementary Tables

Dataset Image Modality Annotations Source Used for

LiveCELL Phase Contrast Cells Edlund et al.23 Generalist
Training and
Evaluation

DeepBacs Various Bacteria Spahn et al.26 Generalist
Training and
Evaluation

TissueNet Whole Tissue Cells Greenwald et
al.2

Generalist
Training and
Evaluation

PlantSeg-Root Lightsheet Cells Wolny et al.27 Generalist
Training and
Evaluation

DSB Nuclei Fluorescence Nuclei Caicedo et al.24 Generalist
Training

Neurips CellSeg Various Cells Ma et al.10 Generalist
Training

CovidIF Immuno-
fluorescence

Cells Pape et al.28 Generalist
Evaluation

HPA Fluorescence Cells Ouyang et al.29 Generalist
Evaluation

Lizard Histopathology Nuclei Graham et al.30 Generalist
Evaluation
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MouseEmbryo Lightsheet Nuclei Bondarenko et
al.31

Generalist
Evaluation

PlantSeg-Ovules Confocal Cells Wolny et al.27 Generalist
Evaluation

CTC HeLA Label-free Cells Ulman et al.40 User study

Supplementary Table 1: Overview of LM datasets.

Dataset` Image Modality Annotations Source Used for

AxonDeepSeg SEM and TEM Myelinated
axons

Zaimi et al.34 Generalist
Training

CREMI TEM Neuronal
processes

https://cremi.org/32 Generalist
Training and
Evaluation

MitoEM SEM Mitochondria Wei et al.33 Generalist
Training and
Evaluation

PlatyEM-Cells SEM Cells Vergara et al.4 Generalist
Training and
Evaluation

PlatyEM-Cilia SEM Cilia Vergara et al.4 Generalist
Training

PlatyEM-Nuclei SEM Nuclei Vergara et al.4 Generalist
Training and
Evaluation

Lucchi FIBSEM Mitochondria Lucchi et al.35 Generalist
Evaluation

NucMM-Z SEM Nuclei Lin et al.36 Generalist
Evaluation

SNEMI SEM Neuronal
processes

Kasthuri et al.37 Generalist
Evaluation

SpongeEM FIBSEM Cells, cilia and
microvilli

Musser et al.38 Generalist
Evaluation

Supplementary Table 2: Overview of EM datasets.
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Supplementary Figures

Supplementary Figure 1: SAM architecture and ViT-B LiveCELL results. a the SAM model takes
the image data and an annotation for the object to segment as input and outputs mask
prediction(s) for the object. The architecture consists of the image encoder (IE) that computes
an embedding for the image independent of the annotations, the prompt encoders (PE) that
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encode the mask, point and/or box annotations and the mask decoder (MD) that predicts the
output mask and score. In the case of annotations with a single point the model predicts three
potential output masks to deal with ambiguity. See for example the cell in the input image. The
point annotation could refer to the cell, the nucleus or sub-texture of the nucleus. The score
predicted by the model corresponds to the confidence of the model that the predicted mask is
correct. This figure is adapted from Kiriliov et al.15. b SAM model with ViT-B evaluated for
different annotation strategies on LiveCELL. Other than the ViT-B instead of ViT-H backend
uses the same set-up as Figure 2 a. Unlike for the ViT-B model we see a decrease in
performance with increasing number of point prompts for the finetuned model. c SAM model
with ViT-B backend finetuned on subsets of the LiveCELL training data. We see the same
overall trends as for ViT-H in Figure 2 c.
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Supplementary Figure 2: Qualitative comparison of LM generalist and default model. These
images were generated by selecting objects with the highest improvement of IOU score of the
finetuned compared to the default model for the given datasets. This approach shows that the
biggest source of improvement for point annotations is the fact that the finetuned model only
segments single objects in crowded situations, whereas the default model segments the whole
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local cluster of cells. For box annotations we see a better segmentation quality for objects of
irregular shape and orientation.

Supplementary Figure 3: Qualitative comparison of LM generalist and default model. THis figure
uses the opposite approach to Supp. Figure 2 and show the objects where the decrease in IOU
is largest comparing the finetuned to default model. Here, we see a few different effects: in
some cases the generalist model segments several nearby cells (proving an exception to the
general behavior observed previously) for point annotations, in other cases the segmentation
quality is lower given point or box annotations, sometimes segmenting smaller sub-structures. A
clear systematic effect can be observed for CovidIF, where the generalist often segments only
the nucleus, which is clearly discernible from the rest of the cell, rather than the full cell. Note
that the overall segmentation quality for all these datasets is significantly higher for the
generalist model as shown in Figure 3.
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Supplementary Figure 4: Qualitative comparison of finetuned EM and default model. The
images above the bold line were generated by selecting objects with the highest improvement of
IOU score of the finetuned compared to the default model, the images below using the opposite
approach. Here, we see that the generalist model improves segmentation performance in the
case of point and box annotations for segmenting neurons or cells by segmenting only single
objects instead of groups, and yielding better segmentations for objects of complex shape or
objects with internal structure, e.g. due to organelles. Conversely the segmentation performance
is worse for mitochondria because the model segments the full surrounding cell / cellular
compartment instead of the mitochondrion. These observation support our finding that training a
single EM generalist model is not feasible, but that improved models for specific structures can
be trained.
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Supplementary Figure 5: Comparison of the generalist / finetuned ViT-B models for LM (a) and
EM (b). Overall these results show the same trends as for the ViT-H models (Figure 3 and 4),
with generally lower performance for the ViT-B models.
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Supplementary Figure 6: User interface of the 2d annotation tool.
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